CS598JHM: Advanced NLP (Spring 2013) *http://courses.engr.illinois.edu/cs598jhm/*

Lecture 3: Comparing frequentist and Bayesian estimation techniques

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center Office hours: by appointment

Text classification

The task: binary classification (e.g. sentiment analysis) Assign (sentiment) label $L_i \in \{+,-\}$ to a document $W_i = (w_{i1}...w_{iN})$. $W_1 =$ "This is an amazing product: great battery life, amazing features and it's cheap." $W_2 =$ "How awful. It's buggy, saps power and is way too expensive."

The data: A set **D** of N documents with (or without) labels The model: Naive Bayes

We will use a frequentist model and a Bayesian model and compare supervised and unsupervised estimation techniques for them.

A Naive Bayes model

The task:

Assign (sentiment) label $L_i \in \{+,-\}$ to document W_i .

 W_1 = "This is an amazing product: great battery life, amazing features and it's cheap." W_2 = "How awful. It's buggy, saps power and is way too expensive."

The model:

 $L_i = \operatorname{argmax}_L P(L | \mathbf{W}_i) = \operatorname{argmax}_L P(\mathbf{W}_i | L)P(L)$

Assume W_i is a "bag of words": $W_1 = \{an:1, and: 1, amazing: 2, battery: 1, cheap: 1, features: 1, great: 1,...\}$ $W_2 = \{awful: 1, and: 1, buggy: 1, expensive: 1,...\}$

P($\mathbf{W}_i | L$) is a multinomial distribution: $\mathbf{W}_i \sim \text{Multinomial}(\boldsymbol{\theta}_L)$ With a vocabulary of V words, $\boldsymbol{\theta}_L = (\theta_1, \dots, \theta_V)$ P(L) is a Bernoulli distribution: L ~ Bernoulli(π)

The frequentist (maximum-likelihood) model

The frequentist model

The frequentist model has specific parameters $\theta_{\rm L}$ and π

 $L_i = \operatorname{argmax}_{L} P(\mathbf{W}_i \mid \boldsymbol{\theta}_L) P(L \mid \pi)$

P($\mathbf{W}_i | \boldsymbol{\theta}_L$) is a multinomial over V words with parameter $\boldsymbol{\theta}_L = (\theta_1, \dots, \theta_V)$: $\mathbf{W}_i \sim \text{Multinomial}(\boldsymbol{\theta}_L)$

P(L | π) is a Bernoulli distribution with parameter π : L ~ Bernoulli(π)

The frequentist model

Supervised MLE

The data is labeled:

We have a set \boldsymbol{D} of D documents $\boldsymbol{W}_1...\boldsymbol{W}_d$ with N words

Each document W_{i} has N^{i} words

D⁺ documents (subset \mathbf{D}^+) have a positive label and N⁺ words D⁻ documents (subset \mathbf{D}^-) have a negative label and N⁻ words Each word w_i appears N⁺(w_i) times in \mathbf{D}^+ , N⁻(w_i) times in \mathbf{D}^- Each word w_i appears N^j(w_i) times in D^{-j}

MLE: relative frequency estimation

- Labels: L ~ Bernoulli(π) with $\pi = D^+/d$
- Words: $\mathbf{W}_i \mid$ + ~ Multinomial(θ^+) with $\theta_i^+ = N^+(w_i)/N^+$
- Words: $\mathbf{W}_i \mid \sim Multinomial(\theta^-)$ with $\theta_i^- = N^-(w_i)/N^-$

Inference with MLE

The inference task: Given a new document \mathbf{W}_{i+1} , what is its label L_{i+1} ?

Recall: the word w_j occurs $N_{i+1}(w_j)$ times in W_{i+1} .

$$P(L = + |\mathbf{W}_{i+1}) \propto P(+)P(\mathbf{W}_{i+1}|+)$$

= $\pi \prod_{j=1}^{V} \theta_{+j}^{N_{i+1}(w_j)}$

Unsupervised MLE

The data is unlabeled:

We have a set ${\boldsymbol{D}}$ of D documents ${\boldsymbol{W}}_1...{\boldsymbol{W}}_d$ with N words

Each document \mathbf{W}_{i} has N^{i} words

Each word $w_1...w_i...w_V$ appears $N^j(w_i)$ times in W_j

EM algorithm: "expected relative frequency estimation" Initialization: pick initial $\pi^{(0)}$, $\theta^{+(0)}$, $\theta^{-(0)}$ Iterate:

