Lecture 12 - Circuits

TMe = "Software"
Circuits = "hardware"

- Can always unravel software running in time T into hardware of size $T^{o(1)}$ ("software" vs. "hardware")

Q: Is hardware of size poly(n) more powerful than software running in time poly(n) for problems of size n?

Ans: "Technically yes, but basically no (we think)."

Def: A circuit $C: \{0,1\}^n \rightarrow \{0,1\}$ is a DAG with vertices that are variables (x_1, x_2, \ldots, x_n) or gates (\land, \lor, \neg).

- $\text{size}(C) = \# \text{ gates}$
- By specifying an output gate, C defines a function from $\{0,1\}^n$ to $\{0,1\}$
- $\text{size}(f) = \text{size of the smallest circuit implementing } f.$

Eq: $\{0,1\}^2 \rightarrow \{0,1\}$

\[\land : \{0,1\}^2 \rightarrow \{0,1\} \]
\[\lor : \{0,1\}^2 \rightarrow \{0,1\} \]
\[\neg : \{0,1\} \rightarrow \{0,1\} \]

For any $f : \{0,1\}^n \rightarrow \{0,1\}$, $\text{size}(f) = O(n2^n)$ by encoding its truth table:

$$f(x) = \lor \land (x=y_1) = \lor (\forall y \in \{0,1\}^n : (x,y) \land Eq(x,y) \land \neg \land Eq(x,y_1))$$
Q: What if we used a different gate set?

Let \(G = \{ g : \{0,1\}^k \rightarrow \{0,1\}^k \text{ for some } k = O(1) \}, k \geq 2 \).

\[\text{Size}(G) = \Theta(\text{Size}_{\text{nnv}}(G)) \]

\[p^2 : \text{Size}_{\text{nnv}}(g) \leq O(k2^k) = O(1). \]

Let \(f^m_L : \{0,1\}^m \rightarrow \{0,1\} \) be the indicator function

\[f^m_L(x) := \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases} \]

def: \(\text{SIZE}(\text{nnv}) = \{ L : \text{Size}(f^m_L) = O(m) \} \)

\(\text{P/poly} := \text{SIZE}(\text{poly} \times \text{nnv}) \)

Q: P vs P/poly?

Q: NP vs P/poly?
\[\text{TIME}(t(n)) \leq \text{SIZE}(s(n)^2) \quad \text{(in fact } \leq \text{SIZE}(s\log s)) \]

Cor. \(P \subseteq \text{P/poly} \).

\[\text{pf.: Let } L \in \text{TIME}(t(n)); \text{ assume } \Sigma_L = \{0,1\} \text{ for simplicity.} \]

Let \(M \) be an oblivious TM for \(L \) running in time \(O(t(n)^2) \).

\(M \) defined by

\[S : Q \times \{0,1\}^* \rightarrow Q \]

\[\delta : Q \times \{0,1\}^* \rightarrow \mathbb{Q}, \{0,1\} \]

Encode \(Q \) as \(f_0, f_1 \).

Encode \(\text{Accept} \) as \(1_q \), \(\text{Start} \) as \(0_q \).

Since \(q = \log_2(1) = 0(1) \),

\[\text{size}(S) \leq O(1), \]

\[\text{size}(\delta) \leq O(1) \]

\[\Rightarrow \text{size}(C) \leq O(t(n)^2) \]
def: For $L \subseteq \Sigma^*$, we define the unary version of L

$L_u : = \{1^n : (n \text{ in binary}) \in L \}$.

* For any L, $L_u \in P/poly$.

pf: We use the advice function

$$a(n) = \begin{cases} 1 & \text{if } 1^n \in L_u \\ 0 & \text{if } 1^n \notin L_u \end{cases}$$

Our TM $M(x, a)$ just checks if x is of the form 1^n and outputs $a(n)$.

Cor: $P \neq P/poly$

pf: Let L be the Halting problem. Then

$L_u \in P/poly$

but

$L \notin P/poly$
def: Let \(a : \mathbb{N} \to \{0,1\}^* \) be an "advice function".

A TM with advice \((M, a)\) computes the function

\[x \mapsto M(x, a(|x|)). \]

\(\text{P/poly (advice)} := \{ L : L \text{ can be decided by a TM with advice running in poly(n) time} \} \)

\(\text{P/poly (advice)} = \text{P/poly (circuit)} \)

\(\text{P/poly} \quad \exists : \quad \text{give the circuit as advice and eval on x.} \)

\(\leq : \quad \text{for a fixed input length n, implement} \ M(x,a) \ \text{as a circuit} \ \langle x, a \rangle, \)

\(\text{Hardwire} \ \alpha(\mathbb{N}) \ \text{into} \ C. \)

Perspective on \(\text{P/poly vs NP} \):

\(\text{P/poly} = \text{"trusted advice, one per input size"} \)

\(\text{NP} = \text{"untrusted advice, one per input" (have to certify.)} \)
* Circuit-SAT is NP-hard.

pf: Let F be the indicator function of some language $L \in \text{NP}$. Then

$$F(x) = \bigvee_{y \in \text{poly}(x)} F(x, y)$$

for some poly-time function F.

$$= \bigvee_{y \in \text{poly}(x)} C(x, y)$$

for some poly-size circuit C.

So $F(x) = 1$ iff $C_x(y) := C(x, y)$ is satisfiable.

* 3-SAT is NP-hard.

Circuit $f(x)$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
</table>

$$f(x, y) = (\bigwedge_i C_i) \lor y_j$$

$f(x) = 1$ iff $F(x, y)$ is satisfiable in y.

(In fact, $F(x, y)$ is uniquely satisfiable).

$$g_1 = x_1 \land x_2$$

$$g_2 = g_1 \lor x_3$$

$$g_3 = g_2 \lor g_k$$

$$g_{j+1} = g_j \lor g_k$$

$$g_k = g_{k+1}$$

Any function on 3 vars can be implemented as a 3-CNF (write it as a 3-DNF).
99% of functions require exponential-size circuits (and therefore also polynomial time to solve).

Proof: Consider functions \(f : \{0,1\}^n \rightarrow \{0,1\}^n \) (there are \(2^{2^n} \)).

Let \(\mathcal{F}(s) = \{ f : \text{size}(f) \leq s \} \).

Then \(|\mathcal{F}(s)| \leq (2s + 2s^2)^n \leq 2^{c \log s} \).

So the fraction of functions with size \(\leq s \) is

\[
\frac{|\mathcal{F}(s)|}{2^{2^n}} \leq \frac{2^{c \log s}}{2^{2^n}} = 2^{c \log s - 2^n}.
\]

Solving \(2^{c \log s - 2^n} = \frac{1}{100} \) gives

\[
s \geq A(2^n) \geq A\left(2^{\log 2^n} \right).
\]

Open Problem: Prove that some explicit function requires circuits of size \(\geq 8n \).