CS598JHM: Advanced NLP (Spring 2013)

 http://courses.engr.illinois.edu/cs598jhm/
Lecture 2: Statistical inferences

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center
Office hours: by appointment

Statistical inferences

 in NLP
Authorship attribution

Given two data sets D_{1} and D_{2}
(e.g. the known works of Shakespeare and of Marlowe) where does the new data set D' come from?
(e.g. a disputed piece)

Assume $D_{1} \sim \theta_{1}$ and $D_{2} \sim \theta_{2}$
Each set is generated by a different underlying distribution
If $P\left(D^{\prime} \mid \theta_{1}\right)>P\left(D^{\prime} \mid \theta_{2}\right)$, assume D^{\prime} is more like D_{1}
This requires us to estimate the parameters θ from the data D

Computing $\mathrm{P}(\mathrm{D} \mid \theta)$

We are given a data set D with n items $\mathrm{D}=\left(\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)$
We assume D is generated from a distribution with parameters θ

What is the probability of D ?
We assume the items x_{i} are independent and identically distributed (i.i.d.):
$\mathrm{x}_{\mathrm{i}} \sim \mathrm{P}(\mathrm{D} \mid \theta)=\mathrm{P}\left(\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}} \mid \theta\right)=\prod_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \theta\right)$ $=$ We assume the x_{i} are exchangeable

Statistical inferences (I)

We are given a data set D with n items $\mathrm{D}=\left(\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)$
We assume D is generated (sampled) from an (unknown) distribution with parameters $\theta: \mathrm{x}_{\mathrm{i}} \sim \theta$
θ : the parameters of a probability distribution
What is the probability of the next item?

$$
\mathrm{x}_{\mathrm{n}+1}={ }_{\mathrm{x}} \mathrm{P}\left(\mathrm{x} \mid \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

What is the most likely next item?

$$
\mathrm{x}_{\mathrm{n}+1}=\operatorname{argmax}_{\mathrm{x}} \mathrm{P}\left(\mathrm{x} \mid \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

This requires the predictive distribution $\mathrm{P}\left(\mathrm{x}_{\mathrm{n}+1} \mid \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)$
NLP applications: language modeling

Statistical inferences (II)

We may also be given a data set D with n items

$$
\mathrm{D}=\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots .,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right)
$$

and need to know the most likely hidden value $\mathrm{y}_{\mathrm{n}+1}$ for a previously unseen item $\mathrm{x}_{\mathrm{n}+1}$

$$
\mathrm{y}_{\mathrm{n}+1}=\operatorname{argmax} y \mathrm{P}\left(\mathrm{y} \mid \mathrm{x}_{\mathrm{n}+1} ; \mathrm{D}\right)
$$

(Supervised learning)

NLP applications:
POS-tagging, Parsing, sentiment analysis, etc..

Statistical inferences (III)

Or, we may be given in incomplete data set

$$
\mathrm{D}=\left(\left(\mathrm{x}_{1}, _\right), \ldots .,\left(\mathrm{x}_{\mathrm{n}, \ldots}\right)\right)
$$

and need to know the most likely hidden value $\mathrm{y}_{\mathrm{n}+1}$ for a previously unseen item $\mathrm{x}_{\mathrm{n}+1}$

$$
\mathrm{y}_{\mathrm{n}+1}=\operatorname{argmax} y \mathrm{P}\left(\mathrm{y} \mid \mathrm{x}_{\mathrm{n}+1} ; \mathrm{D}\right)
$$

(= Unsupervised learning)
Common notation: x_{i} is observed, y_{i} is hidden

Statistical inference (IV)

Or, we may be given in incomplete data set

$$
\mathrm{D}=\left(\left(\mathrm{x}_{1, \ldots}\right), \ldots .,\left(\mathrm{x}_{\mathrm{n}, _}\right)\right)
$$

where there are latent variables z_{i} :

$$
\left(\mathrm{x}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right) \sim \theta
$$

We need to assign probabilities to $\mathrm{x}_{\mathrm{n}+1}$, or find the most likely $\mathrm{x}_{\mathrm{n}+1}$

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{x} \mid \mathrm{x}_{\mathrm{n}+1} ; \mathrm{D}\right) \\
\mathrm{x}_{\mathrm{n}+1}=\operatorname{argmax}_{\mathrm{x}} \mathrm{P}\left(\mathrm{x} \mid \mathrm{x}_{\mathrm{n}+1} ; \mathrm{D}\right)
\end{gathered}
$$

