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This class: Novel View Synthesis

* Applications and problem space
* NeRF

e Mesh-based



Applications of Novel View Synthesis

* Walk-throughs and photo tours
 Merchandise inspection

e Virtual tourism / Entertainment / VR



Novel view synthesis

* View interpolation
— Render views that are similar or between photo views

* View extrapolation
— Render views from arbitrary positions and orientations

* View manipulation
— Change materials, lighting, or content



Matterport example: https://matterport.com/gallery



https://matterport.com/gallery

How Matterport viewing works

* Mesh viewing
— Solve for mesh, texture map, and render from arbitrary viewpoint
— Enables extrapolation and free view synthesis

* Photo viewing and transitions

— Transition by texture mapping start/destination photos onto simple mesh and cross-fading during
movement

— Enables restricted photo tour

* What is good and bad about these approaches?

Mesh:
+ simple, complete freedom of movement, can also support measurement/pins/annotations
- Cannot render view-dependent effects, artifacts due to geometry/texture errors

Photo tour w/ mesh-based cross-fade
+ simple, looks perfect at photo locations
- Very limited freedom of movement



NeRF:

Representing Scenes as
Neural Radiance Fields for
View Synthesis

Most of following slides from Jon Barron

Ben Mildenhall* Pratul Srinivasan* Matt Tancik*
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Problem: View Interpolation

Inputs: sparsely sampled images of scene Outputs: new views of same scene

tancik.com/nerf

Slide credit: Jon Barron



Neural Networks as a Continuous Shape Representation
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(x,y,z) — distance
(x,v,z) = (color, occupancy)

(x,y,z) = latent vector

+ Compact and expressive parameterization
— Limited rendering, difficult to optimize

Mescheder et al. Occupancy Networks, CVPR 2019, Park et al., DeepSDF, CVPR 2019,
Slide credit: Jon Barron Sitzmann et al., Scene Representation Networks, NeurlPS 2019, Niemeyer et al. Differentiable Volumetric Rendering, CVPR 2020



NeRF (neural radiance fields)
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Slide credit: Jon Barron



Generate views with traditional volume rendering

Slide credit: Jon Barron



Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td.:
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Slide credit: Jon Barron



Optimize with gradient descent on rendering loss
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Slide credit: Jon Barron



Training network to reproduce all input views of the scene

Slide credit: Jon Barron



Can we allocate samples more efficiently?
Two pass rendering

Ray

3D volume

Slide credit: Jon Barron



Two pass rendering: coarse

Ray

treat weights as probability 3D volume

distribution for new samples

Slide credit: Jon Barron



Two pass rendering: fine

Ray

treat weights as probability 3D volume

distribution for new samples

Slide credit: Jon Barron



Network Structure
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Viewing directions as input

Slide credit: Jon Barron



Naive implementation produces blurry results

NeRF (Naive)

Slide credit: Jon Barron



Naive implementation produces blurry results

NeRF (Naive)

Slide credit: Jon Barron



Toy problem: memorizing a 2D image

.0) > SRR (1.5

Slide credit: Jon Barron



Toy problem: memorizing a 2D image

Ground truth image Standard fully-connected net
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Slide credit: Jon Barron



Ground truth image Standard fully-connected net With Positional Encoding

Slide credit: Jon Barron



Positional encoding also directly improves our scene representation!

NeRF (Naive) NeRF (with positional encoding)

Slide credit: Jon Barron



Fourier Features Let Networks Learn
High Frequency Functions in Low Dimensional Domains

Matthew Tancik*, Pratul Srinivasan*, Ben Mildenhall*,
Sara Fridovich-Keil, Nithin Ragahavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng

Slide credit: Jon Barron



Output Signal f(v(v);0)
(color, density)

Input Coordinate
(position, view direction)

Input Mapping  ~y(+) Relu MLP f(-;6)

Positional Encoding [1]: v(v) = [cos(2°v),sin(2%V), ..., cos(2" ! v), sin(24 1 v)]

Random Fourier Features [2]: (V) = [cos(Bv),sin(Bv)] B ~ N(0,iT)

[1] Vaswani et al.. NeurlPS, 2017
[2] Rahimi & Recht. NeurlPS, 2007

Slide credit: Jon Barron



Neural Tangent Kernel

- 0) ~ K 1v). k(x; Under certain conditions,
f(x;9) Z( y)ik(%i, X) neural networks are kernel regression(!)
(

k(xi,x;) = hntr ((Xi, %))

hNTK:R%R

RelLU MLPs correspond to a “dot product” kernel

Jacot et al., NeurlPS, 2018, Arora, et al., ICML, 2019, Basri et al., 2020., Du et al., ICLR, 2019., Lee et al., NeurIPS, 2019

Slide credit: Jon Barron



Dot Product of Fourier Features

(v(v1),7v(v2)) = Z (cos(b;rvl) cos(b?vz) - sin(b}vl) Sin(b}‘VQ))

