CS 598CSC: Approximation Algorithms Lecture date: March 6, 2009
Instructor: Chandra Chekuri Scribe: Dan Schreiber

1 A 2-Approximation for Generalized Steiner Network Problem

Recall in the Generalized Steiner Network Problem (GSNP), we are given a graph G = (V, E), a
cost function defined over edges, ¢ : E — (R)", and requirements r,, € Z*T U {0} for each pair
u,v € V x V. We want to find a minimum cost set of edges E' C E such that for every u, v, the
graph G[FE'] has ry, edge disjoint paths between u and v. GSNP is a special case of the Abstract
Network Design Problem where f(A) := max(yy):|Anfu,v}/=1 Tuw- Recall our notation that 6(S)
represents the set of edges crossing the cut (5,5). And finally recall the LP for the Generalized
Steiner Network Problem:

min E Cele

eckE

such that Z ze > f(5) vScV
e€d(S)
0<z. <1 Vec I

Our main result of this lecture will be the following breakthrough of Kamal Jain [2].

Theorem 1 (Jain [2]) Let f be an integer valued skew-supermodular function. Then the inte-
grality gap of the LP is 2. Moreover, there is a polynomial time 2-approzimation for GSNP (for

proper f).

Note that for arbitrary skew-supermodular functions, we don’t know a separation oracle for the
above LP, but for the special case of Steiner Networks, we do. We will use the technique of Iterated
Rounding, which relies on the following theorem:

Theorem 2 Let f be a skew-supermodular function and x be a basic feasible solution to the above
LP. Then e € E, such that . > 1/2.

While we still will get a 2-approximation, note that in comparison with the LP for VERTEX
COVER, the vertex solution we get may not be half-integral. Instead, the idea will be to find some
edge with x, > 1/2, add that edge to our solution, remove it from the graph and recurse on the
residual problem. We rely on the fact that the residual requirement function of a skew-supermodular
function remains skew-supermodular.

The algorithm is as follows:

ITERATEDROUNDINGGSNP (G(V, E)):

F 0.

While F' is not feasible:
g is residual requirement function w.r.t. F.
Solve LP for g on G(V, E \ F) and get a basic feasible solution, x.
Ifzxe>1/2, F — F +e.

Output F.

To prove this algorithm works, we need to prove Theorem 2.

Let m be the number of variables in our LP. To get started we first note that we can find m
tight sets, where a set S C V is tight if z(6(5)) = f(S). For, let « be a basic feasible solution to the
above LP. We can assume, wlog that for each edge e, we have 0 < x. < 1, since if . = 0 we can
throw out that edge, and if . = 1 then we’re done. We then have that |E| = m, since each edge is
in the vertex solution non-integrally. Since z is a basic feasible solution, we have that 351,....5,
such that z is the unique solution to the linear system x(5(S;)) = f(S;), for all i =1...m.

We now show that we can force the tight sets to belong to a special class:

Definition: Let £ be a collection of subsets of V, £ is called laminar, if VA,B € L,ANB = () or
AC Bor BCA.

Definition: For a graph G with m edges, and a set S C V, let xg € {0,1}" be the vector that
has a 1 in position 7 iff edge e; € 0(S). xs is called the incidence vector of S.

And recall the book’s definition of submodularity (p. 214):

Definition: A function f : 2" — Z% is called submodular if f(V) = 0, and for every two sets
A, B CV, the following two conditions hold:

o f(A)+ f(B) = f(ANB)+ f(AUB)
o f(A)+f(B) = f(A-B)+ f(B—-A)

A B

Figure 1: Cut function is submodular. [06(A)| + [6(B)| > |6(A U B)| + |6(A N B)|. The solid red
edges contribute more to the left than the right, the others contribute equally to both sides of the
inequality.

We also note that the size of a cut is a submodular function:

Lemma 3 For any graph G on vertex set V, the function |6(-)| is submodular.

We now need some lemmas about laminar families, building up to an uncrossing argument for
the tight sets of a basic feasible solution of our LP.

Lemma 4 There exist sets S1,...S), such that L ={S},...S],} is a laminar family and x is the
unique solution to z(6(S})) = f(SI) for alli=1...m.

