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Bayesian Methods in NLP

Statistical inferences 
in NLP
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Authorship attribution
Given two data sets D1 and D2

(e.g. the known works of Shakespeare and of Marlowe)
where does the new data set D’ come from?

(e.g. a disputed piece)

Assume D1 ~ θ1 and D2 ~ θ2 
Each set is generated by a different underlying distribution

If P(D’ | θ1 ) > P(D’ | θ2 ), assume D’ is more like D1

This requires us to estimate the parameters θ 
from the data D
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Computing P(D | θ ) 
We are given a data set D with n items  D = (x1, ...., xn)

We assume D is generated from a distribution with 
parameters θ

What is the probability of D?

We assume the items xi are independent and 
identically distributed (i.i.d.):
 xi   ~ P(D | θ)  =  P(x1, ...., xn | θ ) = ∏i=1..n  P(xi | θ )
= We assume the xi are exchangeable
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Statistical inferences (I)
We are given a data set D with n items  D = (x1, ...., xn)

We assume D is generated (sampled) from an 
(unknown) distribution with parameters θ: xi  ~ θ 
θ: the parameters of a probability distribution

What is the probability of the next item?
xn+1 =  x P(x | x1...xn)

What is the most likely next item? 
x*n+1 = argmax x P(x | x1...xn)

This requires the predictive distribution P(xn+1|x1...xn)

NLP applications: language modeling 
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Statistical inferences (II)
We may also be given a data set D with n items  

D = ((x1, y1) , ...., (xn, yn))

and need to know the most likely hidden value yn+1 

for a previously unseen item xn+1

yn+1  = argmax y P(y |  xn+1; D )

(Supervised learning)

NLP applications: 
POS-tagging, Parsing, sentiment analysis, etc.. 
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Statistical inferences (III)
Or, we may be given in incomplete data set

D = ((x1, _) , ...., (xn, _))

and need to know the most likely hidden value yn+1 

for a previously unseen item xn+1 

yn+1  = argmax y P(y |  xn+1; D )

(= Unsupervised learning)

Common notation: xi is observed, yi is hidden
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Statistical inference (|V)
Or, we may be given in incomplete data set

D = ((x1, _) , ...., (xn,_))

where there are latent variables zi:

(xi, zi) ~ θ

We need to assign probabilities to xn+1, 
or find the most likely xn+1

P(x |  xn+1; D)
xn+1  = argmaxx P(x |  xn+1; D)

= (one kind of) partially supervised learning
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Statistical inference (V)
Or, we may be given in incomplete data set

D = ((x1, y1_) , ...., (xn, yn,_))

where there are latent variables zi:

(xi, yi, zi) ~ θ

We need to know the most likely yn+1 for xn+1

yn+1  = argmaxy P(y |  xn+1; D)

= (one kind of) partially supervised learning
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Bayesian Methods in NLP

Bayesian statistics
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Bayesian statistics
θ: the parameters of a probability distribution

Probabilities represent degrees of belief

Data D provide evidence for/against our beliefs.

We update our belief θ based on evidence we see:

For fixed data D, P(D|θ) is the likelihood of θ
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P (�|D) =
P (�)P (D|�)R
P (�)P (D|�)d�
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P(D) = Marginal Likelihood of D

P(θ): Prior
Probability

of θ

P(D | θ): 
Likelihood 

of D
P(θ | D) 

Posterior
Probability 

of θ

P (�|D) =
P (�)P (D|�)R
P (�)P (D|�)d�

Bayesian statistics
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Bayesian statistics

13

P(q |D) µ P(q)P(D | q)

The posterior P(θ | D) is proportional 
to the prior P(θ) times the likelihood P(D | θ):
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Bernoulli distribution:
Probability of success (=head,yes) in single yes/no trial 
-The probability of head is p. 
-The probability of tail is 1−p.

Binomial distribution: 
Prob. of the number of heads in a sequence of yes/no trials
The probability of getting exactly k heads in n independent
yes/no trials is:

Discrete probability distributions:
Throwing a coin

P (k heads, n� k tails) =
�

n

k

⇥
pk(1� p)n�k
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Looking at the binomial 
distribution again
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If p is the probability of heads, the probability of getting exactly 
k heads in n independent yes/no trials is given by the binomial 
distribution Bin(n,p): 

Expectation E(Bin(n,p)) = np
Variance var(Bin(n,p)) = np(1-p)

The binomial distribution 
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P (k heads) =
✓

n

k

◆
pk(1� p)n�k

=
n!

k!(n� k)!
pk(1� p)n�k
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Parameter estimation
Given data D=HTTHTT, what is the probability θ of heads?

