Random Walks and Eigenvalues
Today

- Random walks on graphs review
- Normalized Laplacian, normalized Adjacency Matrix
- Matrix form of random walks, lazy random walk
- The stable distribution
- Convergence and the second eigenvalue
- Examples
Random Walks on Graphs

- $G=(V,E,w)$ weighted undirected graph.
- Random walk on G starts on some vertex and moves to a neighbor with prob. proportional to the weight of the corresponding edge.
- We are interested in the probability distribution over vertices after a certain number of steps.
Random Walks on Graphs

- G=(V,E,w) weighted undirected graph.
- Let vector \(p_t \in R^n \) denote the probability distribution at time \(t \). We will also write \(p_t \in R^V \), and \(p_t(u) \) for the value at vertex \(u \).
- Since it’s a probability vector, \(p_t(u) \geq 0 \) and \(\sum_u p_t(u) = 1 \) for every \(t \).
- Usually, we start our walk at one vertex, so \(p_0(u) = 1 \) for some vertex \(u \) and 0 for the rest.
Random Walks on Graphs

- To derive p_t from p_{t+1} note that the probability of being at node u at time $t+1$ is the sum over all neighbors v of u of the probability that the walk was on v at time t times the probability it moved from v to u in one step:

$$p_{t+1}(u) = \sum_{v:(u,v) \in E} \frac{w(u,v)}{d(v)} p_t(v)$$

Where $d(v) = \sum_u w(u, v)$ is the weighted degree of v.
Lazy Random Walks

- We will often consider lazy random walks, which are a variant where we stay put with probability \(\frac{1}{2} \) at each time step, and walk to a random neighbor the other half of the time.

\[
p_{t+1}(u) = \frac{1}{2} p_t(u) + \frac{1}{2} \sum_{v : (u, v) \in E} \frac{w(u, v)}{d(v)} p_t(v)
\]

- Lazy random walks closely related to diffusion processes (at each time step, some substances diffuses out of each vertex)
Normalized Adjacency Matrix

- Need to define normalized versions of Adjacency matrix and Laplacian.
- Normalized Adjacency matrix is what you would expect:
 \[M_G = D_G^{-1/2} A_G D_G^{-1/2} \]
 With eigenvalues \(1 = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \) and first eigenvector \(\sqrt{d} \) (see blackboard)
Normalized Laplacian

- Normalized Laplacian is also what you would expect:
 \[N_G = D_G^{-1/2} L_G D_G^{-1/2} = I - M_G \]
 \[= I - D_G^{-1/2} A_G D_G^{-1/2} \]

With eigenvalues \(0 = \nu_1 \leq \nu_2 \leq \cdots \leq \nu_n\) and first eigenvector \(\sqrt{d}\) as well.
Matrix Form of Random Walk

- Best way to understand random walks is with linear algebra. Equation

\[p_{t+1}(u) = \frac{1}{2} p_t(u) + \frac{1}{2} \sum_{v: (u,v) \in E} \frac{w(u,v)}{d(v)} p_t(v) \]

Is equivalent to (verify on blackboard)

\[p_{t+1} = \frac{1}{2} (I + AD^{-1}) p_t \]

The lazy r.w. matrix is:

\[W_G = 1/2(I + A_G D_G^{-1}) \]
Matrix Form of Random Walk

\[W_G = \frac{1}{2}(I + A_G D_G^{-1}) \]

- Is an a-symmetric matrix!! (the only one we will deal with in class). But it is closely related to normalized adjacency and Laplacian:

\[W_G = \frac{1}{2} D_G^{1/2} (I + M_G) D_G^{-1/2} = I - \frac{1}{2} D_G^{1/2} N_G D_G^{-1/2} \]

So \(W \) is diagonalizable and for every eigenvector \(v \) or \(M \) with evalue \(\mu \), \(D_G^{1/2} v \) is right-eigenvector of \(W \) with evalue \(\frac{1}{2}(1 + \mu) \).