— Z COS (b}‘(vl — V2)) (cosine difference trig identity)
J

Fourier Features — stationary kernel

Slide credit: Jon Barron



Resulting composed NTK is stationary

v (1095, Y(V)5) ) = v (e (v = v5))

Resulting network regression function is a convolution

f = (hNTK © h»y) * Z wiévi
i=1

Slide credit: Jon Barron



Fit to 1D function with varying Fourier features (low p = high frequency FF)
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Mapping bandwidth controls underfitting /
overfitting

Slice of 2D neural tangent kernel
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Slide credit: Jon Barron



Mapping bandwidth controls underfitting /
overfitting

v(v) = [cos(Bv), sin(Bv)]

B~ N(O:E?)
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Slide credit: Jon Barron



Mapping bandwidth controls underfitting /
overfitting
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With Fourier features

No Fourier features

(b) Image regression
(x,y) — RGB

(c) 3D shape regression

(x,y,2z) — occupancy

(d) MRI reconstruction

(x,y,z) — density

(e) Inverse rendering

(x,y,z) — RGB, density

Slide credit: Jon Barron



Try It!

= SCALE * np.random.normal (shape=(input dims, NUM FEATURES))
np.concatenate([np.sin(x @ B), np.cos(x @ B)], axis=-1)

nn.Dense (x, features=256)

Slide credit: Jon Barron



Results









View-Dependent Effects




Detailed Geometry & Occlusion




Detailed Geometry & Occlusion




Meshable




Baking Neural Radiance Fields for Real-Time View Synthesis
arXiv 2021

Peter Hedman Pratul P. Srinivasan Ben Mildenhall Jonathan T. Barron Paul Debevec

Google Research

Paper Video

Concurrent works:
Has a demo too! — Yu et al., PlenOctrees

http://nerf.live/ Garbin et al., FastNeRF
Reiser et al., KiloNeRF



http://nerf.live/
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 NeRF modified to output diffuse color, density, and 4-d specular
features

* Color and features are accumulated along ray, and a small network
produces a specular residual that is added to color

* Prior encourages sparse density/opacity in coarse samples

Training time:
Exhaustive sampling
through large neural

network

Combine to get
final output
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Rendering

Precompute anti-aliased diffuse
colors/features on voxel grid (10003 to
13003)

Voxels are stored sparsely and divided into
local blocks

In coarse grid, store whether occupied and
if so pointer to higher resolution
color/feature info

Compute specular component from
features (only once per pixel) and add to
color

All values are quantized and compressed

Per-pixel shading is fine-tuned to recover
losses due to above process

Result: 30+ FPS on laptop, < 100 MB model

Standard NeRF Rendering Accelerated SNeRG Rendering
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Mip-NeRF: A Multiscale Representation
for Anti-Aliasing Neural Radiance Fields

Jonathan T. Barron Ben Mildenhall Matthew Tancik

Peter Hedman Ricardo Martin-Brualla  Pratul P. Srinivasan

Google Berkeley
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Ground Truth

Slide credit: Jon Barron



NeRF
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Slide credit: Jon Barron



NeRF

Positional Encoding



mip-NeRF

mip = “multum in parvo”, Latin for “much in little”

Slide credit: Jon Barron



mip-NeRF

Slide credit: Jon Barron



NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Bruallal Noha Radwan? Mehdi S. M. Sajjadi
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth
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NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Bruallal Noha Radwan? Mehdi S. M. Sajjadi
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth

A -‘ .

(a) Static (b) Transient (c) Composite (d) Image (e) Uncertainty

Figure 4: NeRF-W separately renders the static (a) and transient (b) elements of the scene, and then composites them (c). Training minimizes
the difference between the composite and the true image (d) weighted by uncertainty (e), which is simultaneously optimized to identify and
discount anomalous image regions. Photo by Flickr user vasnic64 / CC BY.



NeRF summary

* Solves for functional mapping of position to occupancy and
position/view to color

* Produces geometry/reflectance estimates that are good for
interpolating views and robust to non-Lambertian surfaces

* Many follow-on works for efficient learning/storing/rendering,
extending applicable settings, and manipulations

* Photometric objective and volumetric implicit surface function may
not be ideal for estimating geometry in large scenes
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https://github.com/yenchenlin/awesome-NeRF

Free view synthesis (Riegler and Koltun ECCV 2020)

e Start with mesh
— SfM + MVS + DT/GC mesh (all in COLMAP codebase)

(a) Point cloud | (b) Mesh
* Learn to select/blend/generate colors based on projected
features from source views



1.

2.

Free view synthesis

d.

Render mesh into target view
to get its depth map D,

For each source image:

Extract features (using 3
stages of ImageNet
pretrained VGG)

b. Warp each pixel into each

source view using D; and
get interpolated features

Predict intensity [ and
confidence C images using
blending decoder
(UNet+GRU) for each source

Store mask values for cases
where mesh is missing or
point doesn’t project within
source

Produce final intensity [ and
confidence C using blending
decoder for each source

i
i

Wi(Dy)

Wa(Dy)

Wi (Dy)

it

— forward connection

f - — - —# recurrent connection
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Training

* Minimize L1 distance to pixel intensities and VGG features of
the true held out image

LI 1) = ([T = Ll + > Millén(1y) — du(1)]]2
[

* Train on 17 Tanks and Temple scenes in leave-one-image-out



Evaluation

Table 2: Results on Tanks and Temples. (Whole sequences withheld.)

