Graph Cutting and Cheeger’s Inequality
Today

- Why do we cut graphs?
- Cut ratio, and integer programming formulation
- Integer programming relaxation, easy direction of Cheeger
- Difficult direction of Cheeger
Why Cut?

- One of the inspirations of spectral graph theory is graph partitioning.
- Want to cut a graph in two approximately equally sized pieces while minimizing the number of edges cut.
- Applications like divide-and-conquer algorithms, clustering etc.
- Concentrate on two-piece partitions.
Some Notation

- Graph $G = (V, E)$
- $S \subseteq V$ a set of vertices of G
- $|S| = \text{the number of vertices in } S$
- $\bar{S} = V \setminus S$ the complement of S
- $e(S) = e(\bar{S}) = \text{the number of edges between } S, \bar{S}$
First Instinct: Min Cut

- Min Cut: divide G into two parts as to minimize $e(S)$

- Would cut the one edge on the left and not in the middle
Second Instinct: Approximate Bisection

- Cut in equal size pieces while minimizing $e(S)$

- Would cut the clique on the left to achieve balance but would cut too many edges
A Good Tradeoff: Cut Ratio

- Cut ratio: \[\phi(S) = \frac{e(S, \overline{S})}{\min(|S|, |\overline{S}|)} \]

- Sparsest Cut is the one that minimizes cut ratio. Also called isoperimetric number of G: \[\phi(G) = \min_{S \subseteq V} \phi(S) \]

- Nice property that if \(S_1, S_2 \) disjoint and \(|S_1 \cup S_2| \leq n/2\) then \[\phi(S_1 \cup S_2) \leq \max\{\phi(S_1), \phi(S_2)\} \]
An Integer Program for Cut Ratio

- How to find the optimal cut fast? Integer program for cut ratio.
- Associate every cut \(S - \bar{S} \) with a vector \(x \in \{-1,1\}^n \), where
 \[
 x_i = \begin{cases}
 -1, & i \in S \\
 1, & i \in \bar{S}
 \end{cases}
 \]
 - We can now write
 \[
 e(S) = \frac{1}{4} \sum_{(i,j) \in E} (x_i - x_j)^2
 \]

\[
|S| \cdot |\bar{S}| = \\
(\sum_{i \in V} [i \in S]) (\sum_{j \in V} [j \in \bar{S}]) = \sum_{i,j \in V} [i \in S, j \in \bar{S}] = \frac{1}{2} \sum_{i,j \in V} [x_i \neq x_j] = \frac{1}{4} \sum_{i < j} (x_i - x_j)^2
\]

[A] is the characteristic function of boolean event A. It is 1 if A true, zero otherwise.
Solving the Integer Program

- \[\min_{x \in \{-1,1\}^n} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2} = \min_{S \subseteq V} \frac{e(S)}{|S| \cdot |\bar{S}|} \]

- \[n/2 \min\{S, \bar{S}\} \leq |S| \cdot |\bar{S}| \leq n \min\{S, \bar{S}\} \]

- Solving the program approximates sparsest cut within 2.

- NP-hard to solve

- Remove integrality constraint, get relaxation
A Note on Relaxations

- Often in approximation algorithms:
 - Want to solve NP-hard problem: “minimize $f(x)$ subject to constraint $x \in C$”
 - Instead, we relax constraint and solve the problem: “minimize $f(x)$ subject to constraint $x \in C'$” for weaker C'.
 - Gives a lower minimum
 - Then need to round solution q to a feasible one, that is close to the optimal one p.
A Note on Relaxations

- Immediately, \(f(q) \leq f(p) \)

- To get a \(c \)-approximation (\(c > 1 \)) we need to round \(q \) to a point \(q' \) and show
 \[
 f(q') \leq cf(q) \leq c f(p)
 \]
Solving the Relaxation

\[
\min_{x \in \mathbb{R}} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2}
\]

- We use \(\frac{2}{n} \phi(G) \geq \min_{x \in \{-1,1\}^n} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i < j} (x_i - x_j)^2} \)

- Details on blackboard, and we obtain

\[
\phi(G) \geq \frac{\lambda_2}{2}
\]

- Next Lecture, we will see more on relaxations and connections with \(\lambda_2 \)
The Other Direction

- We just showed that $\phi(G) \geq \frac{\lambda_2}{2}$
- What about other direction? Need rounding method which will be a way to get a cut from λ_2 and v_2 together with upper bound on how much the rounding increases the cut ratio.

- **Cheeger’s Inequality:**

 $$\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2d_{\text{max}}} \sqrt{\lambda_2}$$

- Both upper and lower bounds are tight (up to constant), as seen by path graph and complete binary tree. Both have sparsest cut $O(1/n)$, but P_n has $\lambda_2 = \Theta(1/n^2)$ and T_n has $\lambda_2 = \Theta(1/n)$, see lecture 4.

- We show the difficult direction next:
 $$\frac{\phi(G)^2}{2d_{\text{max}}} \leq \lambda_2$$
The Proof of Cheeger’s Inequality
How to Get a Cut from λ_2 and ν_2

- Algorithmic proof
- Let $x \in \mathbb{R}^n$ be any vector such that $x \perp 1$
- Order vertices of x such that $x_1 \leq x_2 \leq \ldots \leq x_n$
- Let $S = \{1, \ldots, k\}$ for some value of k. This will be our cut. Algorithm tries all values of k to find the best one, k depends on graph.
- We will next show something stronger
How to Get a Cut from λ_2 and ν_2

Theorem

For any $x \perp 1$, such that $x_1 \leq x_2 \leq \ldots \leq x_n$, there is some i for which

$$\phi(\{1,\ldots, i\})^2 \leq \frac{x^T Lx}{2d_{\max} x^T x}$$

This not only implies Cheeger by taking $x=\nu_2$ but also gives an actual cut. Also works if we only have good approximations of λ_2 and ν_2

Proof: see blackboard