CS598JHM: Advanced NLP (Spring 2013) http://courses.engr.illinois.edu/cs598jhm/

Lecture 3: Comparing frequentist and Bayesian estimation techniques

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: by appointment

Text classification

The task: binary classification (e.g. sentiment analysis) Assign (sentiment) label $L_{i} \in\{+,-\}$ to a document $\boldsymbol{W}_{i}=\left(w_{i l} \ldots w_{i N}\right)$. $\boldsymbol{W}_{l}=$ "This is an amazing product: great battery life, amazing features and it's cheap." $\boldsymbol{W}_{2}=$ "How awful. It's buggy, saps power and is way too expensive."

The data: A set \boldsymbol{D} of N documents with (or without) labels The model: Naive Bayes

We will use a frequentist model and a Bayesian model and compare supervised and unsupervised estimation techniques for them.

A Naive Bayes model

The task:
Assign (sentiment) label $\mathrm{L}_{\mathrm{i}} \in\{+,-\}$ to document \mathbf{W}_{i}.
$\mathbf{W}_{1}=$ "This is an amazing product: great battery life, amazing features and it's cheap."
$\mathbf{W}_{2}=$ "How awful. It's buggy, saps power and is way too expensive."
The model:
$\mathrm{L}_{\mathrm{i}}=\operatorname{argmax}_{\mathrm{L}} \mathrm{P}\left(\mathrm{L} \mid \mathbf{W}_{\mathrm{i}}\right)=\operatorname{argmax}_{\mathrm{L}} \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \mathrm{L}\right) \mathrm{P}(\mathrm{L})$
Assume \mathbf{W}_{i} is a "bag of words":
$\mathbf{W}_{1}=\{$ an: 1 , and: 1 , amazing: 2 , battery: 1 , cheap: 1 , features: 1 , great: $1, \ldots\}$
$\mathbf{W}_{2}=$ \{awful: 1, and: 1, buggy: 1, expensive: $\left.1, \ldots\right\}$
$\mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \mathrm{L}\right)$ is a multinomial distribution: $\mathbf{W}_{\mathrm{i}} \sim \operatorname{Multinomial}\left(\boldsymbol{\theta}_{\mathrm{L}}\right)$
With a vocabulary of V words, $\boldsymbol{\theta}_{\mathrm{L}}=\left(\theta_{1}, \ldots, \theta_{\mathrm{v}}\right)$
$\mathrm{P}(\mathrm{L})$ is a Bernoulli distribution: $\mathrm{L} \sim \operatorname{Bernoulli}(\pi)$

The frequentist (maximum-likelihood) model

The frequentist model

The frequentist model has specific parameters $\boldsymbol{\theta}_{\mathrm{L}}$ and π
$\mathrm{L}_{\mathrm{i}}=\operatorname{argmax}_{\mathrm{L}} \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\theta}_{\mathrm{L}}\right) \mathrm{P}(\mathrm{L} \mid \boldsymbol{\pi})$
$\mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\theta}_{\mathrm{L}}\right)$ is a multinomial over V words with parameter $\boldsymbol{\theta}_{\mathrm{L}}=\left(\theta_{1}, \ldots, \theta_{\mathrm{v}}\right)$:

$$
\mathbf{W}_{\mathrm{i}} \sim \operatorname{Multinomial}\left(\boldsymbol{\theta}_{\mathrm{L}}\right)
$$

$\mathrm{P}(\mathrm{L} \mid \pi)$ is a Bernoulli distribution with parameter π :

$$
\mathrm{L} \sim \operatorname{Bernoulli}(\pi)
$$

The frequentist model

Supervised MLE

The data is labeled:
We have a set \mathbf{D} of D documents $\mathbf{W}_{1} \ldots \mathbf{W}_{\mathrm{d}}$ with N words
Each document W_{i} has N^{i} words
D^{+}documents (subset \mathbf{D}^{+}) have a positive label and N^{+}words D^{-}documents (subset \mathbf{D}^{-}) have a negative label and N^{-}words Each word w_{i} appears $\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in $\mathbf{D}^{+}, \mathrm{N}^{-}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in \mathbf{D}^{-} Each word w_{i} appears $\mathrm{N}^{\mathrm{j}}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in D^{j}

MLE: relative frequency estimation

- Labels: L ~ Bernoulli(π) with $\pi=\mathrm{D}^{+} / \mathrm{d}$
- Words: $\mathbf{W}_{\mathrm{i}} \mid+\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{+}\right)$with $\boldsymbol{\theta}_{\mathbf{i}}{ }^{+}=\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right) / \mathrm{N}^{+}$
- Words: $\mathbf{W}_{\mathrm{i}} \mid-\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{-}\right)$with $\boldsymbol{\theta}_{\mathrm{i}}^{-}=\mathrm{N}^{-}\left(\mathrm{w}_{\mathrm{i}}\right) / \mathrm{N}^{-}$

Inference with MLE

The inference task:
Given a new document \mathbf{W}_{i+1}, what is its label $\mathrm{L}_{\mathrm{i}+1}$?

