3D Vision

Derek Hoiem

University of Illinois

Fall 2021

Today's class

- A little about me
- Intro to 3D vision
- Course logistics
- 2D-3D Basics

About me

Raised in "upstate" NY

About me

1998-2002
Undergrad at SUNY Buffalo
B.S., EE and CSE

2002-2007
Grad at Carnegie Mellon
Ph.D. in Robotics

2007-2008
 Postdoc at Beckman Institute

2016-
2009-
Prof in CS at UIUC

CTO / Chief
Scientist Reconstruct

Computer vision provides situational awareness

3D Vision Matters

Inspection: Reduce cost and time of inspection to enable frequent inspection and reduce disasters

Driving: Fewer accidents, less stress

Construction: Reduce schedule cost, risk, and plan deviation to benefit builders, owners, and dwellers

Robotics: Do repetitive jobs fast, dangerous jobs safely

What is the layout of the environment?

Multiview Reconstruction

Single-view Reconstruction

What does the scene look like from new views?

Mesh-based

[Riegler Kolton 2020]

NeRF

[Mildenhall et al. 2020]

Where were the photos taken from?

Structure from Motion (SfM)

How does reality compare to expected?

Alignment, Shape Fitting

[Reconstruct]

What objects are there? What are their poses/shapes?

Semantic Segmentation

Single-view Shape

RGB Image

My first main research project: single-view 3D reconstruction

Most recent: multi-view 3D Reconstruction

PatchMatch-RL (Lee et al. 2021)

COLMAP [27]
Ours

Everything in between

Research

- Single-view layout and novel view synthesis [SG 2005, ICCV 2005, IJCV 2007, ICCV 2009, CVPR 2012, CVPR 2018]
- Robot path planning [IROS 2006]
- Objects in 3D context [CVPR 2006, IJCV 2008, CVPR 2008]
- 3D Object Recognition [CVPR 2007, ECCV 2010, CVPR 2018]
- 3D Photo Manipulation [SG 2007, SGA 2011]
- Occlusion Boundaries [ICCV 2007, IJCV 2011]
- RGBD Scene Analysis [ECCV 2012, IJCV 2019]
- Object 3D shape estimation [CVPR 2013, CVPR 2015, ICCV 2017]
- 3D material recognition [CVPR 2016]
- Structure-from-motion [3DV 2018, ECCV 2018, 3DV 2020]

Commercial Application

- Reconstruct: SfM, SLAM, MVS, meshing, recognition, registration

But I still have a lot to learn!

This Class

- Learn fundamentals of 3D vision
- Lectures on Thursdays
- Learn state-of-the-art
- Discuss papers you select and read on Tuesdays
- Improve research skills
- Identify potential directions: survey, paper reports
- Design proof-of-concept: research proposal
- Perform PoC, re-assess: research paper

Prerequisites

- Graduate-level computer vision (CS 543 or equivalent)
- Engaged or interested in 3D Vision research

Materials

- Website: https://courses.engr.illinois.edu/cs598dwh/fa2021/
- Syllabus
- Schedule
- Paper selection/reports

Paper Readings

For each topic

[Before Thursday class]

1. Group assignment. Groups are (randomly) assigned by the professor and listed in Paper Selection. One tab for each topic, one row per group.
[Before Tuesday class]
2. Scribe. Group selects a scribe. Whoever has been scribe fewest times should be scribe next. In case of tie, can choose by interest.
3. Paper selection. The scribe chooses a topical paper in consultation with the other group members by end of day Thursday and puts title/link next to group in Paper Selection. No two groups can choose the same paper! First to claim the paper gets it.
4. Paper reading and review. By 10:45am Tuesday, each group member (including scribe) submits their reviews using the Review Form.

[In class Tuesday]

5. Discussion. In class, students split into groups and discuss the ideas of the paper and ideas for future work or other applications.
6. Summary. During discussion period, scribe consolidates discussion in one summary slide. Copy-paste the template under the topic and fill in the slide. Can include figures from paper. Put slides in group order.
7. Report out. Scribe presents summary to class.

