In computer science, when dealing with difficult problems involving graphs and their associated metrics, one technique we usually resort to is to solve the problem on a simple subcase, in particular, on tree. In this lecture, we study the Padded Decomposition of graphs and how to build their Tree metrics with $O(\log n)$ distortion.

1 Tree Metrics

Definition 1 Tree Metric - A metric (V, d) is a Tree Metric if there exists a tree $T = (V, E_T)$ with edge lengths such that $d(u, v) = d_T(u, v)$.

We can build tree metrics to approximate general graph metrics, with an $O(\log n)$ distortion, where n is the number of vertices in the graph, thus the following theorem:

Theorem 1 Given an undirected edge weighted graph G = (V, E), there is a randomized poly-time algorithm that produces an random edge weighted tree $T = (V_T, E_T)$ such that

- 1. $V \subseteq V_T$;
- 2. $d_G(u,v) \leq d_T(u,v), \forall u,v;$
- 3. $E(d_T(u,v)) \leq O(\log |V|) d_G(u,v), \forall u, v.$

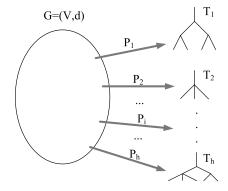


Figure 1: Tree Embedding.

The Problem that Theorem 1 indicates is as follows (refer to Figure 1 for illustration):

Problem 1 Given a graph metric G = (V, d), find a collection of trees $\mathscr{T} = \{T_1, T_2, \ldots, T_h\}$ and a distribution $\mu = \{P_1, P_2, \ldots, P_h\}$ on them such that

1.
$$\sum_{i=1}^{h} P_i = 1;$$

2. $d_{T_i}(u,v) \ge d_G(u,v), \forall u,v, \forall i;$

3.
$$\sum_{i=1}^{h} P_i d_{T_i}(u, v) \leq O(\log n) d_G(u, v), \ \forall u, v.$$

A tree embedding algorithm is discussed in the next section to show the correctness of Theorem 1.

2 Padded Decomposition and Tree Embeddings

The following algorithm is developed by Bartal in [1] to solve the tree embedding problem. Note that $\Delta(G)$ denotes the diameter of graph G.

 $\begin{array}{l} \hline \text{TREE EMBEDDING ALGORITHM}(G(V,d)):\\ \hline \text{Start with }G.\\ \hline \text{Randomly decompose }G \text{ into }G_1,G_2,\ldots,G_h \text{ s.t.}\\ \bullet \ \Delta(G) \leq \frac{\Delta(G)}{2}, \ \forall 1 \leq i \leq h;\\ \bullet \ Pr[(u,v) \text{ is cut}] \leq \frac{\alpha \cdot d_G(u,v)}{\Delta}.\\ \hline \text{Recursively construct "rooted" trees }T_1,T_2,\ldots,T_h \text{ for }G_1,G_2,\ldots,G_h, \text{ respectively.}\\ \hline \text{Create tree }T \text{ for }G \text{ by (see Figure 2)}\\ \bullet \text{ adding root }r;\\ \bullet \text{ connecting }T_1,T_2,\ldots,T_h \text{ to }r \text{ with edge weighted }\Delta(G). \end{array}$

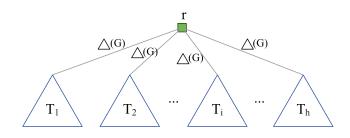


Figure 2: Create tree T from T_1, T_2, \ldots, T_h .

The above TREE EMBEDDING ALGORITHM is a high-level algorithm, we first suppose there exists a graph decomposition procedure to randomly decompose G into G_1, G_2, \ldots, G_h as in the second step, we then have the following two Propositions that can be easily observed.

Proposition 2 T dominates G.

Proposition 3 $\Delta(T) \leq 4\Delta(G)$.