Recall: the word w_{j} occurs $\mathrm{N}_{\mathrm{i}+1}\left(\mathrm{w}_{\mathrm{j}}\right)$ times in $\mathbf{W}_{\mathrm{i}+1}$.

$$
\begin{aligned}
P\left(L=+\mid \mathbf{W}_{i+1}\right) & \propto P(+) P\left(\mathbf{W}_{i+1} \mid+\right) \\
& =\pi \prod_{j=1}^{V} \theta_{+j}^{N_{i+1}\left(w_{j}\right)}
\end{aligned}
$$

Unsupervised MLE

The data is unlabeled:
We have a set D of D documents $\mathbf{W}_{1} \ldots \mathbf{W}_{\mathrm{d}}$ with N words Each document $\mathbf{W}_{\mathbf{i}}$ has N^{i} words
Each word $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{i}} . . \mathrm{w}_{\mathrm{V}}$ appears $\mathrm{Ni}^{\mathrm{j}}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in \mathbf{W}_{j}
EM algorithm: "expected relative frequency estimation" Initialization: pick initial $\pi^{(0)}, \boldsymbol{\theta}^{+(0)}, \boldsymbol{\theta}^{-(0)}$ Iterate:
-Labels: $\mathrm{L} \sim \operatorname{Bernoulli}(\pi)$ with $\pi^{(\mathrm{t})}=\left\langle\mathrm{N}_{+}\right\rangle_{(\mathrm{t}-1)} /\langle\mathrm{N}\rangle_{(\mathrm{t}-1)}$

- Words: $\mathbf{W}_{\mathrm{i}} \mid+\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{+}\right)$with $\theta_{\mathbf{i}}^{+(\mathrm{t})}=\left\langle\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)\right\rangle_{(\mathrm{t}-1)} /\left\langle\mathrm{W}^{+}\right\rangle_{(\mathrm{t}-1)}$
-Words: $\mathbf{W}_{\mathrm{i}} \mid-\sim \operatorname{Multinomial}\left(\boldsymbol{\theta}^{-}\right)$with $\theta_{\mathrm{i}}^{-(\mathrm{t})}=\left\langle\mathrm{N}^{-}\left(\mathrm{w}_{\mathrm{i}}\right)\right\rangle_{(\mathrm{i}-1)} /\left\langle\mathrm{W}^{-}\right\rangle_{(\mathrm{i}-1)}$

Maximum Likelihood estimation

With complete (= labeled) data $\mathbf{D}=\left\{\left\langle\mathbf{X}_{\mathrm{i}}, \mathbf{Z}_{\mathrm{i}}\right\rangle\right\}$, maximize the complete likelihood $p(\mathbf{X}, \mathbf{Z} \mid \theta)$:

$$
\begin{gathered}
\theta^{*}=\operatorname{argmax}_{\theta} \prod_{\mathrm{i}} p\left(\mathbf{X}_{\mathrm{i}}, \mathbf{Z}_{\mathrm{i}} \mid \theta\right) \\
\text { or } \theta^{*}=\operatorname{argmax}_{\theta} \sum_{\mathrm{i}} \ln \left(p\left(\mathbf{X}_{\mathrm{i}}, \mathbf{Z}_{\mathrm{i}} \mid \theta\right)\right)
\end{gathered}
$$

