In computer science, when dealing with difficult problems involving graphs and their associated metrics, one technique we usually resort to is to solve the problem on a simple subcase, in particular, on tree. In this lecture, we study the Padded Decomposition of graphs and how to build their Tree metrics with $O(\log n)$ distortion.

1 Tree Metrics

Definition 1 Tree Metric - A metric (V, d) is a Tree Metric if there exists a tree $T = (V, E_T)$ with edge lengths such that $d(u, v) = d_T(u, v)$.

We can build tree metrics to approximate general graph metrics, with an $O(\log n)$ distortion, where n is the number of vertices in the graph, thus the following theorem:

Theorem 1 Given an undirected edge weighted graph $G = (V, E)$, there is a randomized poly-time algorithm that produces an random edge weighted tree $T = (V_T, E_T)$ such that

1. $V \subseteq V_T$;
2. $d_G(u, v) \leq d_T(u, v), \forall u, v$;
3. $E(d_T(u, v)) \leq O(\log |V|)d_G(u, v), \forall u, v$.

![Figure 1: Tree Embedding.](image-url)

The Problem that Theorem 1 indicates is as follows (refer to Figure 1 for illustration):

Problem 1 Given a graph metric $G = (V, d)$, find a collection of trees $\mathcal{T} = \{T_1, T_2, \ldots, T_h\}$ and a distribution $\mu = \{P_1, P_2, \ldots, P_h\}$ on them such that

1. $\sum_{i=1}^{h} P_i = 1$;
2. $d_{T_i}(u, v) \geq d_G(u, v), \forall u, v, \forall i$;
3. $\sum_{i=1}^{h} P_i d_{T_i}(u, v) \leq O(\log n)d_G(u, v), \forall u, v$.

A tree embedding algorithm is discussed in the next section to show the correctness of Theorem 1.
2 Padded Decomposition and Tree Embeddings

The following algorithm is developed by Bartal in [1] to solve the tree embedding problem. Note that \(\Delta(G) \) denotes the diameter of graph \(G \).

Tree Embedding Algorithm\((G(V,d))\):

Start with \(G \).
Randomly decompose \(G \) into \(G_1, G_2, \ldots, G_h \) s.t.
- \(\Delta(G) \leq \frac{\Delta(G)}{2}, \forall 1 \leq i \leq h; \)
- \(Pr[(u,v) is cut] \leq 4\cdot \frac{\Delta(G)}{\Delta(G)}\).

Recursively construct “rooted” trees \(T_1, T_2, \ldots, T_h \) for \(G_1, G_2, \ldots, G_h \), respectively.
Create tree \(T \) for \(G \) by (see Figure 2)
- adding root \(r \);
- connecting \(T_1, T_2, \ldots, T_h \) to \(r \) with edge weighted \(\Delta(G) \).

![Figure 2: Create tree \(T \) from \(T_1, T_2, \ldots, T_h \).](image)

The above Tree Embedding Algorithm is a high-level algorithm, we first suppose there exists a graph decomposition procedure to randomly decompose \(G \) into \(G_1, G_2, \ldots, G_h \) as in the second step, we then have the following two Propositions that can be easily observed.

Proposition 2 \(T \) dominates \(G \).

Proposition 3 \(\Delta(T) \leq 4\Delta(G) \).

We subsequently have the following lemma:

Lemma 4 \(E(d_T(u,v)) = O(\alpha \log \Delta(G))d_G(u,v) \).

Proof of Lemma 4. Let \(A_i \) denote the event that \((u,v) is cut in level i\), and let \(\bar{A}_i \) denote the event that \((u,v) is not cut in level i\).

\[
E[d_T(u,v)] \leq 4 \cdot \Delta(G) \cdot Pr[A_1] + 4 \cdot \frac{\Delta(G)}{2} \cdot Pr[A_2|\bar{A}_1] + \ldots + 4 \cdot \frac{\Delta(G)}{2i} \cdot Pr[A_i|\cap_{j=1}^{i-1} \bar{A}_j] + \ldots
\]

\[
= 4 \cdot \Delta(G) \cdot \frac{\alpha d_G(u,v)}{\Delta(G)} + 4 \cdot \frac{\Delta(G)}{2} \cdot \frac{\alpha d_G(u,v)}{\Delta(G)^{1/2}} + \ldots
\]

\[
\leq 4\alpha \log \Delta(G) \cdot d_G(u,v) = O(\alpha \log \Delta(G)) \cdot d_G(u,v)
\]
Note that now \(E[d_T(u, v)] \) is dependent on \(\log \Delta(G) \), and this can actually be replaced with \(\log n \) if the CKR GRAPH DECOMPOSITION procedure is incorporated into the TREE EMBEDDING ALGORITHM, so that correctness of Theorem \(\text{1} \) can be proved. The CKR GRAPH DECOMPOSITION procedure is introduced in next subsection.

2.1 CKR Graph Decomposition Procedure

<table>
<thead>
<tr>
<th>CKR GRAPH DECOMPOSITION ((G(V, d), \delta)):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick (\theta) at random from ([\frac{\delta}{4}, \frac{\delta}{2}]).</td>
</tr>
<tr>
<td>Pick a random permutation (\sigma) on (V).</td>
</tr>
<tr>
<td>For (i = 1) to (n) do</td>
</tr>
<tr>
<td>(G_i = B(V_{\sigma(i)}, \theta) \cup \bigcup_{j<i} B(V_{\sigma(j)}, \theta))</td>
</tr>
</tbody>
</table>

Note that \(B(u, \theta) \) denotes the ball that is centered at \(u \) and with radius as \(\theta \), and we say \(B(u, \theta) \) is cut if any vertex in \(B(u, \theta) \) is separated from \(u \).

