CS 579: Computational Complexity: Lecture 2

admin: put out, due 02-05 3:30pm

sign up for pizza

today: Turing Machine Review

what is computation?

Q: can we schedule all courses, no conflicts?

A: decision

\[\text{find a solution} \]

search

\[\text{try to find a solution} \]

validity

\[\text{verify a solution} \]

optimization

\[\text{best solution} \]

counting

\[\text{how many solutions?} \]

def: a language is \(L \subseteq S^* \)

def: a Turing Machine (TM) x

finite automaton

\[\text{Finite tape} \]

Actually...

- \(Q \) set of states
- \(\Gamma \) tape alphabet
- \(\delta \) transition function

\[\delta : (\text{current symbol, state}) \rightarrow (\text{head movement, new symbol}) \]

a TM computes \(x \)

- tape initialized to \(x \)

- head placed at start of tape

- input = until reach \(\text{halt} \)

language \(L \) of TM \(M \):

\[L(M) = \{ \text{all } x \in \Sigma^* \text{ such that } M \text{ accepts } x \} \]

more general:

output \(E \)

\[\text{Min } x \text{ such that } y \subseteq \Sigma \text{ output } = \text{ accept or not accept} \]

def: a TM \(M \) runs in \(\text{time } t(n) \) if for all \(x \in \Sigma^* \)

\[\text{Min } x \text{ halts in } t(n) \text{ steps} \]

\[\text{want cases not in I} \]

space \(s(n) \)

\[\text{use } s(n) \text{ time and } \Sigma(n) \text{ tape} \]

def: \(\text{TIME}(s(n)) = \{ \text{all } L \text{ such that } L \text{ decided by TM in time } \leq O(s(n)) \text{ if big Oh} \}

space \(s(n) \)

\[\text{space } \leq O(s(n)) \]

\[\text{L } \end{equation} \]
Church-Turing Thesis: anything "computable" is computable by a TM

\[\text{def: } P = \bigcup_n \text{TIME}(n^k) \text{ if efficient in theory?} \]

\[\text{Q: } \text{what is } \#P? \text{ if no one really knows? } \]

\[\text{def: } \text{EXP} = \bigcup_n \text{TIME}(2^{n^k}) \]

\[\text{Prop: } P \subseteq \text{EXP} \]

\[\text{then: } 2^2 = 4 \text{ and } 2 \]

= Question:

Simulation: Hardware \[\not\equiv \] Software

TM M \[\approx \] description \langle M \rangle of TM M

Theorem: There is a universal TM U that on input any string \(s \) can simulate \(M \) on input \(s \).

(1) \(M \) acc/rej \(s \) in time \(O(C_m \cdot s \cdot s) \leq O(2^{c_m \cdot s^2}) \)

Intuition: CPU can run any programming language in space \(O(C_m \cdot s) \)

Key points: U is fixed, fixed tape alphabet \(\Gamma \) depends on \(M \)

tape alphabet \(\Gamma \) of \(M \) may be large

Proof Sketch:

a single step

Time: \(O(c_m \cdot s) + \)

Space: \(O(c_m \cdot s) \)

Rank: \(n \) tape steps can see \(O(c_m \cdot t \cdot s) \) tape. I see qualitatively correct
Theorem: For any "nice" function \(f(n) \) with \(f(n)^2 = O(g(n)) \),
\[
\text{TIME}(f(n)) \subseteq \text{TIME}(g(n))
\]

Proof: Suppose \(M \) is a TM running in time \(f(n) \).
\[
\text{If } M \text{ accepts } x \Rightarrow \text{acceptable in time } O(f(n))
\]

- \(f(n) \) is time constructible if \(n \rightarrow (\log n)^f \)

- \text{monotonically increasing}

- \(f(n) \) can directly decide \(\emptyset \)

Proposition: If \(f(n) \) is time constructible, then \(\text{TIME}(f(n)) \subseteq \text{TIME}(g(n)) \)

Proof: Consider \(M \) running in time \(f(n) \).

- \(M \) halts in time \(O(f(n)) \)

- \(M \) accepts \(x \) if \(g(n) \)

- \(M \) rejects \(x \) if \(\neg \text{accepts} \)

- \(M \) is in \(\text{TIME}(g(n)) \)

- \(\text{TIME}(f(n)) \subseteq \text{TIME}(g(n)) \)

Claim: \(L(0) \leq \text{TIME}(g(n)) \)

Proof: Use \(U \) to simulate \(M \) on \(\langle M, t^k \rangle \)

- \(U \) is in \(\text{TIME}(g(n)) \)

- \(U \) accepts \(\langle M, t^k \rangle \)

- \(U \) simulates \(M \) in \(\langle M, t^k \rangle \)

- \(\text{TIME}(f(n)) \subseteq \text{TIME}(g(n)) \)

Rmk: Need \(f(n) \) time constructible

Claim: \(L(0) \leq \text{TIME}(f(n)) \)

Proof: Suppose \(\langle M, t^k \rangle \) in \(\text{TIME}(f(n)) \)

- \(M \) runs in \(\text{TIME}(f(n)) \)

- \(f(n) \) depends only on \(U \)

Rmk: Need \(M \) time constructible

Claim: \(L(0) \leq \text{TIME}(f(n)) \)

Proof: Suppose \(\langle M, t^k \rangle \) in \(\text{TIME}(f(n)) \)

- \(M \) runs in \(\text{TIME}(f(n)) \)

- \(f(n) \) depends only on \(U \)

Rmk: "constant" \(C_M \) is not constant
What is \(\mathcal{L}(D) \)? I'm unsure.

Def. BOUNDED HAlting = \(\{ <M, x> : M \text{ accepts } <M, x> \text{ in } f(|x|) \text{ steps} \} \)

\(f(n) \text{ is constructible} \in \text{TIME}(f^2) \text{ and some } \sqrt{f} \text{ and } \text{clock p} \)

This SPACE hierarchy:

\[\text{SPACE}(f(n)) \subseteq \text{SPACE}(g(n)) \]

Which simulates has no penalty

ps: 1 on

sign up for pizza

return: nondeterminism

NP

reducibility

NP-complete

NP-intermediate