- -Labels: L ~ Bernoulli(π) with $\pi^{(t)} = \langle N_+ \rangle_{(t-1)} / \langle N \rangle_{(t-1)}$
- -Words: $\mathbf{W}_i \mid + \sim Multinomial(\mathbf{0}^+)$ with $\theta_{\mathbf{i}^+(t)} = \langle N^+(w_i) \rangle_{(t-1)} / \langle W^+ \rangle_{(t-1)}$
- -Words: $\mathbf{W}_i \mid \sim \text{Multinomial}(\mathbf{\theta}^-)$ with $\theta_i^{-(t)} = \langle N^-(w_i) \rangle_{(i-1)} / \langle W^- \rangle_{(i-1)}$

Maximum Likelihood estimation

With **complete** (= labeled) **data** $\mathbf{D} = \{ \langle \mathbf{X}_i, \mathbf{Z}_i \rangle \},$ maximize the complete likelihood $p(\mathbf{X}, \mathbf{Z} | \theta)$:

$$\theta^* = \operatorname{argmax}_{\theta} \prod_{i} p(\mathbf{X}_i, \mathbf{Z}_i \mid \theta)$$

or $\theta^* = \operatorname{argmax}_{\theta} \sum_{i} \ln(p(\mathbf{X}_i, \mathbf{Z}_i \mid \theta))$

Maximum Likelihood estimation

With **incomplete** (= unlabeled) **data**, $\mathbf{D} = \{ \langle \mathbf{X}_i, ? \rangle \}$ maximize the incomplete (marginal) likelihood $p(\mathbf{X} | \theta)$:

$$\begin{aligned} \theta^* &= \operatorname{argmax}_{\theta} \sum_{i} \ln(p(\mathbf{X}_{i} \mid \theta)) \\ &= \operatorname{argmax}_{\theta} \sum_{i} \ln(\sum_{\mathbf{Z}} p(\mathbf{X}_{i}, \mathbf{Z} \mid \theta) p(\mathbf{Z} \mid \mathbf{X}_{i}, \theta')) \\ &= \operatorname{argmax}_{\theta} \sum_{i} \ln(\mathbf{E}_{\mathbf{Z} \mid \mathbf{X}_{i}, \theta'} [p(\mathbf{X}_{i}, \mathbf{Z} \mid \theta)]) \end{aligned}$$

 $p(\mathbf{Z} | \mathbf{X}, \theta)$: the posterior probability of \mathbf{Z} ($\mathbf{X} = \text{our data}$) E $_{\mathbf{Z}|\mathbf{X}_i,\theta}[p(\mathbf{X}_i, \mathbf{Z} | \theta)]$: the expectation of $p(\mathbf{X}, \mathbf{Z} | \theta)$ wrt. $p(\mathbf{Z} | \mathbf{X}, \theta)$

Find parameters θ^{new} that maximize the expected loglikelihood of the joint $p(\mathbf{Z}, \mathbf{X} \mid \theta^{\text{new}})$ under $p(\mathbf{Z} \mid \mathbf{X}, \theta^{\text{old}})$ This requires an iterative approach

The EM algorithm

1. Initialization: Choose initial parameters θ^{old}

- 2. **Expectation step:** Compute $p(\mathbf{Z} | \mathbf{X}, \theta^{\text{old}})$ (= posterior of the latent variables Z)
- 3. Maximization step: Compute θ^{new} θ^{new} maximizes the expected log-likelihood of the joint $p(\mathbf{Z}, \mathbf{X} | \theta^{new})$ under $p(\mathbf{Z} | \mathbf{X}, \theta^{old})$.

$$\theta^{new} = \arg \max_{\theta} \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta)$$

4. Check for convergence. Stop, or set $\theta^{old} := \theta^{new}$ and go to 2.

The EM algorithm

The classes we find may not correspond to the classes we would be interested in.

Seed knowledge (e.g. a few positive and negative words) may help

We are not guaranteed to find a global optimum, and may get stuck in a local optimum. Initialization matters

In our example...

