1 A 2-Approximation for Generalized Steiner Network Problem

Recall in the Generalized Steiner Network Problem (GSNP), we are given a graph G = (V, E), a cost function defined over edges, $c : E \to (R)^+$, and requirements $r_{uv} \in \mathbb{Z}^+ \cup \{0\}$ for each pair $u, v \in V \times V$. We want to find a minimum cost set of edges $E' \subseteq E$ such that for every u, v, the graph G[E'] has r_{uv} edge disjoint paths between u and v. GSNP is a special case of the Abstract Network Design Problem where $f(A) := \max_{(u,v) : |A \cap \{u,v\}|=1} r_{uv}$. Recall our notation that $\delta(S)$ represents the set of edges crossing the cut (S, \overline{S}) . And finally recall the LP for the Generalized Steiner Network Problem:

$$\min \sum_{e \in E} c_e x_e$$
 such that
$$\sum_{e \in \delta(S)} x_e \ge f(S) \qquad \forall S \subset V$$

$$0 \le x_e \le 1 \qquad \forall e \in E$$

Our main result of this lecture will be the following breakthrough of Kamal Jain [2].

Theorem 1 (Jain [2]) Let f be an integer valued skew-supermodular function. Then the integrality gap of the LP is 2. Moreover, there is a polynomial time 2-approximation for GSNP (for proper f).

Note that for arbitrary skew-supermodular functions, we don't know a separation oracle for the above LP, but for the special case of Steiner Networks, we do. We will use the technique of Iterated Rounding, which relies on the following theorem:

Theorem 2 Let f be a skew-supermodular function and x be a basic feasible solution to the above LP. Then $\exists e \in E$, such that $x_e \ge 1/2$.

While we still will get a 2-approximation, note that in comparison with the LP for VERTEX COVER, the vertex solution we get may not be half-integral. Instead, the idea will be to find some edge with $x_e \geq 1/2$, add that edge to our solution, remove it from the graph and recurse on the residual problem. We rely on the fact that the residual requirement function of a skew-supermodular function remains skew-supermodular.

The algorithm is as follows:

To prove this algorithm works, we need to prove Theorem 2.

Let m be the number of variables in our LP. To get started we first note that we can find m tight sets, where a set $S \subset V$ is tight if $x(\delta(S)) = f(S)$. For, let x be a basic feasible solution to the above LP. We can assume, wlog that for each edge e, we have $0 < x_e < 1$, since if $x_e = 0$ we can throw out that edge, and if $x_e = 1$ then we're done. We then have that |E| = m, since each edge is in the vertex solution non-integrally. Since x is a basic feasible solution, we have that $\exists S_1, \ldots S_m$ such that x is the unique solution to the linear system $x(\delta(S_i)) = f(S_i)$, for all $i = 1 \ldots m$.

We now show that we can force the tight sets to belong to a special class:

Definition: Let \mathcal{L} be a collection of subsets of V, \mathcal{L} is called *laminar*, if $\forall A, B \in \mathcal{L}, A \cap B = \emptyset$ or $A \subset B$ or $B \subset A$.

Definition: For a graph G with m edges, and a set $S \subset V$, let $\chi_S \in \{0,1\}^m$ be the vector that has a 1 in position i iff edge $e_i \in \delta(S)$. χ_S is called the *incidence vector* of S.

And recall the book's definition of submodularity (p. 214):

Definition: A function $f: 2^V \to \mathbb{Z}^+$ is called *submodular* if f(V) = 0, and for every two sets $A, B \subseteq V$, the following two conditions hold:

- $f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$
- $f(A) + f(B) \ge f(A B) + f(B A)$

Figure 1: Cut function is submodular. $|\delta(A)| + |\delta(B)| \ge |\delta(A \cup B)| + |\delta(A \cap B)|$. The solid red edges contribute more to the left than the right, the others contribute equally to both sides of the inequality.

We also note that the size of a cut is a submodular function:

Lemma 3 For any graph G on vertex set V, the function $|\delta(\cdot)|$ is submodular.

We now need some lemmas about laminar families, building up to an uncrossing argument for the tight sets of a basic feasible solution of our LP.

Lemma 4 There exist sets $S'_1, \ldots S'_m$ such that $\mathcal{L} = \{S'_1, \ldots S'_m\}$ is a laminar family and x is the unique solution to $x(\delta(S'_i)) = f(S'_i)$ for all $i = 1 \ldots m$.

Proof: We skip this proof because the lemma follows from lemma 7, which we will prove. \Box

Lemma 5 Let A, B be tight sets that properly intersect $(A \cap B \neq \emptyset)$, then either A - B, B - A are tight and $\chi_A + \chi_B = \chi_{A-B} + \chi_{B-A}$, or $A \cup B, B \cap A$ are tight and $\chi_A + \chi_B = \chi_{A\cup B} + \chi_{A\cap B}$.