Maximum Likelihood estimation

With incomplete (= unlabeled) data, $\mathbf{D}=\left\{\left\langle\mathbf{X}_{i}, ?\right\rangle\right\}$ maximize the incomplete (marginal) likelihood $p(\mathbf{X} \mid \theta)$:

$$
\begin{aligned}
\theta^{*} & =\operatorname{argmax}_{\theta} \sum_{\mathrm{i}} \ln \left(p\left(\mathbf{X}_{\mathrm{i}} \mid \theta\right)\right) \\
& =\operatorname{argmax}_{\theta} \sum_{\mathrm{i}} \ln \left(\sum_{\mathbf{z}} p\left(\mathbf{X}_{\mathrm{i}}, \mathbf{Z} \mid \theta\right) p\left(\mathbf{Z} \mid \mathbf{X}_{\mathrm{i}}, \theta^{\prime}\right)\right) \\
& =\operatorname{argmax}_{\theta} \sum_{\mathrm{i}} \ln \left(\mathbf{E}_{\mathbf{Z} \mid \mathbf{X}_{i}, \theta^{\prime}},\left[p\left(\mathbf{X}_{\mathrm{i}}, \mathbf{Z} \mid \theta\right)\right]\right)
\end{aligned}
$$

$p(\mathbf{Z} \mid \mathbf{X}, \theta)$: the posterior probability of $\mathbf{Z}(\mathbf{X}=$ our data)
$\mathbf{E}_{\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}}\left[p\left(\mathbf{X}_{\mathbf{i}}, \mathbf{Z} \mid \theta\right)\right]$: the expectation of $p(\mathbf{X}, \mathbf{Z} \mid \theta)$ wrt. $p(\mathbf{Z} \mid \mathbf{X}, \theta)$
Find parameters $\theta^{\text {new }}$ that maximize the expected loglikelihood of the joint $p\left(\mathbf{Z}, \mathbf{X} \mid \theta^{\text {new }}\right)$ under $p\left(\mathbf{Z} \mid \mathbf{X}, \theta^{\text {old }}\right)$
This requires an iterative approach

The EM algorithm

1. Initialization: Choose initial parameters $\theta^{\text {old }}$
2. Expectation step: Compute $p\left(\mathbf{Z} \mid \mathbf{X}, \theta^{\text {old }}\right)$
(= posterior of the latent variables Z)
3. Maximization step: Compute $\theta^{\text {new }}$ $\theta^{\text {new }}$ maximizes the expected log-likelihood of the joint $p\left(\mathbf{Z}, \mathbf{X} \mid \theta^{\text {new }}\right)$ under $p\left(\mathbf{Z} \mid \mathbf{X}, \theta^{\text {old }}\right)$:

$$
\theta^{\text {new }}=\arg \max _{\theta} \sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \theta^{\text {old }}\right) \ln p(\mathbf{X}, \mathbf{Z} \mid \theta)
$$

4. Check for convergence.

Stop, or set $\theta^{\text {old }}:=\theta^{\text {new }}$ and go to 2.

The EM algorithm

The classes we find may not correspond to the classes we would be interested in. Seed knowledge (e.g. a few positive and negative words) may help

We are not guaranteed to find a global optimum, and may get stuck in a local optimum.

Initialization matters

In our example...

Initialization: Pick (random) $\pi_{\mathrm{A}}, \pi_{\mathrm{B}}=\left(1-\pi_{\mathrm{A}}\right), \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}$

E-step:

Set $\mathrm{N}_{\mathrm{A}}, \mathrm{N}_{\mathrm{B}}, \mathrm{N}_{\mathrm{A}}\left(\mathrm{w}_{1}\right), \ldots, \mathrm{N}_{\mathrm{A}}(\mathrm{wv}), \mathrm{N}_{\mathrm{B}}\left(\mathrm{w}_{1}\right), \ldots \mathrm{N}_{\mathrm{B}}(\mathrm{wv}):=0$
For each document \mathbf{W}_{i},
Set $\mathbf{L}_{i}=\mathrm{A}$ with $\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{A} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right) \propto \pi_{\mathrm{A}} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{w}_{\mathrm{ij}} \mid \boldsymbol{\theta}_{\mathrm{A}}\right)$
Set $\mathbf{L}_{\mathrm{i}}=\mathrm{B}$ with $\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{B} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right) \propto \pi_{\mathrm{b}} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{w}_{\mathrm{ij}} \mid \boldsymbol{\theta}_{\mathrm{B}}\right)$
Update $\mathrm{N}_{\mathrm{A}}+=\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{A} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right)$

$$
\mathrm{N}_{\mathrm{B}}+=\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{B} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right)
$$

For all words w_{ij} in \mathbf{W}_{i} :

