CS598JHM: Advanced NLP (Spring 2013) *http://courses.engr.illinois.edu/cs598jhm/*

Lecture 6: (Probabilistic) Latent Semantic Analysis

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center Office hours: by appointment Indexing by Latent Semantic Analysis (Deerwester et al., 1990)

Latent Semantic Analysis

The task:

Return relevant documents for text queries

The problem: relevance is conceptual/semantic

- The index of relevant documents may not contain all query terms (**synonymy** and missing information)
- The query terms may be ambiguous (**polysemy**)

Indexing by Latent Semantic Analysis

- Map queries and documents into a new vector space whose *k* dimensions correspond to independent concepts
- In this space, queries will be near semantically close documents

Latent Semantic Analysis

Low-rank approximation of Singular Value Decomposition (SVD):

this should really be

Â

X: Term-document matrix (=data): X_{ij} = freq of w_i in D $\dot{X} = T_0 S_0 D_0$ (k-rank approximation of X) T_0 : Columns are orthogonal and unit-length T_0 $T_0 = I$ S_0 : Diagonal matrix of the k largest singular values D_0 : Columns are orthogonal and unit-length D_0 $D_0 = I$ Bayesian Methods in NLP

LSA: term similarity

dot product of w_i , w_j in the new space $T_0 S_0$

 $\dot{X}\dot{X}^{\prime} = T_0 S_0 S_0 T_0$ (**D** cancels out because **S** is diagonal and **D** orthonormal)

Similarity of terms w_i , w_j in the new space: $(\dot{X}\dot{X}')_{ij}$

Bayesian Methods in NLP

LSA: document similarity

 $D_0 S_0$

 $\dot{X}'\dot{X} = D_0 S_0 S_0 D_0$ (T cancels out because **S** is diagonal and **T** orthonormal)

Similarity of documents d_i , d_j in the new space: $(\dot{\mathbf{X}}'\dot{\mathbf{X}})_{ij}$

LSA: term-document similarity

The elements of $\dot{\mathbf{x}}$ give the similarity of terms and documents.

Now, terms are projected to $\mathbf{TS}^{1/2}$, documents to $\mathbf{DS}^{1/2}$

LSA: query-document similarity

Queries q are 'pseudo-documents': they don't appear in \mathbf{X}

Construct their term vector \mathbf{X}_q Define their document vector $\mathbf{D}_q = \mathbf{X'}_q \mathbf{TS}^{-1}$

Probabilistic Latent Semantic Indexing (Hofmann 1999)

The aspect model

Observations are document-word pairs (d, w)

Assume there are *k* aspects $z_1...z_k$ Each observation is associated with a hidden aspect *z*

with
$$P(d, w) = P(d)P(w | d)$$
$$P(w | d) = \sum_{z \in Z} P(w | z)P(z | d)$$

Or, equivalently: $P(d, w) = \sum_{z \in Z} P(z)P(d \mid z)P(w \mid z)$

A geometric interpretation

Bayesian Methods in NLP

PLSA is a mixture model

Mixture models:

- K mixture components and N observations $x_{1...} x_N$
- Mixing weights $(\theta_1... \theta_K)$: P(k) = θ_K
- Each observation x_n is generated by mixture component z_n $P(x_n) = P(z_n) P(x_n | z_n)$

PLSI:

- Mixture components = topics
- Mixing weights are specific to each document $\theta_d = (\theta_{d1}...\theta_{dK})$
- Each observation (word) $w_{d,n}$ is a sample from the document-specific mixture model. It is drawn from one of the components $z_{d,n}$ $P(w_{d,n}) = P(z_{d,n} | \theta_d) P(w_{d,n} | z_{d,n})$

Estimation: EM algorithm

E-step: Recompute

 $P(z | d, w) = P(z, d, w) / \sum_{z'} P(z', d, w)$ with P(z, d, w) = P(z)P(d | z)P(w | z)

M-step: Recompute

$$P(w \mid z) \propto \sum_{d} freq(d, w) P(z \mid d, w)$$

$$P(d | z) \propto \sum_{w} freq(d, w) P(z | d, w)$$

$$P(z) \qquad \propto \sum_{d} \sum_{w} freq(d, w) P(z \mid d, w)$$