Truck Train MBD Playground
JLPIPS 1551M 1PSNR JLPIPS 1+551M 1PSNR |LPIPS 155IM +PSMR |LPIPS {55IM PSNR
EVS [8] 041 0563 1499 064 0454 11.81 062 0473 9.66 0.3% 0610 16.34
LLFF |26 061 0432 10.66 070 0.356 8.88 0.69 0427 2.08 0.56 0.517 1327
NeRF |27 061 0690 1947 074 0,532 13146 0.62 04691 1509 0.54 0.734 21.18

NFBG [2] 022 0822 2032 025 0.E01 18.08 036 0716 1235 0.17 D.BT6 23.03
Cur .11 0.86%7 2262 0.22 0758 1700 0.20 0.785 17.14 .16 0837 2203

Table 3: Quantitative results on the DTU dataset. Numbers on the left are for

view interpolation, numbers on the right are for extrapolation.
Scan 65 Scan 106 Scan 118
JLPIPS  1SSIM  tPSNR  |LPIPS  1SSIM  {PSNR  |LPIPS  1SSIM 1PSNR

EVS [8] 0.51/0.53 0.838/0.017 23.07/21.23 0.75/0.53 0.003/0.880 19.05/18.62 0.47/0.42 0.0931/0.011 23.00/20.47
LLFF [26] 0.51/0.44 0.039/0.026 22.44/22.04 0.61/0.39 0.007/0.893 24.08/24.61 0.4T/0.30 0.932/0.020 28.05/27.40
NeRF [27] 0.17/0.32 0.987/0.963 34.41/27.81 0.36/0.40 0.973/0.931 34.52/24.36 0.24/0.27 0.985,/0.952 37.16,/28.39
NPEC [2] 0.82/0.06 0.806/0.8230 17.77/15.50 0.04/0.53 0.856/0.870 20.70/22.54 0.74/0.41 0.876/0.905 24.10/24.97
Our 0.25/0.30 0.872/0.950 26.06/24.08 0.25/0.26 0.063,/0.938 27.24/24.63 0.16,/0.20 0.075/0.951 209.21/25.75




Evaluation

Table 1: Evaluation of architectural choices on the Tanks and Temples dataset.
(Leave-one-out protocol.) See the text for a detailed description of the conditions.

Truck Train M60 Playground

LLPIPS TSSIM 1TPSNR JLPIPS 1SSIM tPSNR |[LPIPS 1SSIM +PSNR |LPIPS 1SSIM TPSNR
Fixed Identity 0.116 0.819 21.22 0.201 0.751 18,53 0.110 0.871 2267 0.119 0.824 22.38
Fixed Encoding 0.096 0.828 21.19 0.168 0.769 19.01 0.096 0.876 22,80 0.107 0.831 22.40
Cat Global Avg. 0.089 0.842 21.49 0.175 0.773 18,73 0.093 0.887 23.41 0.098 0.845 2292
Ours w/o Encoding 0.093 0.849 22.13 0.174 0.778 19.33 0.094 0.887 23.79 0.099 0.851 23.45
Ours w/o GRU 0.094 0.845 21.74 0.159 0.782 1926 0.087 0.893 2349 0.095 0.849 23.30
Ours w /o Masks 0.087 0.847 21.58 0.152 0.784 19.42 0.082 0.897 2407 0.087 0.850 23.16
Ours w/o inf. depth 0.093 0.847 21.94 0.169 0.782 1896 0.087 0.896 24.08 0.094 0.853 23.47

Ours w/o soft-argmax  0.091 0.845 21.74 0.159 0.786 19.43 0.086 0.891 23.79 0.090 0.857 23.50
Ours full 0.082 0.852 22,03 0.147 0.794 19.54 0.081 0.894 2398 0.084 0.859 23.51




Free View Synthesis

Gernot Riegler and Vladlen Koltun

ECCV 2020



Open problems / research ideas

 Making NeRF faster to train (see MVSNeRF)
* NeRF on large scale scenes

* In MVS, model intensity as a mix of diffuse and specular color and
make photometric cost a function of diffuse color

* Use 360 images taken from various positions within a room to
enable omnidirectional and omnipositional free view synthesis



Summary

* NeRF encodes a surface with diffuse and non-diffuse color
components by mapping (x,y,z,direction) to (density, r,g,b)

— Numerous follow-on works improve the rendering time, model size,
training time, ability to handle occlusions, special effects, and more

* Free view synthesis achieves results that are sometimes better than
NeRF by using an MVS-derived mesh to map and blend features

* Both offer spectacular results