Proof: We skip this proof because the lemma follows from lemma 7, which we will prove. O

Lemma 5 Let A, B be tight sets that properly intersect (AN B # 0), then either A— B, B — A are
tight and x4+ XB = XA—-B + XB—Aa, or AUB, BN A are tight and x4 + XB = XAUB + XANB-

Proof: Because A, B are tight sets, we have z(6(A4)) = f(A) and z(§(B)) = f(B). The definition
of (f being) skew-supermodular implies that f(A)+ f(B) < f(A—B)+ f(B—A) or f(A)+ f(B) <
f(AUB)+ f(AN B).

Suppose first that f(A) + f(B) < f(A— B) + f(B — A), we have

2(5(A)) + 2(3(B)) = J(A) + f(B) < f(A— B) + f(B— A) < 2(6(A - B)) + 2(5(B — 4)) .

Where the first equality follows because A, B are tight, the second inequality by assumption, and
the third because x is feasible for f. But because the cut function is submodular, we have also that
2(0(A)) +x2(0(B)) > x(0(A— B)) + x(6(B — A)), therefore

f(A=B)+ f(B—-A)==z(6(A - B)) +z(3(B - A))

and A — B, B — A are tight.
This implies that when tightness happens, edges between A U B, AN B are not present, and
therefore x4 + xB = xa—B + XB—A. We can replace A, B by A — B, B — A and preserve tightness.
The case for AU B, AN B follows similarly. O

Lemma 6 Ifz € (0,1)™ and x is a basic feasible solution, then Im sets, Si,... Sy, such that:
1. z(0(S;)) = f(S;) foralli=1...m

2. The vectors xs,;, fori=1...m, are linearly independent.

Proof Sketch. Any basic feasible solution to the LP satisfies m linearly independent constraints
with equality. Equality implies the sets corresponding to those constraints are tight, and linear
independence implies the incidence vectors of the sets are linearly independent. O

Lemma 7 Ifx € (0,1)™ and x is a basic feasible solution, then 3 a laminar family of sets, L such
that:

1. VA e L,2(6(A)) = f(A). That is, L is a collection of tight sets.
2. |L]=m
3. xa, A € L are linearly independent.

Proof:

We will iteratively build a laminar family £ of tight sets, where the incidence vectors of sets
in £ are linearly independent. For any set S C V we define the crossing number of S to be the
number of sets in £ that S crosses.

We first observe that if S is a set that crosses some T € L, then each of the sets S —T,T —
S, SUT,SNT have smaller crossing number than S. This is basically shown by picture, in figure
2. There are only three ways another set of £ can cross one of S — T, T — S, SUT,SNT, and in
all cases, it also crosses S. But since T doesn’t cross any of S —T,T —S,SUT,SNT, the crossing
number of each of those four sets is at least one less than S.

Next we show that if S is a tight set such that xg ¢ span(L£) and S crosses some set T' € L,
then there is some tight set S with smaller crossing number than S and yg ¢ span(L).

\ ~ -

s

Figure 2: S crosses a set T' € L. Dotted ovals are other sets of L.

Lemma 5 implies that either S — T and T — S are tight or SUT and S N7T are tight.
Suppose the first possibility holds, the case for the second is similar. We then also have that
Xs + X7 = xs—1 + x7—s. From this and the fact that ys ¢ span(L), we cannot have that both
XS—T, XT—s € span(L). Also both S — T and T'— S have smaller crossing number than S, so one
of the two satisfy the conditions for S’.

Finally we note that if span(£) # R™, then we can find some tight set S where yg ¢ span(L)
and £ U {S} remains laminar. Therefore if £ is a maximal laminar family constructed by finding
such sets S and including them in £, then £ consists only of tight sets with linearly independent
incidence vectors and |[£| = m.