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}\left(\mathrm{w}_{\mathrm{ij}}\right)+=\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{A} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right) \\
& \mathrm{N}_{\mathrm{B}}\left(\mathrm{w}_{\mathrm{ij}}\right)+=\mathrm{P}\left(\mathbf{L}_{\mathrm{i}}=\mathrm{B} \mid \mathbf{W}_{\mathrm{i}}, \pi_{\mathrm{A}}, \pi_{\mathrm{B}}, \boldsymbol{\theta}_{\mathrm{A}}, \boldsymbol{\theta}_{\mathrm{B}}\right)
\end{aligned}
$$

M-step:

$$
\begin{array}{ll}
\pi_{\mathrm{A}}:=\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) & \pi_{\mathrm{B}}:=\mathrm{N}_{\mathrm{B}} /\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) \\
\theta_{\mathrm{A}}\left(\mathrm{w}_{\mathrm{i}}\right):=\mathrm{N}_{\mathrm{A}}\left(\mathrm{w}_{\mathrm{i}}\right) / \sum \mathrm{j}\left(\mathrm{~N}_{\mathrm{A}}\left(\mathrm{w}_{\mathrm{j}}\right)\right) & \theta_{\mathrm{B}}\left(\mathrm{w}_{\mathrm{i}}\right):=\mathrm{N}_{\mathrm{B}}\left(\mathrm{w}_{\mathrm{i}}\right) / \sum \mathrm{j}\left(\mathrm{~N}_{\mathrm{B}}\left(\mathrm{w}_{\mathrm{j}}\right)\right)
\end{array}
$$

Bayesian Methods in NLP

The Bayesian model

The Bayesian model

The Bayesian model has priors $\operatorname{Dir}(\gamma)$ and $\operatorname{Beta}(\alpha, \beta)$ with hyperparameters $\gamma=\left(\gamma_{1}, \ldots, \gamma_{\mathrm{v}}\right)$ and α, β

It does not have specific $\boldsymbol{\theta}_{\mathrm{L}}$ and π, but integrates them out:
$\mathrm{L}_{\mathrm{i}}=\operatorname{argmax}_{\mathrm{L}} \iint \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\theta}_{\mathrm{L}}\right) \mathrm{P}\left(\boldsymbol{\theta}_{\mathrm{L}} ; \boldsymbol{\gamma}_{\mathrm{L}}, \mathbf{D}\right) \mathrm{P}(\mathrm{L} \mid \pi) \mathrm{P}(\pi ; \alpha, \beta, \mathbf{D}) \mathrm{d} \boldsymbol{\theta}_{\mathrm{L}} \mathrm{d} \pi$
$=\operatorname{argmax}_{\mathrm{L}} \int \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\theta}_{\mathrm{L}}\right) \mathrm{P}\left(\boldsymbol{\theta}_{\mathrm{L}} ; \boldsymbol{\gamma}_{\mathrm{L}}, \mathbf{D}\right) \mathrm{d} \boldsymbol{\theta}_{\mathrm{L}} \int \mathrm{P}(\mathrm{L} \mid \pi) \mathrm{P}(\pi ; \boldsymbol{\alpha}, \beta, \mathbf{D}) \mathrm{d} \pi$
$=\operatorname{argmax}_{\mathrm{L}} \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\gamma}_{\mathrm{L}}, \mathbf{D}\right) \mathrm{P}(\mathrm{L} \mid \alpha, \beta, \mathbf{D})$
$\mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\theta}_{\mathrm{L}}\right)$ is a multinomial with parameter $\boldsymbol{\theta}_{\mathrm{L}}=\left(\theta_{1}, \ldots, \theta_{\mathrm{V}}\right)$,
$\mathrm{P}\left(\boldsymbol{\theta}_{\mathrm{L}} ; \boldsymbol{\gamma}_{\mathrm{L}}\right)$ is a Dirichlet with hyperparameter $\boldsymbol{\gamma}_{\mathrm{L}}=\left(\gamma_{1}, \ldots, \gamma_{\mathrm{V}}\right)$

$$
\boldsymbol{\theta}_{\mathrm{L}} \sim \operatorname{Dirichlet}\left(\boldsymbol{\gamma}_{\mathrm{L}}\right) \quad \mathbf{W}_{\mathrm{i}} \sim \operatorname{Multinomial}\left(\boldsymbol{\theta}_{\mathrm{L}}\right)
$$

