Novel View Synthesis

3D Vision University of Illinois

Derek Hoiem

Many slides adapted from Lana Lazebnik, Steve Seitz, Yasu Furukawa, Noah Snavely

This class: Novel View Synthesis

• Applications and problem space

• NeRF

• Mesh-based

Applications of Novel View Synthesis

• Walk-throughs and photo tours

Merchandise inspection

• Virtual tourism / Entertainment / VR

Novel view synthesis

- View interpolation
 - Render views that are similar or between photo views

- View extrapolation
 - Render views from arbitrary positions and orientations
- View manipulation
 - Change materials, lighting, or content

Matterport example: <u>https://matterport.com/gallery</u>

How Matterport viewing works

- Mesh viewing
 - Solve for mesh, texture map, and render from arbitrary viewpoint
 - Enables extrapolation and free view synthesis
- Photo viewing and transitions
 - Transition by texture mapping start/destination photos onto simple mesh and cross-fading during movement
 - Enables restricted photo tour
- What is good and bad about these approaches?

Mesh:

+ simple, complete freedom of movement, can also support measurement/pins/annotations

- Cannot render view-dependent effects, artifacts due to geometry/texture errors

Photo tour w/ mesh-based cross-fade

- + simple, looks perfect at photo locations
- Very limited freedom of movement

NeRF:

Representing Scenes as Neural Radiance Fields for View Synthesis

Most of following slides from Jon Barron

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan*

UC Berkeley

Matt Tancik*

UC Berkeley

Jon Barron

Google Research Google

UC San Diego UC San Diego

Ravi Ramamoorthi

Ren Ng

Problem: View Interpolation

Inputs: sparsely sampled images of scene

Outputs: new views of same scene

tancik.com/nerf

Neural Networks as a Continuous Shape Representation

 $(x, y, z) \rightarrow occupancy$ $(x, y, z) \rightarrow distance$ $(x, y, z) \rightarrow (color, occupancy)$ $(x, y, z) \rightarrow latent vector$

+ Compact and expressive parameterization
- Limited rendering, difficult to optimize

Mescheder et al. Occupancy Networks, CVPR 2019, Park et al., DeepSDF, CVPR 2019, Sitzmann et al., Scene Representation Networks, NeurIPS 2019, Niemeyer et al. Differentiable Volumetric Rendering, CVPR 2020

NeRF (neural radiance fields)

Generate views with traditional volume rendering

Volume rendering is trivially differentiable

How much light is contributed by ray segment *i*:

 $\alpha_i = 1 - e^{-\sigma_i \delta t_i} - \text{Density * Distance Between Points}$

Optimize with gradient descent on rendering loss

 $\min_{\theta} \sum_{i=1}^{n} ||\operatorname{render}_{i}(F_{\theta}) - I_{i}||^{2}$

Training network to reproduce all input views of the scene

Can we allocate samples more efficiently? Two pass rendering

Two pass rendering: coarse

Two pass rendering: fine

Network Structure

Viewing directions as input

Naive implementation produces blurry results

NeRF (Naive)

Naive implementation produces blurry results

NeRF (with positional encoding)

NeRF (Naive)

Toy problem: memorizing a 2D image

Toy problem: memorizing a 2D image

Ground truth image

Standard fully-connected net

Ground truth image

Standard fully-connected net

With Positional Encoding

Positional encoding also directly improves our scene representation!

NeRF (with positional encoding)

NeRF (Naive)

Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Matthew Tancik*, Pratul Srinivasan*, Ben Mildenhall*, Sara Fridovich-Keil, Nithin Ragahavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng

Positional Encoding [1]:
$$\gamma(\mathbf{v}) = \left[\cos(2^0\mathbf{v}), \sin(2^0\mathbf{v}), \dots, \cos(2^{L-1}\mathbf{v}), \sin(2^{L-1}\mathbf{v})\right]$$

Random Fourier Features [2]: $\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})]$ $\mathbf{B} \sim \mathcal{N}(0, \mathbf{\overline{o}}^2)$

[1] Vaswani et al.. NeurIPS, 2017[2] Rahimi & Recht. NeurIPS, 2007

Neural Tangent Kernel

$$f(\mathbf{x}; \theta) \approx \sum_{i} (\mathbf{K}^{-1} \mathbf{y})_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

Under certain conditions, neural networks are kernel regression(!)

$$k(\mathbf{x}_i, \mathbf{x}_j) = h_{\text{NTK}}(\langle \mathbf{x}_i, \mathbf{x}_j \rangle)$$
$$h_{\text{NTK}} : \mathbb{R} \to \mathbb{R}$$