We subsequently have the following lemma:

Lemma 4 $E(d_T(u, v)) = O(\alpha \log \Delta(G))d_G(u, v).$

Proof of Lemma 4. Let A_i denote the event that (u, v) is cut in level i, and let \overline{A}_i denote the event that (u, v) is not cut in level i.

$$E[d_T(u,v)] \leq 4 \cdot \Delta(G) \cdot Pr[A_1] +4 \cdot \frac{\Delta(G)}{2} \cdot Pr[A_2|\bar{A}_1] +\dots +4 \cdot \frac{\Delta(G)}{2^i} \cdot Pr[A_i| \cap_{j=1}^{i-1} \bar{A}_j] + \dots = 4 \cdot \Delta(G) \cdot \frac{\alpha \cdot d_G(u,v)}{\Delta(G)} +4 \cdot \frac{\Delta(G)}{2} \cdot \frac{\alpha \cdot d_G(u,v)}{\Delta(G)/2} +\dots +4 \cdot \frac{\Delta(G)}{2^i} \cdot \frac{\alpha \cdot d_G(u,v)}{\Delta(G)/2^i} + \dots \leq 4\alpha \log \Delta(G) \cdot d_G(u,v) = O(\alpha \log \Delta(G)) \cdot d_G(u,v)$$

Note that now $E[d_T(u, v)]$ is dependent on $\log \Delta(G)$, and this can actually be replaced with $\log n$ if the CKR GRAPH DECOMPOSITION procedure is incorporated into the TREE EMBEDDING ALGORITHM, so that correctness of Theorem 1 can be proved. The CKR GRAPH DECOMPOSITION procedure is introduced in next subsection.

2.1 CKR Graph Decomposition Procedure

CKR GRAPH DECOMPOSITION $(G(V, d), \delta)$:
Pick θ at random from $\left[\frac{\delta}{4}, \frac{\delta}{2}\right]$.
Pick a random permutation σ on V.
For $i = 1$ to n do
$G_i = B(V_{\sigma(i)}, \theta) \setminus \bigcup_{j < i} B(V_{\sigma(j)}, \theta)$

Note that $B(u, \theta)$ denotes the ball that is centered at u and with radius as θ , and we say $B(u, \theta)$ is cut if any vertex in $B(u, \theta)$ is separated from u.

Theorem 5 CKR decomposition decomposes G into G_1, G_2, \ldots, G_n such that:

- 1. $\Delta(G_i) \leq \delta;$
- 2. $\forall u, Pr[B(u, \varrho) \text{ is } cut] \leq \frac{c\varrho}{\delta} \log n, \text{ where } c \text{ is a constant.}$

It is easy to see the following is an immediate Corollary of Theorem 5:

Corollary 6 $\forall u, v, Pr[(u, v) \text{ is } cut] \leq \frac{c \cdot d_G(u, v)}{\delta} \log n.$

Proof of Theorem 5. We fix vertex u, and assume w.l.o.g. $\rho < \frac{\delta}{4} \left(\frac{c\rho}{\delta} > 1 \text{ if } \rho \geq \frac{\delta}{4}\right)$. Let v_1, v_2, \ldots, v_n be an ordering of V s.t. $d(v_1, u) \leq d(v_2, u), \leq \ldots \leq d(v_n, u)$. Let A_i be the event that v_i "first" cuts $B(u, \rho)$, i.e.,

- 1. $B(v_i, \theta) \cap B(u, \varrho) \neq \emptyset$
- 2. $B(v_i, \theta) \cap B(u, \varrho) \neq B(u, \varrho)$
- 3. $\forall j < \arg \sigma(i), v_{\sigma(j)}$ does not cur or captures $B(u, \varrho)$.