$\mathrm{P}(\mathrm{L} \mid \pi)$ is a Bernoulli with parameter π, drawn from a Beta prior

$$
\pi \sim \operatorname{Beta}(\alpha, \beta) \quad L \sim \operatorname{Bernoulli}(\pi)
$$

The Bayesian model

Bayesian: supervised

The data is labeled:
We have a set \mathbf{D} of D documents $\mathbf{W}_{1} \ldots \mathbf{W}_{\mathrm{D}}$ with N words
Each document W_{i} has N^{i} words
D^{+}documents (subset \mathbf{D}^{+}) have a positive label and N^{+}words
D^{-}documents (subset \mathbf{D}^{-}) have a negative label and N^{-}words
Each word w_{i} appears $\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in $\mathbf{D}^{+}, \mathrm{N}^{-}\left(\mathrm{w}_{\mathrm{i}}\right)$ times in \mathbf{D}^{-}
Each word w_{j} appears $\mathrm{N}^{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}}\right)$ times in \mathbf{W}_{i}

Bayesian estimation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~L}=+\mid \mathbf{D})=\left(\mathrm{D}^{+}+\alpha\right) /(\mathrm{D}+\alpha+\beta) \\
& \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid+, \mathbf{D}\right)=\left(\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)+\gamma_{\mathrm{i}}\right) /\left(\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)+\gamma_{0}\right) \\
& \mathrm{P}\left(\mathbf{W}_{\mathrm{i}} \mid+, \mathbf{D}\right)=\prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{w}_{\mathrm{j}} \mid+\right)^{\mathrm{Ni}\left(\mathrm{w}_{\mathrm{j}}\right)} \\
& \mathrm{P}\left(\mathrm{~L}_{\mathrm{i}}=+\mid \mathbf{W}_{\mathrm{i}}, \mathbf{D}\right)=\left[\left(\mathrm{D}^{+}+\alpha\right) /(\mathrm{D}+\alpha+\beta)\right] \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{w}_{\mathrm{j}} \mid+\right)^{\mathrm{Ni}\left(\mathrm{w}_{\mathrm{j}}\right)}
\end{aligned}
$$

Bayesian: unsupervised

We need to approximate an integral/expectation:

$$
\begin{aligned}
& p\left(\mathrm{~L}_{\mathrm{i}}=+\mid \mathbf{W}_{\mathrm{i}}\right) \\
& \propto \iint_{\mathrm{i}} p\left(\mathbf{W}_{\mathrm{i}} \mid+, \boldsymbol{\theta}_{+}\right) p\left(\boldsymbol{\theta}_{+} ; \boldsymbol{\gamma}, \mathbf{D}\right) p(\mathrm{~L}=+\mid \pi) p(\pi ; \alpha, \beta, \mathbf{D}) \mathrm{d} \boldsymbol{\theta}_{+} \mathrm{d} \pi \\
& \propto \int p\left(\mathbf{W}_{\mathrm{i}} \mid+, \boldsymbol{\theta}_{+}\right) p\left(\boldsymbol{\theta}_{+} ; \boldsymbol{\gamma}, \mathbf{D}\right) \mathrm{d} \boldsymbol{\theta}+\int p(\mathrm{~L}=+\mid \pi) p(\pi ; \alpha, \beta, \mathbf{D}) \mathrm{d} \pi \\
& \propto p\left(\mathbf{W}_{\mathrm{i}} \mid \boldsymbol{\gamma},+, \mathbf{D}\right) p\left(\mathrm{~L}_{\mathrm{i}}=+\mid \alpha, \beta, \mathbf{D}\right)
\end{aligned}
$$

Approximating expectations

$$
E[f(x)]=\int_{0}^{1} f(x) p(x) d x
$$

We can approximate the expectation of $\mathrm{f}(\mathrm{x}),\langle\mathrm{f}(\mathrm{x})\rangle=\int \mathrm{f}(\mathrm{x}) p(\mathrm{x}) \mathrm{dx}$, by sampling a finite number of points $\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(\mathrm{T})}$ according to $p(\mathrm{x})$, evaluating $\mathrm{f}\left(\mathrm{x}^{(\mathrm{i})}\right)$ for each of them, and computing the average.

Markov Chain Monte Carlo

A multivariate distribution $\mathrm{p}(\mathbf{x})=\mathrm{p}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ with discrete x_{i} has only a finite number of possible outcomes.

Markov Chain Monte Carlo methods construct a Markov chain whose states are the outcomes of $p(\mathbf{x})$.