Initialization: Pick (random) $\pi_{A, \pi_B} = (1-\pi_A), \theta_A, \theta_B$ E-step:

Set $N_A, N_B, N_A(w_1), \dots, N_A(w_V), N_B(w_1), \dots N_B(w_V) := 0$ For each document W_i ,

Set $\mathbf{L}_i = A$ with $P(\mathbf{L}_i = A | \mathbf{W}_i, \pi_{A, \pi_B}, \theta_A, \theta_B) \propto \pi_A \prod_j P(w_{ij} | \theta_A)$ Set $\mathbf{L}_i = B$ with $P(\mathbf{L}_i = B | \mathbf{W}_i, \pi_{A, \pi_B}, \theta_A, \theta_B) \propto \pi_b \prod_j P(w_{ij} | \theta_B)$ Update $N_A += P(\mathbf{L}_i = A | \mathbf{W}_i, \pi_{A, \pi_B}, \theta_A, \theta_B)$ $N_B += P(\mathbf{L}_i = B | \mathbf{W}_i, \pi_{A, \pi_B}, \theta_A, \theta_B)$ For all words we in \mathbf{W}_i :

For all words w_{ij} in W_i :

$$N_{A}(w_{ij}) \stackrel{+=}{=} P(\mathbf{L}_{i} = A \mid \mathbf{W}_{i}, \pi_{A}, \pi_{B}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{B})$$
$$N_{B}(w_{ij}) \stackrel{+=}{=} P(\mathbf{L}_{i} = B \mid \mathbf{W}_{i}, \pi_{A}, \pi_{B}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{B})$$

M-step:

$$\begin{split} \pi_A &:= N_A / (N_A + N_B) & \pi_B := N_B / (N_A + N_B) \\ \theta_A(w_i) &:= N_A(w_i) \ / \ \sum_j \ (N_A \ (w_j)) & \theta_B(w_i) \ := N_B(w_i) \ / \ \sum_j \ (N_B \ (w_j)) \\ \text{Bayesian Methods in NLP} \end{split}$$

The Bayesian model

The Bayesian model

The Bayesian model has priors $Dir(\gamma)$ and $Beta(\alpha,\beta)$ with hyperparameters $\gamma = (\gamma_1, ..., \gamma_V)$ and α, β

It does not have specific θ_L and π , but integrates them out: $L_i = \operatorname{argmax}_L \iint P(\mathbf{W}_i \mid \theta_L) P(\theta_L; \gamma_L, \mathbf{D}) P(L \mid \pi) P(\pi; \alpha, \beta, \mathbf{D}) d\theta_L d\pi$ $= \operatorname{argmax}_L \iint P(\mathbf{W}_i \mid \theta_L) P(\theta_L; \gamma_L, \mathbf{D}) d\theta_L \int P(L \mid \pi) P(\pi; \alpha, \beta, \mathbf{D}) d\pi$ $= \operatorname{argmax}_L P(\mathbf{W}_i \mid \gamma_L, \mathbf{D}) P(L \mid \alpha, \beta, \mathbf{D})$ $P(\mathbf{W}_i \mid \theta_L)$ is a multinomial with parameter $\theta_L = (\theta_1, \dots, \theta_V)$, $P(\theta_L; \gamma_L)$ is a Dirichlet with hyperparameter $\gamma_L = (\gamma_1, \dots, \gamma_V)$ $\theta_L \sim \operatorname{Dirichlet}(\gamma_L)$ $\mathbf{W}_i \sim \operatorname{Multinomial}(\theta_L)$ $P(L \mid \pi)$ is a Bernoulli with parameter π , drawn from a Beta prior $\pi \sim \operatorname{Beta}(\alpha, \beta)$ $L \sim \operatorname{Bernoulli}(\pi)$

The Bayesian model

Bayesian: supervised

The data is labeled:

We have a set \boldsymbol{D} of D documents $\mathbf{W}_1...\mathbf{W}_D$ with N words

Each document $W_{\boldsymbol{i}}$ has N^i words

 D^+ documents (subset D^+) have a positive label and N^+ words D^- documents (subset D^-) have a negative label and N^- words Each word w_i appears $N^+(w_i)$ times in D^+ , $N^-(w_i)$ times in D^- Each word w_j appears $N^i(w_j)$ times in W_i

Bayesian estimation

$$\begin{split} P(L = + \mid \mathbf{D}) &= (D^{+} + \alpha)/(D + \alpha + \beta) \\ P(w_i \mid +, \mathbf{D}) &= (N^{+}(w_i) + \gamma_i)/(N^{+}(w_i) + \gamma_0) \\ P(\mathbf{W}_i \mid +, \mathbf{D}) &= \prod_j P(w_j \mid +)^{Ni(wj)} \\ P(L_i = + \mid \mathbf{W}_i, \mathbf{D}) &= [(D^{+} + \alpha)/(D + \alpha + \beta)]\prod_j P(w_j \mid +)^{Ni(wj)} \end{split}$$