= (one kind of) partially supervised learning

Statistical inference (V)

Or, we may be given in incomplete data set

$$
\mathrm{D}=\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1} _\right), \ldots,\left(\mathrm{x}_{\mathrm{n},}, \mathrm{y}_{\mathrm{n}, _}\right)\right)
$$

where there are latent variables z_{i} :

$$
\left(\mathrm{x}_{\mathrm{i},}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right) \sim \theta
$$

We need to know the most likely $\mathrm{y}_{\mathrm{n}+1}$ for $\mathrm{x}_{\mathrm{n}+1}$

$$
\mathrm{y}_{\mathrm{n}+1}=\operatorname{argmax}_{\mathrm{y}} \mathrm{P}\left(\mathrm{y} \mid \mathrm{x}_{\mathrm{n}+1} ; \mathrm{D}\right)
$$

$=$ (one kind of) partially supervised learning

Bayesian statistics

Bayesian statistics

θ : the parameters of a probability distribution
Probabilities represent degrees of belief
Data D provide evidence for/against our beliefs.
We update our belief θ based on evidence we see:

$$
P(\theta \mid D)=\frac{P(\theta) P(D \mid \theta)}{\int P(\theta) P(D \mid \theta) d \theta}
$$

For fixed data $D, P(D \mid \theta)$ is the likelihood of θ

Bayesian statistics

$\mathrm{P}(D)=$ Marginal Likelihood of D

Bayesian Methods in NLP

Bayesian statistics

The posterior $\mathrm{P}(\theta \mid D)$ is proportional to the prior $\mathrm{P}(\theta)$ times the likelihood $\mathrm{P}(D \mid \theta)$:
$P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$

Discrete probability distributions: Throwing a coin

Bernoulli distribution:
Probability of success (=head,yes) in single yes/no trial

- The probability of head is p.
- The probability of tail is $1-p$.

Binomial distribution:
Prob. of the number of heads in a sequence of yes/no trials The probability of getting exactly k heads in n independent yes/no trials is:
$P(k$ heads, $n-k$ tails $)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Looking at the binomial distribution again

The binomial distribution

If p is the probability of heads, the probability of getting exactly k heads in n independent yes/no trials is given by the binomial distribution $\operatorname{Bin}(n, p)$:

$$
\begin{aligned}
P(k \text { heads }) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Expectation $E(\operatorname{Bin}(n, p))=n p$
Variance $\operatorname{var}(\operatorname{Bin}(n, p))=n p(1-p)$

Parameter estimation

Given data $D=H T T H T T$, what is the probability θ of heads?
Maximum likelihood estimation (MLE):
Use the θ which has the highest likelihood $\mathrm{P}(\mathrm{D} \mid \theta)$.

$$
\theta_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

Maximum a posterior estimation (MAP):
Use the θ which has the highest posterior probability $\mathrm{P}(\theta \mid \mathrm{D})$.

$$
\theta_{M A P}=\arg \max _{\theta} P(\theta \mid D)=\arg \max _{\theta} P(\theta) P(D \mid \theta)
$$

Bayesian estimation:

Integrate over all $\theta=>$ Compute the expectation of θ given D:

$$
P(x=H \mid D)=\int_{0}^{1} P(x=H \mid \theta) P(\theta \mid D) d \theta=E[\theta \mid D]
$$

Binomial likelihood

What distribution does p (probability of heads) have, given that the data D consists of \#H heads and \#T tails?

Maximum likelihood estimation for the coin flip

$$
\begin{aligned}
\theta^{*} & =\arg \max _{\theta} P(D \mid \theta) \\
& =\arg \max _{\theta} \theta^{H}(1-\theta)^{T} \\
& =\frac{H}{H+T}
\end{aligned}
$$

Bayesian estimation: what prior?

The posterior $P(\theta \mid D)$ is proportional to prior \mathbf{x} likelihood:

$$
P(\theta \mid D) \propto P(\theta) P(D \mid \theta)
$$

The likelihood $P(D \mid \theta)$ of a binomial is $P(D \mid \theta)=\theta^{H}(1-\theta)^{T}$
Assume the prior $P(\theta)$ is proportional to powers of θ and $(1-\theta): P(\theta) \propto \theta^{\mathrm{a}}(1-\theta)^{b}$
Then the posterior $P(\theta \mid D)$ will also be proportional to powers of θ and ($1-\theta$):

$$
\begin{aligned}
P(\theta \mid D) & \propto P(\theta) P(D \mid \theta) \\
& =\theta^{\mathrm{a}}(1-\theta)^{b} \theta^{H}(1-\theta)^{T} \\
& =\theta^{a+H}(1-\theta)^{b+T}
\end{aligned}
$$

In search of a prior for coin flips...