ReLU MLPs correspond to a "dot product" kernel

Jacot et al., NeurIPS, 2018, Arora, et al., ICML, 2019, Basri et al., 2020., Du et al., ICLR, 2019., Lee et al., NeurIPS, 2019. Slide credit: Jon Barron

Dot Product of Fourier Features

$$egin{aligned} &\langle \gamma(\mathbf{v}_1), \gamma(\mathbf{v}_2)
angle &= \sum_j \left(\cos(\mathbf{b}_j^{\mathrm{T}} \mathbf{v}_1) \cos(\mathbf{b}_j^{\mathrm{T}} \mathbf{v}_2) + \sin(\mathbf{b}_j^{\mathrm{T}} \mathbf{v}_1) \sin(\mathbf{b}_j^{\mathrm{T}} \mathbf{v}_2)
ight) \ &= \sum_j \cos\left(\mathbf{b}_j^{\mathrm{T}} (\mathbf{v}_1 - \mathbf{v}_2)
ight) \quad \text{(cosine difference trig identity)} \ &\triangleq h_\gamma(\mathbf{v}_1 - \mathbf{v}_2) \end{aligned}$$

Fourier Features \rightarrow stationary kernel

Resulting *composed* NTK is stationary

$$h_{\mathrm{NTK}}\Big(\langle \gamma(\mathbf{v})_i, \gamma(\mathbf{v})_j \rangle\Big) = h_{\mathrm{NTK}}(h_{\gamma}(\mathbf{v}_i - \mathbf{v}_j))$$

Resulting network regression function is a *convolution*

$$\hat{f} = (h_{ ext{NTK}} \circ h_{\gamma}) * \sum_{i=1}^{n} w_i \delta_{\mathbf{v}_i}$$

Fit to 1D function with varying Fourier features (low p = high frequency FF)

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})] \qquad \mathbf{B} \sim \mathcal{N}(0, \mathbf{\overline{o}}^2)$$

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})] \qquad \mathbf{B} \sim \mathcal{N}(0, \mathbf{\sigma}^2)$$

Mapping bandwidth controls underfitting / overfitting

$$\gamma(\mathbf{v}) = [\cos(\mathbf{B}\mathbf{v}), \sin(\mathbf{B}\mathbf{v})] \qquad \mathbf{B} \sim \mathcal{N}(0, \mathbf{\overline{o}}^2)$$

No Fourier features

$\gamma(\mathbf{v}) = \mathbf{v}$

With Fourier features $\gamma(\mathbf{v}) = FF(\mathbf{v})$

(b) Image regression $(x,y) \rightarrow \text{RGB}$ (c) 3D shape regression $(x,y,z) \rightarrow$ occupancy (d) MRI reconstruction (e) $(x,y,z) \rightarrow \text{density}$ (x,y,z)

(e) Inverse rendering $(x,y,z) \rightarrow \text{RGB}, \text{density}$ Slide credit: Jon Barron

Try It!

- B = SCALE * np.random.normal(shape=(input_dims, NUM_FEATURES))
- x = np.concatenate([np.sin(x @ B), np.cos(x @ B)], axis=-1)
- x = nn.Dense(x, features=256)

Results

View-Dependent Effects

Detailed Geometry & Occlusion

Detailed Geometry & Occlusion

Meshable

Baking Neural Radiance Fields for Real-Time View Synthesis

arXiv 2021

Paul Debevec Peter Hedman Pratul P. Srinivasan Ben Mildenhall Jonathan T. Barron Google Research Video Paper Demos

http://nerf.live/

Concurrent works:

Has a demo too! → Yu et al., PlenOctrees Garbin et al., FastNeRF Reiser et al., KiloNeRF

- NeRF modified to output diffuse color, density, and 4-d specular features
- Color and features are accumulated along ray, and a small network produces a specular residual that is added to color
- Prior encourages sparse density/opacity in coarse samples

Rendering

- Precompute anti-aliased diffuse colors/features on voxel grid (1000³ to 1300³)
- Voxels are stored sparsely and divided into local blocks
- In coarse grid, store whether occupied and if so pointer to higher resolution color/feature info
- Compute specular component from features (only once per pixel) and add to color
- All values are quantized and compressed
- Per-pixel shading is fine-tuned to recover losses due to above process
- Result: 30+ FPS on laptop, < 100 MB model

Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields

Jonathan T. Barron

Ben Mildenhall

Matthew Tancik

Peter Hedman

Ricardo Martin-Brualla

Pratul P. Srinivasan

Ground Truth

Slide credit: Jon Barron

Positional Encoding

 $\gamma(\mathbf{x})$

mip = *"multum in parvo", Latin for "much in little"*

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth

Figure 4: NeRF-W separately renders the static (a) and transient (b) elements of the scene, and then composites them (c). Training minimizes the difference between the composite and the true image (d) weighted by uncertainty (e), which is simultaneously optimized to identify and discount anomalous image regions. Photo by Flickr user vasnic64 / CC BY.

