Problem Set 2
CS 579: Computational Complexity
Assigned: February 20, 2014 Due on: Feb 27, 2014

Instructions: Please do not turn in solutions to the practice problems.

Practice Problems

Practice Problem 1. A directed graph \(G = (V, E) \) is strongly connected if for every pair of vertices \((x, y)\) there is a directed path from \(x \) to \(y \) and a directed path from \(y \) to \(x \). Consider STRONGLY CONNECTED, the language of graphs \(G \) that are strongly connected. Prove that STRONGLY CONNECTED is \(\text{NL} \)-complete.

Practice Problem 2. Recall that \(\text{NP} \cap \text{co-NP} \) is the collection of all problems \(A \) such that there is a nondeterministic oracle Turing machine \(M \) running in polynomial time and a language \(B \in \text{NP} \cap \text{co-NP} \) with \(A = L(M^A) \). Prove that \(\text{NP} \cap \text{co-NP} = \text{NP} \). Aside: Note that \(\text{NP} \cap \text{co-NP} = \Sigma_2 \text{P} \), which may not be \(\text{NP} \).

Practice Problem 3. A language \(A \) is polynomial-time downward self-reducible if there is a polynomial-time oracle machine \(M \) such that:

- \(L(M^A) = A \). That is, when given an oracle for \(A \), \(M \) decides \(A \) (self-reducibility).
- On input \(x \), \(M \) only queries the oracle on strings smaller than \(x \) (downward reducibility).

The second restriction is necessary to make the property interesting — otherwise, on input \(x \), \(M \) could just directly ask the oracle if \(x \in A \).

Prove that if \(L \) is polynomial time downward self-reducible then \(L \in \text{PSPACE} \).

Homework Problems

Problem 1. A strong nondeterministic Turing Machine has, in addition to its \(q_{\text{accept}} \) and \(q_{\text{reject}} \) states, a special state \(q_f \). Such a Turing Machine accepts its input if all computation paths lead to \(q_{\text{accept}} \) and \(q_f \) states, and it rejects its input if all computation paths lead to \(q_{\text{reject}} \) and \(q_f \) states. Moreover, on every input, there is at least one computation path leading to \(q_{\text{accept}} \) or \(q_{\text{reject}} \). Show that the class of languages decided by a strong nondeterministic Turing Machine in polynomial time is exactly \(\text{NP} \cap \text{co-NP} \).

Problem 2. Prove that \(\text{NP} \neq \text{DSPACE}(n) \). Hint: Let us say a complexity class \(C \) is closed under reductions, if whenever \(A \leq_p B \) and \(B \in C \) then \(A \in C \). Show that \(\text{NP} \) is closed under reductions while \(\text{DSPACE}(n) \) is not.

Problem 3. Define robust oracle machine \(M^A \) deciding a language \(L \) to be one such that \(L(M^A) = L \) for all oracles \(A \). That is, the answers are always correct, no matter what the oracle is; but, the running time of the machine may vary depending on the oracle. In addition, if \(M^A \) runs in polynomial time then we say that oracle \(A \) helps the robust machine \(M^A \). Let \(\text{F}_h \) be the class of languages decided in polynomial
time by deterministic robust oracle machines that can be helped, and \mathbf{NP}_h be the class for nondeterministic machines.

1. Prove that $\mathbf{NP}_h = \mathbf{NP}$.

2. Prove that $\mathbf{P}_h = \mathbf{NP} \cap \mathbf{co-NP}$.