Rationality and Complexity
 CS598HS

Recall Nash equilibrium

The joint strategy (x, y) is a Nash Equilibrium if x is a best response to y and y is a best response to x

Our old friend

"In real life, we do not always behave in a selfishly antisocial way, and we often give up an advantage in order to behave in a cooperative manner. Much work in game theory has been devoted to explaining this apparent paradox."

The n-repeated game

The repeated game strategy space

For an n round repeated prisoner's dilemma game, a pure strategy is specified as

$$
\begin{gathered}
\left\{f_{1}, \cdots, f_{n}\right\} \\
f_{i}:\{C, D\}^{i-1} \times\{C, D\}^{i-1} \rightarrow\{C, D\}
\end{gathered}
$$

	C	D
	3,3	0,4
	4,0	1,1

Implementation as automata

How would we describe a mixed strategy?

In a 4 round PD, is tit-fortat a best response to tit-for-tat?

For n round PD, if we say strategy automata must have between
 [2, n) states, tit-for-tat is always an equilibrium

Lemma 1

If both players are allowed 2^{n} states, then the only equilibrium is to always defect

Theorem 1

For every $\epsilon>0$ in the n-round prisoner's dilemma played by two automata where at least one of them has a subexponential number of states, there is a mixed equilibrium with an average payoff of at least $(3-\epsilon)$

Proof: intuition

First, force the other player to memorize something at the start to fill up memory they might use to be devious otherwise. Then, cooperate for a period of time and then prove to each other that you memorized what you were supposed to. Punish any deviation by always defecting

Proof: algorithm setup

Given $\epsilon>0$ and a number of states
$s>n$ let d be the smallest integer satisfying $d 2^{d+1}\left(1+\frac{1}{\epsilon}\right) \geq \boldsymbol{s}$, randomly mixed strategy choose a "business card"from $\{\mathrm{C}, \mathrm{D}\}^{d}$

Proof: algorithm

1) Each player reports/plays their d-character "business card" in the first d rounds
2) Each player plays d steps ironing out any score discrepancies introduced by business card exchange
3) In a loop: The players cooperate for a number of steps
4) Each player reads back both business cards XORd together. End loop

Proof: conclusion

There is no strategy in an n round game obeying the state bound s which is a better response to this strategy than itself
"For all sub exponential complexities, there are equilibria that are arbitrarily close to collaborative behavior"

What about other games?

Payoff geometry

Payoff geometry: Pareto

Payoff geometry: IRR

Payoff geometry: ParetoIRR

Theorem 2

For an arbitrary game G if $p=\left(p_{1}, p_{2}\right)$ is an individually rational Pareto optimal point, then for every ϵ, there is a subexponential bound on automata size such that an automata smaller than the bound exists for both players corresponding to a mixed equilibria with average payoff at least $p_{i}-\epsilon$ for each player in the n repeated game of G

Another complexity notion

Game schemes

A game scheme g is a polynomially computable function from 3 strings to 2 integers $\mathrm{g}(\mathrm{z}, \mathrm{x}, \mathrm{y})=(\mathrm{a}, \mathrm{b})$
z encodes the game, x player 1's strategy, y player 2's -> a is player 1's payoff, b is player 2's

Complexity of game theory questions

Decision problem

There exists a strategy y, which given x and z has a payoff at least b

There exists an equilibrium which pays player 1 at least b for the zero-sum game z

There exists an equilibrium in game z which pays both player 1 and player 2 at least b

Equals complexity class

NP

EXP

NEXP

Meta strategies