NeRF summary

- Solves for functional mapping of position to occupancy and position/view to color
- Produces geometry/reflectance estimates that are good for interpolating views and robust to non-Lambertian surfaces
- Many follow-on works for efficient learning/storing/rendering, extending applicable settings, and manipulations
- Photometric objective and volumetric implicit surface function may not be ideal for estimating geometry in large scenes

• Sooo much work on this, so fast: https://github.com/yenchenlin/awesome-NeRF

• Other people, like original authors, have a big head start

Baking a trained NeRF into a sparse voxel grid of colors and features lets you rende

Nerftes: Deformable Neural Radiance Fields Keurhong Park, Utkarsh Sinha, Jonathan T, Barron, Sofen Bouasiz, Dan B Goldman, Steven M. Seltz, Ricardo-Martin Brualla ICCV, 2021. (Oral Presentation) register angel. (Ord) Presentation) Ruliding deformation fields into NeRF lets you canture non-rield (

Mahmoud ARF, Jonathan T. Barron, Chice LeGendre, Yun-Ta Taal, Franc ICCV, 2021 (Oral Presentation) With some extra (unlabeled) test-set images, you can build a

Vicheng Wu, Qlurul He, Tianfan Xue, Rahul Garg, Jlawen Chen, Ashok Veerengheven, Jonathan T. Barron ICCV, 2021 project page / arXiv Simulating the optics of a camerals lens lets you train a model that removes lens flare from

Line Ver-Chen, Pete Florence, Jonathan T, Barron, Alberto Rodriguez, Phillip Isola, Taung-Yi Lin IRO5, 2021 project page / arXiv / video Given an image of an object and a NeRF of that object, you can estimate that of

Radiance Fields Keunhong Park, Utkarsh Sinha, Peter Hedma Dan B Goldman, Ricardo Martin-Brualla, Ste ar20y, 2021 Applying ideas from level set met

Under en Unknown Illumination Xiuming Zhang, Pratul Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, Jonathan T. Barron, ar20y.2021 project page / arXiv / video By placing priors on Illumination and materials, we can recover NeRF-like

Contract Learning Multi-View Image-Based Rendering Qiangian Wang, Zhicheng Wang, Kyle Cenova, Pratel Sri Jonethan T, Barron, Ricardo Martin-Brustle, Krossett CVPR, 2021 project page / code / arX0v By learning how to pay attention

according to the section and visibility Fields for Rel stul Srinivasan, Boyang Deng, Xiuming Zhang, atthew Tancik, Ben Mildenhall, Jonathan T. Barron CVPR, 2021 ase /ulden / artifu

Matthew Tancik", Ben Mildenhall", Terrance Wang, Div Pratul Srinivesen, Jonathan T, Barron, Ren Ng CVPR, 2021. (Oral Presentation) Using meta-learning to find weight initializations for coordinate-based

2021 NeRF papers coauthored by Jon Barron

Free view synthesis (Riegler and Koltun ECCV 2020)

- Start with mesh
 - SfM + MVS + DT/GC mesh (all in COLMAP codebase)

(a) Point cloud

(b) Mesh

 Learn to select/blend/generate colors based on projected features from source views

Free view synthesis

- 1. Render mesh into target view to get its depth map D_t
- 2. For each source image:
 - a. Extract features (using 3 stages of ImageNet pretrained VGG)
 - b. Warp each pixel into each source view using D_t and get interpolated features
 - c. Predict intensity Î and confidence C images using blending decoder (UNet+GRU) for each sourc€
 - d. Store mask values for cases where mesh is missing or point doesn't project within source
- 3. Produce final intensity \hat{I} and confidence *C* using blending decoder for each source

Training

• Minimize L1 distance to pixel intensities and VGG features of the true held out image

$$\mathcal{L}(\hat{I}_t, I_t) = ||\hat{I}_t - I_t||_1 + \sum_l \lambda_l ||\phi_l(\hat{I}_t) - \phi_l(I_t)||_1$$

• Train on 17 Tanks and Temple scenes in leave-one-image-out

Evaluation

Table 2: Results on Tanks and Temples. (Whole sequences withheld.)