O

1.1 A counting argument

From the above lemmas we will now find an edge e with z. > 1/2. Suppose that Ve, z, < 1/2.
Observation: VA € £,|0(A)| > 3. Otherwise, if [0(A)| < 3, one of the edges must have z, > 1/2

to maintain feasibility, since f(A) > 1.
We will distribute tokens, from edges to sets of £ with these properties:

1. Each edge e gives out 1 unit of tokens to sets in £ according to rules given below.

2. Each set A € L receives a positive, non-zero, integral amount of tokens (that is, at least 1
unit of tokens).

3. Some non-zero amount of tokens are left over.

Rule 1: If e = (u,v), e gives x. tokens to the smallest set containing u and x. to the smallest set
containing v.

Rule 2: e gives 1 — 2z, tokens to the smallest set containing both u,v. If no set contains both u, v
tokens are unused.

Our contradiction will come from the fact that every set gets at least 1 unit of tokens, and some
tokens must be left over, but we have m sets and only m edges (each of which give out at most 1
unit of tokens), so we must have used all our tokens.

A
II B "
00 s
C

Figure 3: Set S containing sets Ry, ... Ri. Edges of type D do not give any tokens to S, but edges
of type A, B, C do.

Within our laminar family, consider a set S which contains sets R, ... Ry, such that for no set
R do we have R; C R C S, that is the smallest set containing any R; is .S. We will count the tokens
given to S. Four types of edges may exist, they are illustrated in figure 3. Note that edges of type
D do not give any tokens to .S but edges of type A, B,C do. We have:

tokens(S) = er + Z(l —Ze) + Z(l —2z.) = x(A) +|B| —z(B) + |C] —2z(C) (1)

e€A eceB eeC

Claim 8 AUBUC # 0.

Proof Sketch. If AU BUC =), then all edges of §(S),d(R;), for all i, are of type D. But then
XS = Y. XR;, and we would contradict the fact that the incidence vectors of our laminar family are
linearly independent. O

Claim 9 tokens(S) > 0 and tokens(S) is a (positive) integer.

Proof: Clearly tokens(S) cannot be negative, since we never take tokens from a set. We have that

(5(5)) = Y _w(8(Ry)) = f(S) — Z f(Ri) = 2(A) — 2(B) — 22(C)

i=1

is an integer, since all the f(-) are integral. The first equality follows from tightness, and the second
from the way we assign tokens. Of course |B|,|C| are integral, so we have that equation 1 above,
is integral. O

Claim 10 Some non-zero amount of tokens are left over.

Proof: We observed earlier that V.S € L, |5(S)| > 3. The only edges that contribute to §(S) are of
type A or D. Consider in particular some set S € £ such that no for no S’ € £ do we have S C §'.
Since no set of £ contains both endpoints of the > 3 edges of type A or D leaving S (if there was,
that set would have to contain S), each edge e among these leave at least 1 — 2z, tokens unused,
which is positive as z, < 1/2. O

If you look back, you’ve noticed we've now contradicted our assumption that for each edge
e,xe < 1/2. We're done!

2 Extra Theorems

Theorem 11 [1] There is an O(r2,,, logn) approzimation for Node Connectivity Steiner Network,
where Tmar 1S the mazrimum requirement.

Note that problems about vertex connectivity are harder than problems about edge connectivity.

Theorem 12 Unless P = NP, no 1. approzimation exists.

Theorem 13 [3] Given degree bounds B, on each v, there is an algorithm to output a spanning
tree of cost OPT where deg(v) < By, + 1 for each v, where OPT is the cost of the minimum cost
spanning tree that respects degree bounds B,,.

Theorem 14 [4] For Steiner Network with degree requirements B,, there is an algorithm that
outputs a solution of cost < 20PT and deg(v) < 2B, + 3 or deg(v) < 67pmqar + 3, where OPT is
the cost of the minimal cost Steiner Network satisfying degree constraints.

References

[1] J. Chuzoy, S. Khanna. An O(k®logn)-Approximation Algorithm for Vertex-Connectivity Sur-
vivable Network Design. http://arxiv.org/abs/0812.4442

[2] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem.
Combinatorica 21(1): 39-60, 2001; preliminary version in FOCS 1998.

[3] L. Lau, M. Singh. Approximating Minimum Bounded Degree Spanning Trees to within One
of Optimal. STOC 2007.

[4] L. Lau, M. Singh Additive Approximation for Bounded Degree Survivable Network Design.
STOC 2008.