Course Project

1. Survey

- Assigned group
- Choose different topic for each group
- 4-6 page report: overview, taxonomy, evaluation, analysis, research ideas

2. Research Proposal

- You form group
- Choose research proposal idea
- 2-3 page report: motivation, related work, proposed approach, contributions, significance, planned experiments including proof-of-concept

3. Project Report

- Same group as proposal
- Perform proof-of-concept experiments
- 4 page report: intro, approach, PoC results, recommendations

Reviews: everyone reviews one survey and one proposal

Grading

- Paper reviews and discussion: 50\%
- Must do at least 10 for full points
- $1 / 2$ credit if review is unsatisfactory or discussion is missed
- Course project: 50\%
- Survey 15\%
- Proposal 15\%
- Report 15\%
- Reviews 5\%
- Grading is "satisfactory" (full credit), "needs improvement" (3/4 credit), "unsatisfactory" (1/2 credit); can be resubmitted once if necessary
- Late policy
- no credit for late reviews
- project component penalty is 1% of course total per day

Academic Integrity

- All work you submit should be your own - do not copy any text from any online reviews or papers
- Cite sources diligently
- If your research project builds on prior/ongoing work, discuss with professor first
- Violations will be penalized through official channels

COVID-19 Policy

- Students who feel ill must not come to class. In addition, students who test positive for COVID-19 or have had an exposure that requires testing and/or quarantine must not attend class.
- You will not lose review/discussion points for this
- All students, faculty, staff, and visitors are required to wear face coverings in classrooms and university spaces.

Getting help outside of class

Office hours

- For help with projects or papers or other complex questions, see professor after class or another arranged time

Slack:

- For discussion within student groups or logistical questions https://ioin.slack.com/t/3dvision-fa21/shared invite/zt-u1yy4vk1-8oEBalkCVT15GhQeoLaF7g

Readings/Textbook

- See webpage

Questions about class structure/content?

Basics of Cameras: What is a pixel?

Image coordinate

CCD cell

3D ray

How do we map from 3D to 2D?

$$
\mathbf{p}=\mathbf{K} \mathbf{P} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & u_{u} \\
1 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Homogeneous coordinates

$$
\begin{gathered}
\begin{array}{c}
\text { Homogeneous } \\
\text { Coordinates }
\end{array} \\
\begin{array}{c}
\text { Cartesian } \\
\text { Coordinates }
\end{array} \\
{\left[\begin{array}{c}
x \\
y \\
k
\end{array}\right]=\left[\begin{array}{c}
w x \\
w y \\
w k
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\frac{w x}{w k} \\
\frac{w y}{w k}
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{k} \\
\frac{y}{k}
\end{array}\right]} \\
=\mathbf{a} \text { Ray }
\end{gathered}
$$

Basic geometry in homogeneous coordinates

- Line equation: $a x+b y+c=0$

$$
\text { line }_{i}=\left[\begin{array}{l}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right]
$$

- Append 1 to pixel coordinate to get homogeneous coordinate

$$
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]
$$

- Line given by cross product of two points

$$
\text { line }_{i j}=p_{i} \times p_{j}
$$

- Intersection of two lines given by cross product of the lines

$$
q_{i j}=\text { line }_{i} \times \text { line }_{j}
$$

How do we map from 2D to 3D?

Sometimes called a "bearing"
$\mathbf{K}^{-1} \mathbf{p}=w \mathbf{P} \Rightarrow\left[\begin{array}{ccc}\frac{1}{f} & 0 & \frac{-u_{0}}{f} \\ 0 & \frac{1}{f} & \frac{v_{0}}{f} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]=w\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

Rotation and translation map from "world" coordinates to "camera" coordinates

$$
\mathbf{X}_{c}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}_{w} \quad \mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X}_{w}
$$

\mathbf{x} : Image Coordinates: $(\mathrm{u}, \mathrm{v}, 1)$
K: Intrinsic Matrix (3x3)
R: Rotation (3x3)
t: Translation (3x1)
X_{w} : World Coordinates: $(X, Y, Z, 1)$

Properties of 3D rotation matrix

$$
\begin{gathered}
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
\mathbf{R}^{-1}=\mathbf{R}^{T}
\end{gathered}
$$

\mathbf{R} is orthonormal:

$$
\mathbf{R}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \longrightarrow \begin{aligned}
& \left\|\mathbf{r}_{i}\right\|=1 \\
& \mathbf{r}_{i} \mathbf{r}_{j}=0
\end{aligned} \quad\|\mathbf{R X}\|=\|\mathbf{X}\|
$$

Rotation matrix sudoku

- Solve for missing r values (up to sign ambiguity)

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & r_{12} & ? \\
r_{21} & r_{22} & ? \\
r_{31} & ? & ?
\end{array}\right]
$$

$$
\mathbf{R}=\left[\begin{array}{ccc}
? & r_{12} & ? \\
r_{21} & r_{22} & ? \\
? & ? & ?
\end{array}\right]
$$

Questions to consider

1. What is the camera's position in world coordinates, given \mathbf{R} and t ?
2. What additional information can enable recovering a 3D geometry coordinate from a 2D pixel coordinate?
3. Suppose a camera images a star (~infinite distance point). If the camera translates without rotating, what is the effect on the pixel position of the star?

Final comments

- To do
- Review web page and syllabus
- Start planning with your group which paper to do for next Tuesday
- Next class: two-view stereo
- Questions?