Maximum likelihood estimation (MLE):
Use the θ which has the highest likelihood P(D| θ).

Maximum a posterior estimation (MAP):
Use the θ which has the highest posterior probability P(θ |D).

Bayesian estimation:
Integrate over all θ  => Compute the expectation of θ given D:
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P (x = H|D) =
Z 1

0
P (x = H|✓)P (✓|D)d✓ = E[✓|D]

✓MAP = arg max

✓
P (✓|D) = arg max

✓
P (✓)P (D|✓)

✓MLE = arg max

✓
P (D|✓)
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What distribution does p (probability of heads) have,
given that the data D consists of #H heads and #T tails?

Binomial likelihood
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Maximum likelihood 
estimation for the coin flip
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�⇤ = arg max

�
P (D|�)

= arg max

�
�H

(1� �)T

=

H

H + T
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Bayesian estimation: 
what prior?

The posterior P(θ |D)  is proportional to prior x likelihood:
P(θ |D)∝ P(θ)P(D|θ)

The likelihood P(D|θ) of a binomial is P(D|θ) = θH(1-θ)T

Assume the prior P(θ) is proportional to powers 
of θ and (1-θ):  P(θ) ∝ θ a(1-θ)b

Then the posterior P(θ |D) will also be proportional to 
powers of θ and (1-θ):
      P(θ |D)∝ P(θ) P(D|θ) 
                 = θ a(1-θ)b θH(1-θ)T 
                 = θ a+H(1-θ) b+T 
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We would like something of the form:

But -- this looks just like the binomial:

…. except that k is an integer and θ is a real with 0 < θ < 1.

In search of a prior for coin flips...
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P (�) / �a(1� �)b

P (k heads) =
✓

n

k

◆
pk(1� p)n�k

=
n!

k!(n� k)!
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The Gamma function
The Gamma function Γ(x) is the generalization of the factorial 
x! (or rather (x-1)!) to the reals: 

For x >1, Γ(x) = (x-1)Γ(x-1).

For positive integers, Γ(x) = (x-1)!
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�(�) =
Z 1

0
x��1e�xdx for � > 0
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The Gamma function
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A random variable X (0 < x < 1) has a Beta distribution with 
(hyper)parameters α (α > 0) and β (β > 0) if X has a continuous 
distribution with probability density function

The first term is a normalization factor (to obtain a distribution)

Expectation: 

The Beta distribution
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P (x|↵,�) =
�(↵ + �)
�(↵)�(�)

x

↵�1(1� x)��1

Z 1

0
x

↵�1(1� x)��1
dx =

�(↵ + �)
�(↵)�(�)

↵
↵+�
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Given a prior P(θ |α,β) = Beta(α,β),  and data D=(H,T),
what is our posterior?

With normalization

Beta as prior for binomial
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P (✓|↵,�, H, T ) / P (H,T |✓)P (✓|↵,�)

/ ✓H(1� ✓)T ✓↵�1(1� ✓)��1

= ✓H+↵�1(1� ✓)T+��1

P (✓|↵,�, H, T ) =
�(H + ↵ + T + �)
�(H + ↵)�(T + �)

✓H+↵�1(1� ✓)T+��1

= Beta(↵ + H,� + T )
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So, what do we predict?
Our Bayesian estimate for the next coin flip P(x=1 | D):
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P (x = H|D) =
Z 1

0
P (x = H|✓)P (✓|D)d✓

=
Z 1

0
✓P (✓|D)d✓

= E[✓|D]
= E[Beta(H + ↵, T + �)]

=
H + ↵

H + ↵ + T + �
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Beta(α,β) with α >1, β >1: 
unimodal 
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α = 1, 1< β < 2: strictly concave.
α = 1, β = 2: straight line
α = 1, β > 2: strictly convex
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Conjugate priors
The beta distribution is a conjugate prior to the 
binomial: the resulting posterior is also a beta 
distribution.

All members of the exponential family of 
distributions have conjugate priors.

