Communication Complexity

Lecture 24
Computing with remote inputs
Communication Complexity
Communication Complexity

- Setting
Communication Complexity

Setting

Alice wants to compute \(f(x,y) \)
Communication Complexity

Setting

- Alice wants to compute $f(x,y)$
- Alice is given only x. Her friend Bob gets y.
Communication Complexity

Setting

- Alice wants to compute f(x,y)
- Alice is given only x. Her friend Bob gets y.
- Least amount of communication to achieve this
Communication Complexity

Setting

- Alice wants to compute $f(x,y)$
- Alice is given only x. Her friend Bob gets y.
- Least amount of communication to achieve this
- Compare with decision tree complexity
Communication Complexity

Setting

Alice wants to compute $f(x, y)$

Alice is given only x. Her friend Bob gets y.

Least amount of communication to achieve this

Compare with decision tree complexity

Trivial upper-bound of $|x|$
Communication Complexity

- **Setting**
 - Alice wants to compute $f(x,y)$
 - Alice is given only x. Her friend Bob gets y.
 - Least amount of communication to achieve this
 - Compare with decision tree complexity
 - Trivial upper-bound of $|x|$}

- Interested in proving lower bounds for various f
Examples
Examples

\[\text{PARITY}(x, y) = \bigoplus_i (x_i \oplus y_i) \]
Examples

\[PARITY(x, y) = \bigoplus_i (x_i \oplus y_i) \]
\[CC(PARITY) = 1 \]
Examples

- $\text{PARITY}(x,y) = \bigoplus_i (x_i \oplus y_i)$
- $\text{CC}($PARITY$) = 1$
- $\text{EQ}(x,y) = 1$ iff $x=y$
Examples

- \(\text{PARITY}(x,y) = \bigoplus_i (x_i \oplus y_i) \)
- \(\text{CC(PARITY)} = 1 \)
- \(\text{EQ}(x,y) = 1 \) iff \(x=y \)
- Lower-bound?
Examples

\[\text{PARITY}(x,y) = \bigoplus_i (x_i \oplus y_i) \]
\[\text{CC}(\text{PARITY}) = 1 \]
\[\text{EQ}(x,y) = 1 \text{ iff } x = y \]
\[\text{DISJ}(x,y) = 1 \text{ iff } x \wedge y = 0^n \]
Motivation
Motivation

Distributed computing
Motivation

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
Motivation

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
Motivation

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
 - Variants tightly related to circuit complexity
Motivation

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
 - Variants tightly related to circuit complexity
- Lower-bounds for decision tree complexity, for number of states in FSM, and for time*space complexity for Turing machines
Motivation

- Distributed computing
- Lower-bounds for parallel computation/circuit complexity
 - Amount of communication across a cut in the circuit
 - Variants tightly related to circuit complexity
- Lower-bounds for decision tree complexity, for number of states in FSM, and for time*space complexity for Turing machines
- Proving optimality of algorithms and data-structures
Protocol
Protocol

- We’ll consider deterministic protocols
Protocol

- We’ll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round
Protocol

- We’ll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round
- Can even consider protocol to have Alice and Bob alternately exchanging single bits (since not considering number of rounds)
Protocol

- We’ll consider deterministic protocols
- Fixed number of rounds (Alice to Bob, then Bob to Alice), each party sends a fixed number of bits in each round
 - Can even consider protocol to have Alice and Bob alternately exchanging single bits (since not considering number of rounds)
 - At most doubles the communication complexity
Protocol Execution
Protocol Execution

\[\text{ith message from Alice is a function of her input and previous messages} \]
Protocol Execution

i^{th} message from Alice is a function of her input and previous messages

Her output is a function of the final “transcript” and her own input (her “view”)
Protocol Execution

- i^{th} message from Alice is a function of her input and previous messages
- Her output is a function of the final “transcript” and her own input (her “view”)
- Similarly for Bob. His view = transcript + his input
Protocol Execution

\(i^{th}\) message from Alice is a function of her input and previous messages.

Her output is a function of the final “transcript” and her own input (her “view”)

Similarly for Bob. His view = transcript + his input

\(#\text{transcripts} \leq 2^{CC}. \text{i.e. } CC \geq \log(#\text{transcripts})\)
Transcript Table

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```


Consider the transcript table
Consider the transcript table

If on \((a_1, b_1)\) and \((a_2, b_2)\)
same transcript
Consider the transcript table

- If on \((a_1,b_1)\) and \((a_2,b_2)\) same transcript
- Then same transcript on \((a_1,b_2)\) also!
Consider the transcript table

If on \((a_1, b_1)\) and \((a_2, b_2)\) same transcript

Then same transcript on \((a_1, b_2)\) also!

