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Bayesian Methods in NLP

The goal of Monte Carlo methods
Given a target distribution P(x) that we cannot evaluate 
exactly, we use Monte Carlo (= sampling) methods to:

1. Generate samples { x(1) ... x(r)... x(R) } from P(x)

2. Estimate the expectation of functions φ(x) under P(x)

In Bayesian approaches, model parameters θ are also 
random variables. So, the target distribution P(x) may 
in fact be P(θ | D), the posterior of θ given the data  
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Bayesian Methods in NLP

The expectation Φ of φ(x):
Φ = 〈φ(x)〉P(x) = ∑x P(x)φ(x)

We can estimate Φ by Monte Carlo integration: 
Draw a finite number of samples {x(1)...x(R)} from P(x) 
and estimate Φ as

The variance of Φ is a function of σ2 /R 
(σ2 is the variance of φ(x);  R is the number of samples).
 σ2  = E[(φ − Φ)2 | x] = ∑x P(x) (φ(x) − Φ)2

The accuracy of Φ is independent of the dimensionality of x. 
A dozen independent samples from P(x) may be enough
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Bayesian Methods in NLP

Why is sampling hard?
We need to be able to draw independent samples from P(x)

This is difficult, because:

-Our models are often of the form P(x) ∝ f(x)  
i.e P(x) = f(x) / Z 

-  We often cannot compute the partition function Z = ∑x’ f(x’) 
because we usually operate in very high dimensions 
(or very large state spaces).
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Bayesian Methods in NLP

Sampling methods
Sampling from a fixed proposal distribution Q(x) ≠ P(x):

-Uniform sampling
- Importance sampling
-Rejection sampling

Markov Chain Monte Carlo (MCMC)
Sampling from a Markov chain: the probability of the next 
sample (= proposal distribution) depends on the current state

-Metropolis-Hastings
-Gibbs sampling
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Bayesian Methods in NLP

Uniform sampling 
Assume Q(x) is uniform. Draw samples x(r)  ∼ Q(x) (uniformly) 
from the state space, evaluate P(x(r))  at x(r) 

This gives a new distribution

Estimate 〈φ(x)〉P(x) as

Problem: Unless P(x) itself is close to uniform, this strategy will 
be very inefficient. In high-dimensional spaces, most regions of 
the state space have typically very low probability
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Bayesian Methods in NLP

Importance sampling can be used to compute expectations Φ

Assumptions: 
-We can evaluate P(x) ∝ f(x) at any point
-We have a simple sample density Q(x) ∝ g(x), 

which we can evaluate and draw samples from,
-For any x: if P(x) > 0, then also Q(x) > 0 

Algorithm 
-Draw samples from Q(x) ∝ g(x)
-Re-weight samples by wr = f(x(r))/g(x(r))
-Estimate Φ  as 

This converges to Φ. But:  We can’t estimate the variance of Φ. 
The empirical variances of wr and wrφ(x(r)) may not be a good 
indicator of their true variances

Importance sampling
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Bayesian Methods in NLP

Rejection sampling
Assumptions: 
-We can evaluate P(x) ∝ f(x) at any point
-We have a simple proposal density Q(x) ∝ g(x), 

which we can evaluate and draw samples from
-We know the value of a constant c such that cg(x) > f(x)

Algorithm:
-Sample x ∼ Q(x) and evaluate cg(x) 
-Sample y ∼ Uniform([0, cg(x)])
- If f(x) ≥ y, accept x, else reject x

This returns independent samples from P(x)

Problems:
Acceptance rate: ∫P(x)dx/∫cQ(x) dx = 1/c 
But c grows exponentially with the dimensionality of x
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Bayesian Methods in NLP

Markov Chain Monte Carlo
Rejection sampling and importance sampling
only work well when Q(x) is similar to P(x).
This is difficult to achieve in high dimensions.

Markov Chain Monte Carlo methods generate
a sequence of samples x(1)... x(t)... x(T)  

 x(t+1)  is drawn from a proposal distribution Q(x; x(t)) 
which depends on the last sample x(t) 

Advantage: Q(x; x(t)) does not have to be similar to P(x)

Disadvantage: the samples x(t) are correlated, and not 
independent. We may have to generate a lot of samples 
(T ≫ R) to get a sequence of R independent samples x(1)... x(R)
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Bayesian Methods in NLP

Markov chains
A (discrete-time, discrete-state) Markov chain 
over N states {x1,...,xN} is defined by

-an N-dimensional multinomial P(0), 
the initial distribution over  the states {x1,...,xN}

-an N×N transition matrix A 
that defines the transition probability 
of moving from state xi to state xj :
Aij = P(X(t+1) = xj | X(t) = xi) 

The Markov chain defines a sequence of distributions P(0)...P(t)... 
over the states  {x1,...,xN}:

P(t) = P(t -1) × A =  P(0) × A(t-1)
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Bayesian Methods in NLP

More Markov chain terminology
A Markov chain is irreducible if any state can be reached from 
any other state with nonzero probability.