The probability of visiting state $\mathbf{x}_{\mathbf{j}}$ is $\mathrm{p}\left(\mathbf{x}_{\mathbf{j}}\right)$
We sample from $p(\mathbf{x})$ by visiting a sequence of states from this Markov chain.

Gibbs sampling

Our states:

One label assignment L_{1}, \ldots, L_{N} to each of our N documents $\boldsymbol{x}=\left(L_{1}, \ldots, L_{N}\right)$

Our transitions:
We go from one label assignment $\mathbf{x}=(+,+,-,+,-\ldots+)$
to another $\mathbf{y}=(-,+,+,+, \ldots,+)$
Our intermediate steps:
We generate label Y_{i} conditioned on $Y_{1 \ldots Y_{i-1}}$ and $X_{i+1 \ldots X_{N}}$
Call label assignment $Y_{1 \ldots} Y_{i-1}, X_{i+1 \ldots} X_{N} \boldsymbol{L}^{(-i)}$
We need to compute $\mathrm{P}\left(Y_{i} \mid \boldsymbol{D}, \boldsymbol{L}^{(-i)}, \alpha, \beta, \gamma\right)$

Gibbs sampling

We visit states according to transition probabilities $P(\boldsymbol{y} \mid \boldsymbol{x})$
We go from state $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ to state $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$
We get from $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ to $\mathbf{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$ in k steps:
$\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}}\right)=\mathbf{x}=\mathbf{x}^{(\mathbf{t})}$
$\left(\mathrm{y}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{X}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}, \ldots, \mathrm{y}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right)$
$\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}, \ldots, \mathrm{y}_{\mathrm{k}-1}, \mathrm{y}_{\mathrm{k}}\right)=\mathbf{y}=\mathbf{x}^{(\mathbf{t}+\mathbf{1})}$

Gibbs sampling

We will visit a sequence of states according to the transition probabilities $\mathrm{P}(\mathbf{y} \mid \mathbf{x})$

That is, we will go from state $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$
to state $\mathbf{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)$ with probability $\mathrm{P}(\mathbf{y} \mid \mathbf{x})$
For $\mathrm{i}=1$...k:
pick a value for y_{i} by sampling
from $P\left(Y_{i} \mid y_{1}, \ldots, y_{i-1}, x_{i+1}, \ldots, x_{k}\right)$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)= \\
& \quad \mathrm{P}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) /\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)
\end{aligned}
$$

Gibbs sampling

For us $\mathrm{p}(\mathbf{x})=\mathrm{p}(\mathbf{D}, \mathbf{L}, \pi, \theta+, \theta-; \alpha, \beta, \gamma)$
$\pi, \theta+, \theta$ - are real-valued, but they disappear because we integrate them out:

$$
\begin{aligned}
& P\left(L_{j}=+\mid \mathbf{L}^{(-\mathbf{j})} ; \alpha, \beta\right)=\frac{\alpha+N_{+}^{(-j)}}{\alpha+\beta+N-1} \\
& P\left(w_{k}=y \mid D_{+}^{(-j)} ; \gamma\right)=\frac{N_{D_{x}^{(-j)}(y)+\gamma_{y}}}{\gamma_{0}+N_{D_{x}^{(-j)}}}
\end{aligned}
$$

Gibbs sampling

$$
\underbrace{P\left(L_{j}=+\mid \mathbf{D}, \mathbf{L}^{(-\mathbf{j})} ; \alpha, \beta, \gamma\right)}_{\text {prob. that } \mathrm{D}_{\mathrm{j}} \text { is pos. review }}
$$

$$
\propto \underbrace{P\left(\mathbf{W}_{\mathbf{j}} \mid+, D_{+}^{(-j)} ; \gamma\right)}_{\text {pos. review generates } \mathrm{D}_{\mathbf{j}}} \underbrace{P\left(L_{j}=+\mid \mathbf{L}^{(-\mathbf{j})} ; \alpha, \beta\right)}_{\text {prob. of pos. review }}
$$

$$
\begin{aligned}
& P\left(L_{j}=+\mid \mathbf{L}^{(-\mathbf{j})} ; \alpha, \beta\right)=\frac{\alpha+N_{+}^{(-j)}}{\alpha+\beta+N-1} \\
& P\left(w_{k}=y \mid D_{+}^{(-j)} ; \gamma\right)=\frac{N_{D_{x}^{(-j)}}(y)+\gamma_{y}}{\gamma_{0}+N_{D_{x}^{(-j)}}}
\end{aligned}
$$