	Truck				Train			M60			Playground		
	↓LPIPS	↑SSIM	$\uparrow PSNR$	↓LPIPS	\uparrow SSIM	†PSNR	¹ LPIPS	↑SSIM	↑PSNR	¹ LPIPS	\uparrow SSIM	$\uparrow PSNR$	
EVS [8] LLFF [26] NeRF [27] NPBG [2] Our	0.41 0.61 0.22 0.11	0.563 0.432 0.690 0.822 0.867	14.99 10.66 19.47 20.32 22.62	0.64 0.70 0.74 0.25 0.22	0.454 0.356 0.532 0.801 0.758	11.81 8.88 13.16 18.08 17.90	0.62 0.69 0.62 0.36 0.29	0.473 0.427 0.691 0.716 0.785	9.66 8.98 15.99 12.35 17.14	0.39 0.56 0.54 0.17 0.16	0.610 0.517 0.734 0.876 0.837	16.34 13.27 21.16 23.03 22.03	

Table 3: Quantitative results on the DTU dataset. Numbers on the left are for view interpolation, numbers on the right are for extrapolation.

		Scan 65			Scan 106		Scan 118				
11	LPIPS	\uparrow SSIM	↑PSNR	\downarrow LPIPS	↑SSIM	↑PSNR	\downarrow LPIPS	↑SSIM	$\uparrow PSNR$		
EVS [8] 0.6 LLFF [26] 0.3 NeRF [27] 0.1 NPBG [2] 0.8 Our 0.2	61/0.53 51/0.44 17/0.32 82/0.96 25/ 0.30	0.938/0.917 0.939/0.926 0.987/0.963 0.896/0.839 0.972/0.950	23.07/21.23 22.44/22.04 34.41/27.81 17.77/15.59 26.96/24.08	0.75/0.53 0.61/0.39 0.36/0.40 0.94/0.53 0.25/0.26	0.903/0.880 0.907/0.893 0.973 /0.931 0.856/0.879 0.963/ 0.938	19.95/18.62 24.08/24.61 34.52 /24.36 20.70/22.54 27.24/ 24.63	0.47/0.42 0.47/0.30 0.24/0.27 0.74/0.41 0.16/0.20	0.931/0.911 0.932/0.929 0.985/0.952 0.876/0.905 0.975/0.951	23.00/20.47 28.95/27.40 37.16/28.39 24.10/24.97 29.21/25.75		

Evaluation

Table 1: Evaluation of architectural choices on the Tanks and Temples dataset. (Leave-one-out protocol.) See the text for a detailed description of the conditions.

	Truck				Train		M60			Playground		
	\downarrow LPIPS	\uparrow SSIM	†PSNR	\downarrow LPIPS	\uparrow SSIM	↑PSNR	\downarrow LPIPS	\uparrow SSIM	$\uparrow PSNR$	↓LPIPS	\uparrow SSIM	$\uparrow PSNR$
Fixed Identity	0.116	0.819	21.22	0.201	0.751	18.53	0.110	0.871	22.67	0.119	0.824	22.38
Fixed Encoding	0.096	0.828	21.19	0.168	0.769	19.01	0.096	0.876	22.80	0.107	0.831	22.40
Cat Global Avg.	0.089	0.842	21.49	0.175	0.773	18.73	0.093	0.887	23.41	0.098	0.845	22.92
Ours w/o Encoding	0.093	0.849	22.13	0.174	0.778	19.33	0.094	0.887	23.79	0.099	0.851	23.45
Ours w/o GRU	0.094	0.845	21.74	0.159	0.782	19.26	0.087	0.893	23.49	0.095	0.849	23.30
Ours w/o Masks	0.087	0.847	21.58	0.152	0.784	19.42	0.082	0.897	24.07	0.087	0.850	23.16
Ours w/o inf. depth	0.093	0.847	21.94	0.169	0.782	18.96	0.087	0.896	24.08	0.094	0.853	23.47
Ours w/o soft-argmax	0.091	0.845	21.74	0.159	0.786	19.43	0.086	0.891	23.79	0.090	0.857	23.50
Ours full	0.082	0.852	22.03	0.147	0.794	19.54	0.081	0.894	23.98	0.084	0.859	23.51

Free View Synthesis

Gernot Riegler and Vladlen Koltun

ECCV 2020

Open problems / research ideas

- Making NeRF faster to train (see MVSNeRF)
- NeRF on large scale scenes
- In MVS, model intensity as a mix of diffuse and specular color and make photometric cost a function of diffuse color
- Use 360 images taken from various positions within a room to enable omnidirectional and omnipositional free view synthesis

Summary

- NeRF encodes a surface with diffuse and non-diffuse color components by mapping (x,y,z,direction) to (density, r,g,b)
 - Numerous follow-on works improve the rendering time, model size, training time, ability to handle occlusions, special effects, and more

- Free view synthesis achieves results that are sometimes better than NeRF by using an MVS-derived mesh to map and blend features
- Both offer spectacular results