Bayesian: unsupervised

We need to approximate an integral/expectation:

$$p(\mathbf{L}_{i} =+ | \mathbf{W}_{i})$$

$$\propto \iint p(\mathbf{W}_{i} |+, \boldsymbol{\theta}_{+}) p(\boldsymbol{\theta}_{+}; \boldsymbol{\gamma}, \mathbf{D}) p(|\mathbf{L}=+ | \pi) p(\pi; \alpha, \beta, \mathbf{D}) d\boldsymbol{\theta}_{+} d\pi$$

$$\propto \int p(\mathbf{W}_{i} |+, \boldsymbol{\theta}_{+}) p(\boldsymbol{\theta}_{+}; \boldsymbol{\gamma}, \mathbf{D}) d\boldsymbol{\theta}_{+} \int p(|\mathbf{L}=+ | \pi) p(\pi; \alpha, \beta, \mathbf{D}) d\pi$$

$$\propto p(\mathbf{W}_{i} | \boldsymbol{\gamma}, +, \mathbf{D}) p(|\mathbf{L}_{i}=+ | \alpha, \beta, \mathbf{D})$$

Approximating expectations

$$E[f(x)] = \int_0^1 f(x)p(x)dx$$

We can approximate the expectation of f(x), $\langle f(x) \rangle = \int f(x)p(x)dx$, by sampling a finite number of points $x^{(1)}$, ..., $x^{(T)}$ according to p(x), evaluating $f(x^{(i)})$ for each of them, and computing the average.

Bayesian Methods in NLP

Markov Chain Monte Carlo

A multivariate distribution $p(\mathbf{x})=p(x_1,...,x_k)$ with discrete x_i has only a finite number of possible outcomes.

Markov Chain Monte Carlo methods construct a Markov chain whose states are the outcomes of p(x).

The probability of visiting state x_j is $p(x_j)$

We sample from $p(\mathbf{x})$ by visiting a sequence of states from this Markov chain.

Our states:

One label assignment $L_1, ..., L_N$ to each of our *N* documents $\mathbf{x} = (L_1, ..., L_N)$

Our transitions:

We go from one label assignment $\mathbf{x} = (+,+,-,+,-,..+)$ to another $\mathbf{y} = (-,+,+,+,...,+)$

Our intermediate steps:

We generate label Y_i conditioned on $Y_{1...}Y_{i-1}$ and $X_{i+1...}X_N$ Call label assignment $Y_{1...}Y_{i-1}$, $X_{i+1...}X_N$ $L^{(-i)}$ We need to compute $P(Y_i | D, L^{(-i)}, \alpha, \beta, \gamma)$

We visit states according to transition probabilities P(y|x)

We go from state $\mathbf{x} = (x_1, \dots, x_k)$ to state $\mathbf{y} = (y_1, \dots, y_k)$

We get from $\mathbf{x} = (x_1, \dots, x_k)$ to $\mathbf{y} = (y_1, \dots, y_k)$ in k steps:

$$(x_{1}, x_{2}, ..., x_{i}, ..., x_{k-1}, x_{k}) = \mathbf{x} = \mathbf{x}^{(t)}$$

$$(y_{1}, x_{2}, ..., x_{i}, ..., x_{k-1}, x_{k})$$

$$(y_{1}, y_{2}, ..., x_{i}, ..., x_{k-1}, x_{k})$$

$$(y_{1}, y_{2}, ..., y_{i}, ..., x_{k-1}, x_{k})$$

$$(y_{1}, y_{2}, ..., y_{i}, ..., x_{k-1}, x_{k})$$

$$(y_{1}, y_{2}, ..., y_{i}, ..., y_{k-1}, x_{k})$$

$$(y_{1}, y_{2}, ..., y_{i}, ..., y_{k-1}, x_{k})$$

We will visit a sequence of states according to the transition probabilities $P(y \mid x)$

That is, we will go from state $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_k)$ to state $\mathbf{y} = (\mathbf{y}_1, ..., \mathbf{y}_k)$ with probability $P(\mathbf{y} \mid \mathbf{x})$