Proof: Because A, B are tight sets, we have $x(\delta(A)) = f(A)$ and $x(\delta(B)) = f(B)$. The definition of (f being) skew-supermodular implies that $f(A) + f(B) \le f(A - B) + f(B - A)$ or $f(A) + f(B) \le f(A \cup B) + f(A \cap B)$.

Suppose first that $f(A) + f(B) \le f(A - B) + f(B - A)$, we have

$$x(\delta(A)) + x(\delta(B)) = f(A) + f(B) \le f(A - B) + f(B - A) \le x(\delta(A - B)) + x(\delta(B - A))$$
.

Where the first equality follows because A, B are tight, the second inequality by assumption, and the third because x is feasible for f. But because the cut function is submodular, we have also that $x(\delta(A)) + x(\delta(B)) \ge x(\delta(A-B)) + x(\delta(B-A))$, therefore

$$f(A-B) + f(B-A) = x(\delta(A-B)) + x(\delta(B-A))$$

and A - B, B - A are tight.

This implies that when tightness happens, edges between $A \cup B$, $A \cap B$ are not present, and therefore $\chi_A + \chi_B = \chi_{A-B} + \chi_{B-A}$. We can replace A, B by A - B, B - A and preserve tightness. The case for $A \cup B$, $A \cap B$ follows similarly.

Lemma 6 If $x \in (0,1)^m$ and x is a basic feasible solution, then $\exists m \text{ sets, } S_1, \ldots S_m \text{ such that:}$

- 1. $x(\delta(S_i)) = f(S_i)$ for all $i = 1 \dots m$.
- 2. The vectors χ_{S_i} , for $i = 1 \dots m$, are linearly independent.

Proof Sketch. Any basic feasible solution to the LP satisfies m linearly independent constraints with equality. Equality implies the sets corresponding to those constraints are tight, and linear independence implies the incidence vectors of the sets are linearly independent.

Lemma 7 If $x \in (0,1)^m$ and x is a basic feasible solution, then \exists a laminar family of sets, \mathcal{L} such that:

- 1. $\forall A \in \mathcal{L}, x(\delta(A)) = f(A)$. That is, \mathcal{L} is a collection of tight sets.
- 2. $|\mathcal{L}| = m$.
- 3. χ_A , $A \in \mathcal{L}$ are linearly independent.

Proof:

We will iteratively build a laminar family \mathcal{L} of tight sets, where the incidence vectors of sets in \mathcal{L} are linearly independent. For any set $S \subseteq V$ we define the *crossing number* of S to be the number of sets in \mathcal{L} that S crosses.

We first observe that if S is a set that crosses some $T \in \mathcal{L}$, then each of the sets $S - T, T - S, S \cup T, S \cap T$ have smaller crossing number than S. This is basically shown by picture, in figure 2. There are only three ways another set of \mathcal{L} can cross one of $S - T, T - S, S \cup T, S \cap T$, and in all cases, it also crosses S. But since T doesn't cross any of $S - T, T - S, S \cup T, S \cap T$, the crossing number of each of those four sets is at least one less than S.

Next we show that if S is a tight set such that $\chi_S \notin \text{span}(\mathcal{L})$ and S crosses some set $T \in \mathcal{L}$, then there is some tight set S' with smaller crossing number than S and $\chi_{S'} \notin \text{span}(\mathcal{L})$.

Figure 2: S crosses a set $T \in \mathcal{L}$. Dotted ovals are other sets of \mathcal{L} .

Lemma 5 implies that either S-T and T-S are tight or $S\cup T$ and $S\cap T$ are tight. Suppose the first possibility holds, the case for the second is similar. We then also have that $\chi_S + \chi_T = \chi_{S-T} + \chi_{T-S}$. From this and the fact that $\chi_S \notin \operatorname{span}(\mathcal{L})$, we cannot have that both $\chi_{S-T}, \chi_{T-S} \in \operatorname{span}(\mathcal{L})$. Also both S-T and T-S have smaller crossing number than S, so one of the two satisfy the conditions for S'.

Finally we note that if $\operatorname{span}(\mathcal{L}) \neq \mathbb{R}^m$, then we can find some tight set S where $\chi_S \notin \operatorname{span}(\mathcal{L})$ and $\mathcal{L} \cup \{S\}$ remains laminar. Therefore if \mathcal{L} is a maximal laminar family constructed by finding such sets S and including them in \mathcal{L} , then \mathcal{L} consists only of tight sets with linearly independent incidence vectors and $|\mathcal{L}| = m$.

1.1 A counting argument

From the above lemmas we will now find an edge e with $x_e \ge 1/2$. Suppose that $\forall e, x_e < 1/2$.