We would like something of the form:

$$
P(\theta) \propto \theta^{a}(1-\theta)^{b}
$$

But -- this looks just like the binomial:

$$
\begin{aligned}
P(k \text { heads }) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

\ldots. except that k is an integer and θ is a real with $0<\theta<1$.

The Gamma function

The Gamma function $\Gamma(x)$ is the generalization of the factorial x ! (or rather ($x-1$)!) to the reals:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x \quad \text { for } \alpha>0
$$

For $\mathrm{x}>1, \Gamma(\mathrm{x})=(\mathrm{x}-1) \Gamma(\mathrm{x}-1)$.
For positive integers, $\Gamma(\mathrm{x})=(\mathrm{x}-1)$!

The Gamma function

The Beta distribution

A random variable $\mathrm{X}(0<\mathrm{x}<1)$ has a Beta distribution with (hyper)parameters $\alpha(\alpha>0)$ and $\beta(\beta>0)$ if X has a continuous distribution with probability density function

$$
P(x \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

The first term is a normalization factor (to obtain a distribution)

$$
\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}
$$

Expectation: $\frac{\alpha}{\alpha+\beta}$

Beta as prior for binomial

Given a prior $P(\theta \mid \alpha, \beta)=\operatorname{Beta}(\alpha, \beta)$, and data $D=(H, T)$, what is our posterior?

$$
\begin{aligned}
P(\theta \mid \alpha, \beta, H, T) & \propto P(H, T \mid \theta) P(\theta \mid \alpha, \beta) \\
& \propto \theta^{H}(1-\theta)^{T} \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& =\theta^{H+\alpha-1}(1-\theta)^{T+\beta-1}
\end{aligned}
$$

With normalization

$$
\begin{aligned}
P(\theta \mid \alpha, \beta, H, T) & =\frac{\Gamma(H+\alpha+T+\beta)}{\Gamma(H+\alpha) \Gamma(T+\beta)} \theta^{H+\alpha-1}(1-\theta)^{T+\beta-1} \\
& =\operatorname{Beta}(\alpha+H, \beta+T)
\end{aligned}
$$

So, what do we predict?

Our Bayesian estimate for the next coin flip $P(x=1 \mid D)$:

$$
P(x=H \mid D)=\int_{0}^{1} P(x=H \mid \theta) P(\theta \mid D) d \theta
$$

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha>1, \beta>1$: unimodal

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha<1, \beta<1$:
 U-shaped

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha=\beta$: symmetric ($\alpha=\beta=1$: uniform)

Beta Distribution Beta (α, β)

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha<1, \beta>1$: strictly decreasing

$\operatorname{Beta}(\alpha, \beta)$ with $\alpha=1, \beta>1$

$\alpha=1,1<\beta<2$: strictly concave.
$\alpha=1, \beta=2$: straight line
$\alpha=1, \beta>2$: strictly convex
Beta Distribution Beta (α, β)

Conjugate priors

The beta distribution is a conjugate prior to the binomial: the resulting posterior is also a beta distribution.

All members of the exponential family of distributions have conjugate priors.

Examples:
-Multinomial: conjugate prior = Dirichlet
-Gaussian: conjugate prior = Gaussian

Conjugate priors

The posterior is proportional to prior x likelihood: $P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$

Conjugate priors:

Posterior is the same kind of distribution as prior.

For binomial likelihood: conjugate prior = Beta distribution

Discrete probability distributions: Rolling a die

Categorical distribution:
Probability of getting one of N outcomes in a single trial.
The probability of category/outcome c_{i} is $p_{\mathrm{i}} \quad\left(\sum p_{\mathrm{i}}=1\right)$
Multinomial distribution:
Probability of observing each possible outcome c_{i}
exactly X_{i} times in a sequence of n trials

$$
P\left(X_{1}=x_{i}, \ldots, X_{N}=x_{N}\right)=\frac{n!}{x_{1}!\cdots x_{N}!} p_{1}^{x_{1}} \cdots p_{N}^{x_{N}} \quad \text { if } \quad \sum_{i=1}^{N} x_{i}=n
$$

Moving on to multinomials

Multinomials have a Dirichlet prior

Multinomial distribution:

Probability of observing each possible outcome c_{i} exactly X_{i} times in a sequence of n trials:

$$
P\left(X_{1}=x_{i}, \ldots, X_{K}=x_{k}\right)=\frac{n!}{x_{1}!\cdots x_{K}!} \theta_{1}^{x_{1}} \cdots \theta_{K}^{x_{K}} \quad \text { if } \quad \sum_{i=1}^{N} x_{i}=n
$$

Dirichlet prior:

$$
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots \alpha_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} \prod_{k=1} \theta_{k}^{\alpha_{k}-1}
$$

Multinomial variables

- In NLP, X is often a discrete random variable that can take one of K states.
-We can represent such X s as K-dimensional vectors in which one $x_{k}=1$ and all other elements are 0 $x=(0,0,1,0,0)^{T}$
- Denote probability of $x_{k}=1$ as μ_{k} with $0 \leq \mu_{k} \leq 1$ and $\sum_{k} \mu_{k}=1$ Then the probability of x is:

$$
P(x \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}}
$$

Multinomial likelihood

What is the likelihood of $D=x_{1} \ldots x_{i} \ldots x_{N}$?

The likelihood depends only on the m_{k}. m_{k} are sufficient statistics

Multinomials: Dirichlet prior

The joint distribution of (m_{l}, \ldots, m_{K}) conditioned on $\boldsymbol{\mu}$ and N is a multinomial distribution:

$$
\begin{aligned}
P\left(m_{1}, \ldots, m_{K}=x_{k}\right)= & \frac{N!}{m_{1}!\cdots m_{K}!} \theta_{1}^{m_{1}} \cdots \theta_{K}^{x_{K}} \\
& \text { if } \sum_{i=1}^{K} x_{k}=N
\end{aligned}
$$

Multinomials have a Dirichlet prior with hyperparameters α :

$$
\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots \alpha_{k}\right)=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} \prod_{k=1} \theta_{k}^{\alpha_{k}-1}
$$

The Dirichlet

A Dirichlet is confined to a simplex (here $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$)

(Figure from Chris Bishop's PRML book \& website)

Examples of the Dirichlet

$$
\left\{\alpha_{k}\right\}=0.1
$$

$$
\left\{\alpha_{k}\right\}=1
$$

$$
\left\{\alpha_{k}\right\}=10
$$

(all figures from Chris Bishop’s PRML book \& website)

Dirichlet as conjugate prior

Given a prior $\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})$ and Data D with sufficient statistics $\boldsymbol{m}=\left(m_{l, \ldots,}, m_{K}\right)$, the posterior is

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid D, \boldsymbol{\alpha}) & \propto P(D \mid \boldsymbol{\mu}) P(\boldsymbol{\mu}) \\
& \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1+m_{k}}
\end{aligned}
$$

The normalized posterior is:

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid D, \boldsymbol{\alpha}) & =\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}+\boldsymbol{m}) \\
& =\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{K}+N\right)}{\Gamma\left(\alpha_{1}+m_{1}\right) \times \ldots \times \Gamma\left(\alpha_{K}+m_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1+m_{k}}
\end{aligned}
$$

Likelihood, prior and posterior for the Dirichlet/multinomial

$$
\begin{aligned}
& \text { Likelihood } P(Y \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{m_{k}} \\
& \qquad \text { Prior } P(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
& \text { Posterior } P(\theta \mid Y, \alpha) \propto \prod_{k=1}^{K} \theta_{k}^{m_{k}+\alpha_{k}-1}
\end{aligned}
$$

MLE vs Bayesian estimate

Maximum likelihood estimate:

Maximize $\ln p(D \mid \boldsymbol{\mu})$ wrt. μ_{k} under the constraint that $\sum \mu_{k}=1$
(...Use Lagrange multipliers...)

$$
\mu_{k}^{M L E}=\frac{m_{k}}{N}
$$

Bayesian estimate:

$$
\mu_{k}^{\mathrm{BE}}=\frac{m_{k}+\alpha_{k}}{N+\sum_{k^{\prime}=1}^{K} \alpha_{k^{\prime}}}
$$

More about conjugate priors

-We can interpret the hyperparameters as "pseudocounts"
-Sequential estimation (updating counts after each observation) gives same results as batch estimation

- Add-one smoothing (Laplace smoothing) = uniform prior
- On average, more data leads to a sharper posterior (sharper = lower variance)

Today's reading

-Bishop, Pattern Recognition and Machine Learning, Ch. 2