Alice and Bob never realize the difference through out the protocol
Fooling Set
Fooling Set

If on \((a_1, b_1)\) and \((a_2, b_2)\) same transcript, then same transcript on \((a_1, b_2)\) also
Fooling Set

- If on \((a_1, b_1)\) and \((a_2, b_2)\) same transcript, then same transcript on \((a_1, b_2)\) also

- Show a set \(S\) of input-pairs that must have distinct transcripts

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fooling Set

- If on \((a_1,b_1)\) and \((a_2,b_2)\) same transcript, then same transcript on \((a_1,b_2)\) also

- Show a set \(S\) of input-pairs that must have distinct transcripts

- Even though all pairs have same output
Fooling Set

- If on \((a_1, b_1)\) and \((a_2, b_2)\) same transcript, then same transcript on \((a_1, b_2)\) also.

- Show a set \(S\) of input-pairs that must have distinct transcripts.

- Even though all pairs have same output.

- "Cross" of no two pairs has the same output.
Fooling Set

- If on \((a_1, b_1)\) and \((a_2, b_2)\) same transcript, then same transcript on \((a_1, b_2)\) also.

- Show a set \(S\) of input-pairs that must have distinct transcripts.
 - Even though all pairs have same output.
 - “Cross” of no two pairs has the same output.

- If \(S\) is a set of such pairs, \(CC \geq \log(|S|)\).
Fooling Set for EQ
Fooling Set for EQ

\[S = \text{set of all pairs } (x,x) \]
Fooling Set for EQ

- $S = \text{set of all pairs } (x,x)$
- $CC(EQ) \geq \log(|S|) \geq n$
Fooling Set for EQ

- $S = \text{set of all pairs } (x,x)$
- $CC(EQ) \geq \log(|S|) \geq n$
- True for any function in which each row and column has exactly one 1
Fooling Set for EQ

- $S = \text{set of all pairs } (x,x)$
- $CC(EQ) \geq \log(|S|) \geq n$
- True for any function in which each row and column has exactly one 1
- Other functions too
Fooling Set for EQ

\(S = \text{set of all pairs } (x,x) \)

\(\text{CC}(\text{EQ}) \geq \log(|S|) \geq n \)

True for any function in which each row and column has exactly one 1

Other functions too

e.g.: DISJ(x,y) if \(x \land y = 0^n \)
Fooling Set for EQ

\[S = \text{set of all pairs } (x,x) \]

\[\text{CC}(\text{EQ}) \geq \log(|S|) \geq n \]

True for any function in which each row and column has exactly one 1

Other functions too

\[\text{e.g.: DISJ}(x,y) \text{ if } x \land y = 0^n \]

\[S = \text{set of complementary pairs, } (x,\neg x) \]
Monochromatic Rectangles

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Rectangle dimensions: 10x10
Monochromatic Rectangles

- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
Monochromatic Rectangles

- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value
Monochromatic Rectangles

- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value
- Recall: for any protocol, set of all input-pairs with the same transcript is a rectangle
Monochromatic Rectangles

- Rectangle: a subset of $D_1 \times D_2$ of the form $S_1 \times S_2$
- Monochromatic: same f-value
- Recall: for any protocol, set of all input-pairs with the same transcript is a rectangle
- For protocol to be correct, the rectangles should be monochromatic
Tiling Lower-Bound
For protocol to be correct, same-transcript rectangles should be monochromatic.
Tiling Lower-Bound

- For protocol to be correct, same-transcript rectangles should be monochromatic.
- Find the least number of monochromatic rectangles that can tile the function, $\chi(f)$.
Tiling Lower-Bound

For protocol to be correct, same-transcript rectangles should be monochromatic

Find the least number of monochromatic rectangles that can tile the function, $\chi(f)$

$\#\text{transcripts} \geq \chi(f)$
Tiling Lower-Bound

For protocol to be correct, same-transcript rectangles should be monochromatic.

Find the least number of monochromatic rectangles that can tile the function, $\chi(f)$.

- $\#\text{transcripts} \geq \chi(f)$
- $CC(f) \geq \log(\chi(f))$
Tiling Lower-Bound

- For protocol to be correct, same-transcript rectangles should be monochromatic.

- Find the least number of monochromatic rectangles that can tile the function, $\chi(f)$.

