cs579: Computational Complexity

Assigned: Mon., Mar. 5, 2018

Problem Set #4

Prof. Michael A. Forbes

Due: Mon., Mar. 26, 2018 (3:30pm)

- 1. Let $\ell: \{0,1\}^* \to \mathbb{N}$ be a *length* function, meaning that $\ell(x)$ is computable in $\mathsf{poly}(|x|)$ time and $\ell(x) \le \mathsf{poly}(|x|)$. A function $f: \{0,1\}^* \to \{0,1\}^*$ is *downward self-reducible* with respect to ℓ if
 - If $\ell(x) = 0$ then f(x) is computable in poly(|x|) time.
 - In general, x can be computed in $\mathsf{poly}(|x|)$ time given oracle access to f on inputs $\{y: \ell(y) < \ell(x)\}.$

Prove that

- (a) Prove that SAT is downward self-reducible with respect to $\ell(\varphi)$ being the number of variables in φ .
- (b) Show that computing the number of perfect matchings of a graph is downward self-reducible with respect to some natural length function.
- (c) (Arora-Barak Problem 8.9) Any downward self-reducible function is computable in poly(|x|) space (ie, PSPACE when f is a language).
- 2. Let $\mathbb{F}_2 = \{0,1\}$ be the field of two elements. A matrix $A \in \mathbb{F}_2^{k \times n}$ is Toeplitz if it is constant on diagonals, that is, $A_{i+1,j+1} = A_{i,j}$ for all $0 \le i < k$ and $0 \le j < n$. Let $Toep(\mathbb{F}_2^{k \times n})$ be the set of all such Toeplitz matrices. Define the hash function $h : \mathbb{F}_2^n \times (Toep(\mathbb{F}_2^{k \times n}) \times \mathbb{F}^k) \to \mathbb{F}_2^k$ by h(x, (A, b)) = Ax + b. Show that h is a pairwise independent hash family. That is, when A and b are chosen uniformly at random, for any $x \ne y \in \mathbb{F}_2^n$ and $c, d \in \mathbb{F}_2^k$,

$$\Pr_{\mathsf{A}\in \mathsf{Toep}(\mathbb{F}_2^{k\times n}),\mathsf{b}\in \mathbb{F}_2^k}\left[h(x,(\mathsf{A},\mathsf{b}))=c\wedge h(y,(\mathsf{A},\mathsf{b}))=d\right]=\frac{1}{2^{2k}}\;.$$

3. A language $L\subseteq\{0,1\}^\star$ is in AM if there is a $\mathsf{poly}(|x|)$ -time machine M(x,y,z) such that for $x\in L$

$$\Pr_{y \in \{0,1\}^{p(|x|)}}[\exists z \in \{0,1\}^{q(|x|)}M(x,y,z) = 1] \ge \frac{2}{3}$$

for some polynomials p(|x|) and q(|x|). For $x \notin L$, this probability is at most $\frac{1}{3}$. A language $L \subseteq \{0,1\}^*$ is in MA if for $x \in L$

$$\exists y \in \{0,1\}^{p(|x|)} \Pr_{z \in \{0,1\}^{q(|x|)}} [M(x,y,z) = 1] \ge \frac{2}{3}$$

while for $x \notin L$ this probability is at most $\frac{1}{3}$ for all y.

Show that $MA \subseteq AM$.

4. Say that a language $L\subseteq\{0,1\}^*$ is in AM_δ if there is a $\mathsf{poly}(|x|)$ -time machine M(x,y,z) such that for $x\in L$

$$\Pr_{y \in \{0,1\}^{p(|x|)}}[\exists z \in \{0,1\}^{q(|x|)}M(x,y,z) = 1] \ge \frac{1}{2} + \delta$$

for some polynomials p(|x|) and q(|x|). For $x \notin L$, this probability is at most $\frac{1}{2} - \delta$. Thus, $\mathsf{AM}_{\frac{1}{6}}$ is the usual definition of AM .

Show that
$$\mathsf{AM}_{\frac{1}{\mathsf{poly}(n)}} = \mathsf{AM}_{\frac{1}{2} - \frac{1}{2^{\mathsf{poly}(n)}}}.$$

Some hints.

4. Repeat the AM protocol in parallel k times. Note that the prover can respond in a way which depends on $all\ k$ challenges. However, argue that an optimal prover can respond to each challenge individually. Then use a standard error-reduction argument.