The Gibbs sampler

Initialize:

Define priors α, β, γ.
Assign initial labels $\mathbf{L}^{(0)}$ to documents

Iterate:

For each iteration $t=1 \ldots \mathrm{~T}$:
For every document \mathbf{W}_{i} (with current label $\mathrm{x}=\mathrm{L}_{\mathrm{i}}{ }^{(\mathrm{t}-1)}$)
(Temporarily) remove its word counts $\mathrm{N}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}}\right)$ from its class x :

$$
\mathrm{N}_{\left.\mathrm{x} \mid \mathrm{i}^{(\mathrm{t}-1)}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{N}_{\mathrm{x}}^{(\mathrm{t}-1)}\left(\mathrm{w}_{\mathrm{j}}\right)-\mathrm{N}_{\mathrm{i}} \mathrm{t}^{(\mathrm{t}-1)}\left(\mathrm{w}_{\mathrm{j}}\right), ~\right) .}
$$

(Temporarily) remove \mathbf{W}_{i} from the documents in its class x :

$$
\mathrm{D}_{\mathbf{x} \mid \mathrm{i}}^{(\mathrm{t}-1)}=\mathrm{D}_{\mathbf{x}}^{(\mathrm{t}-1)}-1
$$

Assign a new label $\mathrm{x}^{\prime}=\mathrm{L}_{\mathrm{i}}{ }^{(\mathrm{t}-1)}$ to \mathbf{W}_{i} with

$$
\mathrm{P}\left(\mathrm{~L} \mid \mathbf{W}_{\mathrm{i}}, \mathrm{~L}_{0}^{(\mathrm{t})} \ldots \mathrm{L}_{\mathrm{i}-1}{ }^{(\mathrm{t})} \mathrm{L}_{\mathrm{i}+1}{ }^{(\mathrm{t}-1)} \ldots \mathrm{L}_{\mathrm{D}}^{(\mathrm{t}-1)} ; \alpha, \beta, \gamma\right)
$$

Add \mathbf{W}_{i} to the documents in class x ,
Add its word counts $\mathbf{N}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}}\right)$ to the word counts for class x ,
Final estimate:
Use (some of the) snapshots $L^{(1)} \ldots \mathbf{L}^{(T)}$ to estimate $\mathrm{P}(+), \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid+\right), \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid-\right)$

Estimation

- Labels: $L \sim \operatorname{Bernoulli}(\pi)$ Words: $\left.\boldsymbol{W}_{i} \mid L \sim \operatorname{Multinomial(~} \boldsymbol{\theta}^{L}\right)$

	Supervised	Unsupervised
Freq.	Relative frequency estimation - Labels: $\pi=\mathrm{D}^{+} / \mathrm{d}$ - Words: $\boldsymbol{\theta}_{\mathbf{i}}{ }^{+}=\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right) / \mathrm{N}^{+}$	Expectation Maximization: At each iteration t : - Labels: $\pi^{(t)}=\mathrm{E}[\mathrm{D}]_{(\mathrm{t}-1)} / \mathrm{d}$ - Words: $\boldsymbol{\theta}_{\mathrm{i}}{ }^{+}=\mathrm{E}\left[\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)\right]_{(\mathrm{t}-1)} / \mathrm{E}\left[\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)\right]$
Bayes	With priors: - Labels: $\pi=\left(\mathrm{D}^{+}+\alpha\right) /(\mathrm{D}+\alpha+\beta)$ - Words: $\boldsymbol{\theta}_{\mathbf{i}}^{+}=\left(\mathrm{N}^{+}\left(\mathrm{w}_{\mathrm{i}}\right)+\gamma_{\mathrm{i}}\right) /\left(\mathrm{N}^{+}(\mathrm{w})+\gamma_{0}\right)$	Gibbs sampling: For each ministep i at each iteration - Labels: $\pi_{i}=\left(D^{+(-i)}+\alpha\right) /(D-1+\alpha+\beta)$ - Words: $\boldsymbol{\theta}_{\mathbf{i}}{ }^{+}=\left(\mathrm{N}^{+(-\mathrm{i})}\left(\mathrm{w}_{\mathrm{i}}\right)+\gamma_{\mathrm{i}}\right) /\left(\mathrm{N}^{+(-\mathrm{i})}(\mathrm{w})+\gamma_{0}\right)$