Observation: $\forall A \in \mathcal{L}, |\delta(A)| \geq 3$. Otherwise, if $|\delta(A)| < 3$, one of the edges must have $x_e \geq 1/2$ to maintain feasibility, since $f(A) \geq 1$.

We will distribute tokens, from edges to sets of \mathcal{L} with these properties:

- 1. Each edge e gives out 1 unit of tokens to sets in \mathcal{L} according to rules given below.
- 2. Each set $A \in \mathcal{L}$ receives a positive, non-zero, integral amount of tokens (that is, at least 1 unit of tokens).
- 3. Some non-zero amount of tokens are left over.

Rule 1: If e = (u, v), e gives x_e tokens to the smallest set containing u and x_e to the smallest set containing v.

Rule 2: e gives $1-2x_e$ tokens to the smallest set containing both u, v. If no set contains both u, v tokens are unused.

Our contradiction will come from the fact that every set gets at least 1 unit of tokens, and some tokens must be left over, but we have m sets and only m edges (each of which give out at most 1 unit of tokens), so we must have used all our tokens.

Figure 3: Set S containing sets $R_1, \ldots R_k$. Edges of type D do not give any tokens to S, but edges of type A, B, C do.

Within our laminar family, consider a set S which contains sets $R_1, \ldots R_k$, such that for no set R do we have $R_i \subset R \subset S$, that is the smallest set containing any R_i is S. We will count the tokens given to S. Four types of edges may exist, they are illustrated in figure 3. Note that edges of type D do not give any tokens to S but edges of type A, B, C do. We have:

$$tokens(S) = \sum_{e \in A} x_e + \sum_{e \in B} (1 - x_e) + \sum_{e \in C} (1 - 2x_e) = x(A) + |B| - x(B) + |C| - 2x(C)$$
 (1)

Claim 8 $A \cup B \cup C \neq \emptyset$.

Proof Sketch. If $A \cup B \cup C = \emptyset$, then all edges of $\delta(S)$, $\delta(R_i)$, for all i, are of type D. But then $\chi_S = \sum \chi_{R_i}$, and we would contradict the fact that the incidence vectors of our laminar family are linearly independent.

Claim 9 tokens(S) > 0 and tokens(S) is a (positive) integer.

Proof: Clearly tokens(S) cannot be negative, since we never take tokens from a set. We have that

$$x(\delta(S)) - \sum_{i=1}^{k} x(\delta(R_i)) = f(S) - \sum_{i} f(R_i) = x(A) - x(B) - 2x(C)$$

is an integer, since all the $f(\cdot)$ are integral. The first equality follows from tightness, and the second from the way we assign tokens. Of course |B|, |C| are integral, so we have that equation 1 above, is integral.

Claim 10 Some non-zero amount of tokens are left over.

Proof: We observed earlier that $\forall S \in \mathcal{L}, |\delta(S)| \geq 3$. The only edges that contribute to $\delta(S)$ are of type A or D. Consider in particular some set $S \in \mathcal{L}$ such that no for no $S' \in \mathcal{L}$ do we have $S \subseteq S'$. Since no set of \mathcal{L} contains both endpoints of the ≥ 3 edges of type A or D leaving S (if there was, that set would have to contain S), each edge e among these leave at least $1 - 2x_e$ tokens unused, which is positive as $x_e < 1/2$.

If you look back, you've noticed we've now contradicted our assumption that for each edge $e, x_e < 1/2$. We're done!

2 Extra Theorems

Theorem 11 [1] There is an $O(r_{max}^2 \log n)$ approximation for Node Connectivity Steiner Network, where r_{max} is the maximum requirement.

Note that problems about vertex connectivity are harder than problems about edge connectivity.

Theorem 12 Unless $\mathcal{P} = \mathcal{NP}$, no $r_{max}^{1-\epsilon}$ approximation exists.

Theorem 13 [3] Given degree bounds B_v on each v, there is an algorithm to output a spanning tree of cost OPT where $deg(v) \leq B_v + 1$ for each v, where OPT is the cost of the minimum cost spanning tree that respects degree bounds B_v .

Theorem 14 [4] For Steiner Network with degree requirements B_v , there is an algorithm that outputs a solution of $cost \leq 2OPT$ and $deg(v) \leq 2B_v + 3$ or $deg(v) \leq 6r_{max} + 3$, where OPT is the cost of the minimal cost Steiner Network satisfying degree constraints.

References

- [1] J. Chuzoy, S. Khanna. An $O(k^3logn)$ -Approximation Algorithm for Vertex-Connectivity Survivable Network Design. http://arxiv.org/abs/0812.4442
- [2] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem. *Combinatorica* 21(1): 39–60, 2001; preliminary version in FOCS 1998.
- [3] L. Lau, M. Singh. Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal. STOC 2007.
- [4] L. Lau, M. Singh Additive Approximation for Bounded Degree Survivable Network Design. STOC 2008.