Theorem 5 CKR decomposition decomposes \(G \) into \(G_1, G_2, \ldots, G_n \) such that:

1. \(\Delta(G_i) \leq \delta \);
2. \(\forall u, \Pr[B(u, \varrho) \text{ is cut}] \leq \frac{c \varrho}{\delta} \log n \), where \(c \) is a constant.

It is easy to see the following is an immediate Corollary of Theorem \(\text{5} \).

Corollary 6 \(\forall u, v, \Pr[(u, v) \text{ is cut}] \leq \frac{c d_G(u, v)}{\delta} \log n. \)

Proof of Theorem \(\text{5} \) We fix vertex \(u \), and assume w.l.o.g. \(\varrho < \frac{\delta}{4} (\frac{c \varrho}{\delta} > 1 \text{ if } \varrho \geq \frac{\delta}{4}) \). Let \(v_1, v_2, \ldots, v_n \) be an ordering of \(V \) s.t. \(d(v_1, u) \leq d(v_2, u) \leq \ldots \leq d(v_n, u) \). Let \(A_i \) be the event that \(v_i \) “first” cuts \(B(u, \varrho) \), i.e.,

1. \(B(v_i, \theta) \cap B(u, \varrho) \neq \emptyset \)
2. \(B(v_i, \theta) \cap B(u, \varrho) \neq B(u, \varrho) \)
3. \(\forall j < \arg \sigma(i), v_{\sigma(j)} \text{ does not cut or captures } B(u, \varrho) \).

As shown in Figure \(\text{3} \) obviously \(A_i \) is possible only when \(\theta = a \in [d(v_i, u) - \varrho, d(v_i, u) + \varrho] \), and note that \(\sigma \) is a random permutation, so

\[
\Pr[A_i | \theta = a] \leq \frac{1}{i}, \forall a \in [d(v_i, u) - \varrho, d(v_i, u) + \varrho]
\]

recall that \(\theta \in [\frac{\delta}{4}, \frac{\delta}{2}] \), thus

\[
\Pr[A_i] \leq \frac{1}{i} \cdot \frac{2\varrho}{\delta/4} \leq \frac{8}{i} \cdot \frac{\varrho}{\delta}
\]

Therefore, \(\Pr[B(u, \varrho) \text{ is cut}] \leq \sum_{i=1}^{n} \Pr[A_i] \leq \frac{8\varrho}{\delta} \log n. \)
Actually we are able to provide an even tighter bound for $\Pr[B(u, \varrho) \text{ is cut}]$. By observation, v_i may cut $B(u, \varrho)$ only when $d(v_i, u) \in [\delta/4 - \varrho, \delta/2 + \varrho]$, therefore,

$$\Pr[B(u, \varrho) \text{ is cut}] \leq \sum_{i: d(v_i, u) \in [\delta/4 - \varrho, \delta/2 + \varrho]} \frac{1}{8} \cdot \frac{8\varrho}{\delta} \cdot \log \left| \frac{|B(u, \delta/2 + \varrho)|}{|B(u, \delta/4 - \varrho)|} \right|.$$

2.2 Incorporate CKR decomposition into Tree Embedding Algorithm

By applying CKR GRAPH DECOMPOSITION procedure to decompose G into G_1, G_2, \ldots, G_h, at the second step in the TREE EMBEDDING ALGORITHM, we are able to improve the bound $E(d_T(u, v)) = O(\log \Delta(G))d_G(u, v)$ in Lemma 4 to $E(d_T(u, v)) = O(\log n)d_G(u, v)$:

$$E[d_T(u, v)] \leq 4 \cdot \Delta(G) \cdot \Pr[A_1] + 4 \cdot \frac{\Delta(G)}{2} \cdot \Pr[A_2 | A_1 \cap \cdots \cap A_j] + \ldots$$

$$\leq 4 \cdot \Delta(G) \cdot \frac{8d_G(u, v)}{\Delta(G)/2} \cdot \log \left| \frac{|B(u, \Delta(G)/2)|}{|B(u, \Delta(G)/16)|} \right|$$

$$+ 4 \cdot \frac{\Delta(G)}{2} \cdot \frac{8d_G(u, v)}{\Delta(G)/4} \cdot \log \left| \frac{|B(u, \Delta(G)/4)|}{|B(u, \Delta(G)/32)|} \right|$$

$$+ \ldots$$

$$+ 4 \cdot \frac{\Delta(G)}{2^{i+1}} \cdot \frac{8d_G(u, v)}{\Delta(G)/2^{i+1}} \cdot \log \left| \frac{|B(u, \Delta(G)/2^{i+1})|}{|B(u, \Delta(G)/2^{i+4})|} \right|$$

$$\leq 64 \cdot d_G(u, v) \cdot 3 \log n$$

$$= O(\log n) \cdot d_G(u, v)$$

Up to now, we have shown the correctness of the sc Tree Embedding Algorithm, thus Theorem 4 has been finally proved.

References