For
$$i = 1...k$$
:
pick a value for y_i by sampling
from $P(Y_i | y_1, ..., y_{i-1}, x_{i+1}, ..., x_k)$

$$P(Y_{i} = y_{i} | y_{1}, \dots, y_{i-1}, x_{i+1}, \dots, x_{k}) = P(y_{1}, \dots, y_{i-1}, y_{i}, x_{i+1}, \dots, x_{k})/(y_{1}, \dots, y_{i-1}, x_{i+1}, \dots, x_{k})$$

For us $p(\mathbf{x}) = p(\mathbf{D}, \mathbf{L}, \pi, \theta^+, \theta^-; \alpha, \beta, \gamma)$

 π , θ +, θ - are real-valued, but they disappear because we integrate them out:

$$P(L_j = + \mid \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) = \frac{\alpha + N_+^{(-j)}}{\alpha + \beta + N - 1}$$

$$P(w_k = y | D_+^{(-j)}; \boldsymbol{\gamma}) = \frac{N_{D_x^{(-j)}}(y) + \gamma_y}{\gamma_0 + N_{D_x^{(-j)}}}$$

Gibbs sampling

$$\underbrace{P(L_j = + | \mathbf{D}, \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta, \gamma)}_{\text{prob. that } \mathbf{D}_j \text{ is pos. review}} \\
\propto \underbrace{P(\mathbf{W}_{\mathbf{j}}|+, D_{+}^{(-j)}; \gamma)}_{\text{pos. review generates } \mathbf{D}_j} \underbrace{P(L_j = + | \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta)}_{\text{prob. of pos. review}} \\
P(L_j = + | \mathbf{L}^{(-\mathbf{j})}; \alpha, \beta) = \frac{\alpha + N_{+}^{(-j)}}{\alpha + \beta + N - 1} \\
P(w_k = y | D_{+}^{(-j)}; \gamma) = \frac{N_{D_x^{(-j)}}(y) + \gamma_y}{\gamma_0 + N_{D_x^{(-j)}}}$$

The Gibbs sampler

Initialize:

Define priors α, β, γ .

Assign initial labels $\mathbf{L}^{(0)}$ to documents

Iterate:

```
For each iteration t = 1...T:
```

For every document W_i (with current label $x=L_i^{(t-1)}$)

(Temporarily) remove its word counts $N_i(w_j)$ from its class x:

 $N_{x \setminus i}^{(t-1)}(w_j) = N_x^{(t-1)}(w_j) - N_i^{(t-1)}(w_j)$

(Temporarily) remove \mathbf{W}_i from the documents in its class x:

 $D_{x \setminus i}^{(t-1)} = D_x^{(t-1)} - 1$

Assign a new label $x' = L_i^{(t-1)}$ to W_i with

P(L | \mathbf{W}_i , $L_0^{(t)}$... $L_{i-1}^{(t)}$ $L_{i+1}^{(t-1)}$... $L_D^{(t-1)}$; α , β , γ)

Add \mathbf{W}_i to the documents in class x'

Add its word counts $\mathbf{N}_i(w_j)$ to the word counts for class x '

Final estimate:

Use (some of the) snapshots $L^{(1)}...L^{(T)}$ to estimate P(+), $P(w_i | +)$, $P(w_i | -)$

Estimation

- Labels: $L \sim Bernoulli(\pi)$ Words: $W_i | L \sim Multinomial(\theta^L)$

	Supervised	Unsupervised
Freq.	Relative frequency estimation - Labels: $\pi = D^+/d$ - Words: $\theta_i^+ = N^+(w_i)/N^+$	Expectation Maximization: At each iteration t: - Labels: $\pi^{(t)} = E[D]_{(t-1)}/d$ - Words: $\theta_i^+ = E[N^+(w_i)]_{(t-1)}/E[N^+(w_i)]_{(t-1)}$
Bayes	With priors: - Labels: $\pi = (D^+ + \alpha)/(D + \alpha + \beta)$ - Words: $\theta_i^+ = (N^+(w_i) + \gamma_i)/(N^+(w) + \gamma_0)$	$\label{eq:Gibbs sampling:} \begin{array}{l} \mbox{Gibbs sampling:} \\ \mbox{For each ministep i at each iteration t:} \\ \mbox{- Labels: } \pi_i = (D^{+(-i)} + \alpha)/(D - 1 + \alpha + \beta) \\ \mbox{- Words:} \\ \mbox{$\theta_i^+ = (N^{+(-i)}(w_i) + \gamma_i)/(N^{+(-i)}(w) + \gamma_0)$} \end{array}$