Examples:
-Multinomial: conjugate prior = Dirichlet
-Gaussian: conjugate prior = Gaussian
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Conjugate priors
The posterior is proportional to prior x likelihood:
P(θ |D)∝ P(θ) P(D|θ)

Conjugate priors:
Posterior is the same kind of distribution as prior.

For binomial likelihood:
conjugate prior  = Beta distribution
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Categorical distribution:
Probability of getting one of N outcomes in a single trial.
The probability of category/outcome ci is pi   (∑pi = 1)

Multinomial distribution:
Probability of observing each possible outcome ci 
exactly Xi times in a sequence of n trials

Discrete probability distributions:
Rolling a die
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P (X1 =xi, . . . , XN =xN ) =
n!

x1! · · · xN !
px1
1 · · · pxN

N if
N�

i=1

xi = n
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Moving on to multinomials
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Multinomials have a Dirichlet prior
Multinomial distribution:
Probability of observing each possible outcome ci exactly Xi 
times in a sequence of n trials:

Dirichlet prior:
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Dir(✓|↵1, ...↵k) =
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�(↵1)...�(↵k)

Y

k=1

✓↵k�1
k

P (X1 =x

i

, . . . ,X

K

=x

k

) =
n!

x1! · · · x
K

!
✓

x1
1 · · · ✓xK

K

if
NX

i=1

x

i

= n



Bayesian Methods in NLP

Multinomial variables
- In NLP, X is often a discrete random variable 
that can take one of K states.

-We can represent such Xs as K-dimensional vectors
in which one xk =1 and all other elements are 0
 x = (0,0,1,0,0)T

-Denote probability of xk =1 as µk with 0 ≤ µk ≤ 1 and ∑k µk =1
Then the probability of x is:
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P (x|µ) =
KY

k=1

µ

xk
k
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What is the likelihood of D = x1…. xi ... xN?

Multinomial likelihood
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P (D|µ) =
NY

i=1

P (x
i

|µ)

=
NY

i=1

KY

k=1

µ

xnk
k

=
KY

k=1

µ

(
P

n xnk)
k

:=
KY

k=1

µ

mk
k

Define

(= #observations with xk=1)

mk :=
NX

n=1

xnk

The likelihood depends 
only on the mk.

mk are sufficient 
statistics
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Multinomials: Dirichlet prior
The joint distribution of (m1,…,mK) conditioned on µ 
and N is a multinomial distribution:
 

Multinomials have a Dirichlet prior with 
hyperparameters α:
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Dir(✓|↵1, ...↵k) =
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The Dirichlet
A Dirichlet is confined to a simplex (here µ=(µ1,µ2,µ3)) 

(Figure from Chris Bishop’s PRML book & website)
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Examples of the Dirichlet

(all figures from Chris Bishop’s PRML book & website)
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Dirichlet as conjugate prior
Given a prior  Dir(µ|α) and Data D with sufficient statistics 
m=(m1,…,mK), the posterior is

The normalized posterior is: 
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p(µ|D,�) � P (D|µ)P (µ)

�
KY

k=1

µ�k�1+mk
k

p(µ|D,↵) = Dir(µ|↵+m)

=
�(↵1 + . . . + ↵K +N)

�(↵1 +m1)⇥ . . . ⇥ �(↵K +mK)

KY

k=1

µ↵k�1+mk
k
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Likelihood, prior and posterior for  
the Dirichlet/multinomial
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Likelihood P(Y |q) =
K

’
k=1

q mk
k

Prior P(q |a) µ
K

’
k=1

q ak�1

k

Posterior P(q |Y,a) µ
K

’
k=1

q mk+ak�1

k
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MLE vs Bayesian estimate
Maximum likelihood estimate:
Maximize ln p(D|µ) wrt. µk under the constraint that ∑ µk = 1

(...Use Lagrange multipliers…)

Bayesian estimate:
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µMLE
k =

mk

N

µBE
k =

mk + ↵k

N +
PK

k0=1 ↵k0
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More about conjugate priors"
-We can interpret the hyperparameters as “pseudocounts”

-Sequential estimation (updating counts after each 
observation) gives same results as batch estimation

-Add-one smoothing (Laplace smoothing) = uniform prior

-On average, more data leads to a sharper posterior
(sharper = lower variance)
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Today’s reading
-Bishop, Pattern Recognition and Machine Learning, Ch. 2
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