- For asymmetric matrices, eigenvectors not necessarily orthogonal!
Why Lazy Random Walks?

\[W_G = \frac{1}{2}(I + A_G D_G^{-1}) = \frac{1}{2} D_G^{\frac{1}{2}} (I + M_G) D_G^{-\frac{1}{2}} \]

- All evals of \(W \) are between 1 and 0: Perron evaule of \(M \) is 1, so \(M \) has evals between 1 and -1.
- We let \(1 = \omega_1 \geq \omega_2 \geq \cdots \geq \omega_n \geq 0 \)
- Where \(\omega_i = \frac{1}{2}(1 + \mu_i) \)
The Stable Distribution

\[W_G = \frac{1}{2}(I + A_G D_G^{-1}) = \frac{1}{2} D_G \frac{1}{2}(I + M_G) D_G^{-\frac{1}{2}} \]

- Regardless of starting distribution, lazy r.w. always converges to stable distribution (I think Sariel called it irreducible, aperiodic MC).
- In stable distribution, every vertex is visited with probability proportional to its (weighted) degree.

\[\pi(i) = \frac{d(i)}{\sum_j d(j)} \]
The Stable Distribution

\[W_G = \frac{1}{2} (I + A_G D_G^{-1}) = \frac{1}{2} D_G \frac{1}{2} (I + M_G) D_G^{-\frac{1}{2}} \]

\[\pi(i) = \frac{d(i)}{\sum_j d(j)} \]

- \(\pi \) is right eigenvector of \(W \) with evale 1 (see blackboard).

- Other reason to consider lazy walks, is that they always converge. (e.g. consider bipartite graphs)
The Stable Distribution

\[W_G = \frac{1}{2} \left(I + A_G D_G^{-1} \right) = \frac{1}{2} D_G^{-\frac{1}{2}} (I + M_G) D_G^{-\frac{1}{2}} \]

\[\pi(i) = \frac{d(i)}{\sum_j d(j)} \]

- \(\pi \) is right eigenvector of \(W \) with evalue 1 (see blackboard).

- Other reason to consider lazy walks, is that they always converge. (e.g. consider bipartite graphs)

- See blackboard for proof that lazy walk converges to \(\pi \)
Rate of Convergence

\[W_G = \frac{1}{2}(I + A_G D_G^{-1}) = \frac{1}{2} D_G^{-\frac{1}{2}} (I + M_G) D_G^{-\frac{1}{2}} \]

\[\pi(i) = \frac{d(i)}{\sum_j d(j)} \]

- Rate of convergence to the stable distribution is dictated by the second eigenvalue of \(W \).
- Assume that r.w. starts at some vertex \(a \). Let \(\chi_a \) the characteristic vector of \(a \), which is our starting distribution. For every vertex \(b \), we will bound how far \(p_t(b) \) can be from \(\pi(b) \).
Rate of Convergence

- Assume that r.w. starts at some vertex a. Let χ_a the characteristic vector of a, which is our starting distribution. For every vertex b, we will bound how far $p_t(b)$ can be from $\pi(b)$:

- Theorem. For all a, b, if $p_0 = \chi_a$ then

$$|p_t(b) - \pi(b)| \leq \sqrt{\frac{d(b)}{d(a)}} \omega_2^t$$
How Many Steps to Converge?

- To have $|p_t(b) - \pi(b)| \leq \varepsilon$, we need t to be such that $\sqrt{\frac{d(b)}{d(a)}} \omega_2^t \leq \varepsilon$.

- Define $\omega_2 = 1 - \gamma$, where γ is the spectral gap between first and second eigenvalue (remember discussion about expansion and large spectral gap).

- Number of steps to convergeance depends on $1/\gamma$, use $1 - \gamma \leq e^{-\gamma}$ (blackboard).
How Many Steps to Converge?

Path graph, tree graph...