As shown in Figure 3, obviously A_i is possible only when $\theta = a \in [d(v_i, u) - \varrho, d(v_i, u) + \varrho]$, and note that σ is a random permutation, so

$$Pr[A_i|\theta = a] \le \frac{1}{i}, \forall a \in [d(v_i, u) - \varrho, d(v_i, u) + \varrho]$$

recall that $\theta \in \left[\frac{\delta}{4}, \frac{\delta}{2}\right]$, thus

$$Pr[A_i] \le \frac{1}{i} \cdot \frac{2\varrho}{\delta/4} \le \frac{8}{i} \cdot \frac{\varrho}{\delta}$$

Therefore, $Pr[B(u, \varrho) \text{ is cut }] \leq \sum_{i=1}^{n} Pr[A_i] \leq \frac{8\varrho}{\delta} \log n.$

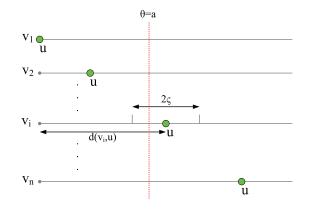


Figure 3: Proof of Theorem 5.

Actually we are able to provide an even tighter bound for $Pr[B(u, \varrho)$ is cut]. By observation, v_i may cut $B(u, \varrho)$ only when $d(v_i, u) \in [\frac{\delta}{4} - \varrho, \frac{\delta}{2} + \varrho]$, therefore,

$$Pr[B(u, \varrho) \text{ is } cut] \leq \sum_{i:d(v_i, u) \in [\delta/4 - \varrho, \delta/2 + \varrho]} \frac{1}{i} \cdot \frac{8\varrho}{\delta} \\ = \frac{8\varrho}{\delta} \cdot \log \frac{|B(u, \delta/2 + \varrho)|}{|B(u, \delta/4 - \varrho)|} \\ \leq \frac{8\varrho}{\delta} \cdot \log \frac{|B(u, \delta)|}{|B(u, \delta)|}$$

2.2 Incorporate CKR decomposition into Tree Embedding Algorithm

By applying CKR GRAPH DECOMPOSITION procedure to decompose G into G_1, G_2, \ldots, G_h , at the second step in the TREE EMBEDDING ALGORITHM, we are able to improve the bound $E(d_T(u, v)) = O(\log \Delta(G))d_G(u, v)$ in Lemma 4 to $E(d_T(u, v)) = O(\log n)d_G(u, v)$:

$$E[d_T(u,v)] \leq 4 \cdot \Delta(G) \cdot Pr[A_1] + 4 \cdot \frac{\Delta(G)}{2} \cdot Pr[A_2|\bar{A}_1] \\ + \ldots + 4 \cdot \frac{\Delta(G)}{2^i} \cdot Pr[A_i| \cap_{j=1}^{i-1} \bar{A}_j] + \ldots \\ \leq 4 \cdot \Delta(G) \cdot \frac{8d_G(u,v)}{\Delta(G)/2} \cdot \log \frac{|B(u,\Delta(G)/2)|}{|B(u,\Delta(G)/16)|} \\ + 4 \cdot \frac{\Delta(G)}{2} \cdot \frac{8d_G(u,v)}{\Delta(G)/4} \cdot \log \frac{|B(u,\Delta(G)/4)|}{|B(u,\Delta(G)/32)|} \\ + \ldots \\ + 4 \cdot \frac{\Delta(G)}{2^i} \cdot \frac{8d_G(u,v)}{\Delta(G)/2^{i+1}} \cdot \log \frac{|B(u,\Delta(G)/2^{i+1})|}{|B(u,\Delta(G)/2^{i+4})|} \\ + \ldots \\ \leq 64 \cdot d_G(u,v) \cdot 3\log n \\ = O(\log n) \cdot d_G(u,v)$$

Up to now, we have shown the correctness of the sc Tree Embedding Algorithm, thus Theorem 1 has been finally proved.

References

[1] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. *IEEE Symposium on Foundations of Computer Science*, pages 184-193, 1996. [2] Jittat Fakcharoenphol, Satish Rao and Kunal Talwar. Approximating metrics by tree metrics. ACM SIGACT News, Volume 35, Issue 2, pages 60-70, June 2004.