An irreducible Markov chain is recurrent if the probability of 
reaching any state xj from any state xi in finite time is 1.

An irreducible, recurrent Markov chain is positive recurrent 
if it has a stationary (= equilibrium) distribution  π = lim t→∞P(t)

An ergodic Markov chain will converge to π 
regardless of its start state.

A reversible Markov chain obeys detailed balance:
π(xi) P(X(t+1) = xj | X(t) = xi) = π(xj) P(X(t+1) = xi | X(t) = xj)
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Bayesian Methods in NLP

MCMC: Metropolis-Hastings

Algorithm:
1. Given the last sample x(t), generate x’ ∼ Q(x; x(t))

2. Compute

3. If a > 1: accept x` 
  Otherwise, accept x` with probability a

4. If x’ is accepted: x(t+1) = x`
  Otherwise, x(t+1) = x(t)

Regardless of Q(x; x(t)), this algorithm samples from an ergodic 
Markov chain with states x and stationary distribution P(X).
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Bayesian Methods in NLP

Why Q(x; x(t)) can be any distribution

The transition matrix of the Markov chain is defined as

Assume accept(xi , xj) = aij < 1. Thus accept(xj , xi) = 1
accept(xi , xj ) P(xi) Q(xj ; xi ) = P(xj) Q(xi ; xj ) accept(xj , xi) 

P(xi) P(xj | xi ) = P(xj) P(xi | xj ) 

This obeys detailed balance. 
The equilibrium distribution is P(xi) regardless of Q(x’; x )
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Bayesian Methods in NLP

Convergence:
How many steps does it take to reach the equilibrium distribution?

-If Q is positive (Q(x’; x) > 0 for all x’; x), the distribution of x(t) is 
guaranteed to converge to  P(x) in the limit.
-But: convergence is difficult to assess.
-The steps before equilibrium is reached should be ignored 

(burn-in)

Mixing: How fast does the chain move around the state space?

Rejection rate:
- If the step size (distance btw. x’ and x(t)) is large, 

the rejection probability can be high
- If the step size is too small, only a small region of the sample 

space may be explored (= slow mixing)

Why Q(x; x(t)) still matters
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Bayesian Methods in NLP

Metropolis algorithm
Q(x’; x) is symmetric: Q(x’; x) = Q(x; x’)

Single-component Metropolis-Hastings
-x is divided into components x1...xn

Notation: x-i  := {x1, ..., xi-1, xi+1, ..., xn} (all components other than xi)

-At each iteration t, sample each xi in turn, using 
the full conditional distribution P(xi | x -i) = P(x)/∫P(x)dxi

and proposal distributions Qi(xi | xi(t), x -i(t)) and Qi(xi(t) | xi, x-i(t))

MCMC variants
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Bayesian Methods in NLP

 MCMC: Gibbs sampling
Assumptions:
- x is a multivariate random variable: x = (x1,...,xn)
-The full conditionals P(xi |  x1,...,xi-1,  xi+1,...,xn ) (=the conditional 

probabilities of each component given the rest), are easy to 
evaluate (also true if we split the components of x into blocks)

Algorithm:
 for t = 1...T:
    for i = 1...N:
       sample xi(t) ∼ P(xi |  x1(t),...,xi-1(t),    xi+1(t-1),...,xn(t-1))
 
Gibbs sampling is single-component Metropolis-Hastings without 
rejection. Think of it as using the full conditionals as proposal 
distributions (so the two fractions cancel, and hence a = 1)

Qi(xi | xi(t), x -i(t)) =  P(xi |  x1(t),...,xi-1(t),    xi+1(t-1),...,xn(t-1))
Qi(xi(t) | xi, x-i(t)) =  P(xi(t) |  x1(t),...,xi-1(t),    xi+1(t-1),...,xn(t-1))
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Bayesian Methods in NLP

How should we generate samples?
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The longer a chain runs, the more likely it is to 
have converged.

But it’s difficult to know from a single chain
whether it has converged (or is just slow to mix).

Multiple parallel chains (with independent 
starting points) can help identify convergence/
mixing problems: do they all generate the same 
(=indistinguishable) sequences of samples?

Compare within-sequence variance and across-
sequence variance.

N.B.: Starting points may come from simpler 
models.


