CS598JHM: Advanced NLP (Spring '10)

Lecture 2:
Conjugate priors

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

http://www.cs.uiuc.edu/class/sp10/cs598jhm

The binomial distribution

If pis the probability of heads, the probability of getting
exactly k heads in nindependent yes/no trials is given by
the binomial distribution Bin(n,p):

P(k heads) = (Z)pk(l—p)"_k
= k!(nnik),pk(l p)" "

Expectation E(Bin(n,p)) = np
Variance var(Bin(n,p)) = np(1-p)
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Binomial likelihood

What distribution does p (probability of heads) have,
given that the data D consists of #H heads and #T tails?

Likelihood L(0;D=(#Heads,#Tails)) for binomial distribution
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Parameter estimation

Given a set of data D=HTTHTT, what is the probability 6 of
heads?

-Maximum likelihood estimation (MLE):
Use the § which has the highest likelihood P(D] 6).

P(x = H|D) = P(x = H|0) with 0 = argmgme(D\@)

-Bayesian estimation:
Compute the expectation of 9 given D:

P(z = H|D) = /01 P(z = H|0)P(6|D)do = E[0|D]
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Maximum likelihood estimation

-Maximum likelihood estimation (MLE):
find @ which maximizes likelihood P(D | 6).

o = argméaxP(DW)
= argmngH(l—H)T

H
H+T
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Bayesian statistics

-Data D provides evidence for or against our beliefs.
We update our belief 6 based on the evidence we see:

Prior | Likelihood

P(O)P(D|0)
PO|D)| =
OB = TR@) PO
osterior
Marginal Likelihood (=P(D))
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Bayesian estimation

Given a prior P(0) and a likelihood P(D|6),
what is the posterior P69 |D)?

How do we choose the prior P(6)?

-The posterior is proportional to prior x likelihood:
P(0 D)= P(60) P(D|0)

-The likelihood of a binomial is:
P(D|6) = 01(1-0)T

- If prior P(9) is proportional to powers of 8and (1-9),
posterior will also be proportional to powers of and (1-6):
P(6) x 62(1-6)>
= P(0 |D)x 02(1-60)> 01(1-0)T = G2+ (]-9)>*T
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In search of a prior...

We would like something of the form:
P(#) x 6%(1 — 0)°

But -- this looks just like the binomial:

P(k heads) = (Z)pk(l —p)nk
= —k!(nni k>!p"(1 —p)F

.... except that £ is an integer and 6 is a real with 0<6 <.
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The Gamma function

The Gamma function I'(x) is the generalization of the
factorial x! (or rather (x-1)!) to the reals:

INa) = / z* e "dx for a >0
0

Forx>1, I'(x) = (x-DI(x-1).

For positive integers, I'(x) = (x-1)!
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The Gamma function

T'(x) function
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The Beta distribution

A random variable X (0 <x < 1) has a Beta distribution with
(hyper)parameters a (o> 0) and B (B > 0) if X has a continuous
distribution with probability density function

F(a + ﬁ) wa—l
INCYINGE)

The first term is a normalization factor (to obtain a distribution)

1xo¢71 )y — o+ B)
f) 0w =

P(zla, B) = (1—=2)""

«

Expectation: ;75
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Beta(a,p) with a >1,  >1

Unimodal

Beta Distribution Beta(c, )

Beta(1.5,1.5) ——
Beta(3,1.5) -
Bela(s’s) ........... -
Beta(20,20)
Beta(3,20)

0.2 0.4 0.6 0.8 1

u

CS598JHM: Advanced NLP
12




Beta(a,p) with a <1, p <I

U-shaped
Beta Distribution Beta(a, )
6
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Beta(a,p) with a=p

Symmetric. a=f=1: uniform

Beta Distribution Beta(c, )
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Beta(a,p) with a<lI, f >1

Strictly decreasing
Beta Distribution Beta(a, )

u
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Beta(a,p) with a =1, f >1

a =1, 1< f < 2: strictly concave.
a =1, = 2: straight line

o =1, > 2: strictly convex
Beta Distribution Beta(a, f3)
3.5
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Beta as prior for binomial

Given alprior P(0 |o,) = Beta(o,)} and data D=(, 1),
what is our posterior?

POa,p,H,T) o« P(HT|0)PO|a,p)

x 071 —-0)Te>"1(1 —9)F!

_ 0H+a71(1 _ 9)T+B71

With normalization I(H+a+T+0)
(6%
PO|o, 3, H,T) = gHFo—1(1 — g)T+A-1
(8l 8, H,T) T(H + a)D(T + B) (1-6)
[= Betala+H,B+T) ]
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So, what do we predict?

Our Bayesian estimate for the next coin flip P(x=1 | D):

Ple=HID) = /01 Pz = H|6)P(6|D)do

1
_ /9P(9|D)d9
0
= E[0|D]
= FE[Beta(H + o, T + )]
H+a
Hta+T+7
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Conjugate priors

The beta distribution is a conjugate prior to the binomial:
the resulting posterior is also a beta distribution.

All members of the exponential family of distributions have
conjugate priors.

Examples:
- Multinomial: conjugate prior = Dirichlet
- Gaussian: conjugate prior = Gaussian

CS598JHM: Advanced NLP
19

Multinomials: Dirichlet prior

Multinomial distribution:
Probability of observing each possible outcome ciexactly X;
times in a sequence of n yes/no trials:

P(Xlzxi,...,XK:xk):xiGm- N lexl—n
1

Dirichlet prior:

| Dl + o+ ) ax—1
Dir(Blon, ox) = 5" ,Ef’“
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More about conjugate priors Today’s reading

-We can interpret the hyperparameters as “pseudocounts” -Bishop, Pattern Recognition and Machine Learning, Ch. 2

- Sequential estimation (updating counts after each
observation) gives same results as batch estimation

- Add-one smoothing (Laplace smoothing) = uniform prior

-On average, more data leads to a sharper posterior
(sharper = lower variance)
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