 - $\#\text{transcripts} \geq \chi(f)$
 - $CC(f) \geq \log(\chi(f))$

- How to lower-bound $\chi(f)$?
Lower-Bounding $\chi(f)$
Lower-Bounding $\chi(f)$

- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling.
Lower-Bounding $\chi(f)$

If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling

$\chi(f) \geq |S|$ for every fooling set S
Lower-Bounding $\chi(f)$

- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling.

- $\chi(f) \geq |S|$ for every fooling set S.

- Rank lower-bound.
Lower-Bounding $\chi(f)$

- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - $\chi(f) \geq |S|$ for every fooling set S

- Rank lower-bound
 - $\chi(f) \geq \text{Rank}(M_f)$
Lower-Bounding $\chi(f)$

- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - $\chi(f) \geq |S|$ for every fooling set S

- Rank lower-bound
 - $\chi(f) \geq \text{Rank}(M_f)$

- Discrepancy lower-bound
Lower-Bounding $\chi(f)$

- If a fooling set of size S, no two input-pairs from S can be on the same tile in a monochromatic tiling
 - $\chi(f) \geq |S|$ for every fooling set S

- Rank lower-bound
 - $\chi(f) \geq \text{Rank}(M_f)$

- Discrepancy lower-bound
 - $\chi(f) \geq \text{Discrepancy}(f)$
Rank(M)
Rank(M)

- Rank of a matrix (over a field)
Rank(M)

- Rank of a matrix (over a field)
 - Maximum number of linearly independent rows (or equivalently, columns)
Rank(M)

- Rank of a matrix (over a field)
- Maximum number of linearly independent rows (or equivalently, columns)
- Rank-r matrix: after row & column reductions $D_{(m \times n)}$ diagonal matrix, with r 1's, rest 0's. $M = UDV$
Rank(M)

- Rank of a matrix (over a field)
 - Maximum number of linearly independent rows (or equivalently, columns)
- Rank-r matrix: after row & column reductions $D_{m \times n}$ diagonal matrix, with r 1's, rest 0's. $M = UDV$
- Rank(M) ≤ r, iff M can be written as sum of ≤ r rank 1 matrices
Rank(M)

- Rank of a matrix (over a field)

- Maximum number of linearly independent rows (or equivalently, columns)

- Rank-r matrix: after row & column reductions $D_{(m \times n)}$ diagonal matrix, with r 1's, rest 0's. $M = UDV$

- $\text{Rank}(M) \leq r$, iff M can be written as sum of $\leq r$ rank 1 matrices

- $M = UDV = \sum_{i=1}^{r} D_{ii} U_{i(mx1)} V_{i(1xn)} = \sum_{i=1}^{r} B_{i}$, where $\text{Rank}(B_{i})=1$
χ(f) ≥ Rank(M_f)
\[\chi(f) \geq \text{Rank}(M_f) \]

If \(M = \sum_{i \leq r} B_i \) with \(\text{Rank}(B_i) = 1 \), then \(\text{Rank}(M) \leq r \)
\[\chi(f) \geq \text{Rank}(M_f) \]

- If \(M = \Sigma_{i \leq r} B_i \) with \(\text{Rank}(B_i) = 1 \), then \(\text{Rank}(M) \leq r \)
- \(M_f = \Sigma_{i \leq \chi(f)} \text{Tile}_i \)
 (\text{Tile}_i \text{ has a monochromatic rectangle and 0's elsewhere})
\[\chi(f) \geq \text{Rank}(M_f) \]

- If \(M = \sum_{i \leq r} B_i \) with \(\text{Rank}(B_i) = 1 \), then \(\text{Rank}(M) \leq r \)

- \(M_f = \sum_{i \leq \chi(f)} \text{Tile}_i \)
 (\(\text{Tile}_i \) has a monochromatic rectangle and 0's elsewhere)

- \(\text{Rank}(\text{Tile}_i) = 1 \)
χ(f) ≥ Rank(M_f)

- If \(M = \sum_{i \leq r} B_i \) with \(\text{Rank}(B_i) = 1 \), then \(\text{Rank}(M) \leq r \)

- \(M_f = \sum_{i \leq \chi(f)} \text{Tile}_i \)
 (\(\text{Tile}_i \) has a monochromatic rectangle and 0’s elsewhere)

- \(\text{Rank}(\text{Tile}_i) = 1 \)

- \(\text{Rank}(M_f) \leq \chi(f) \)
\[\chi(f) \geq \text{Rank}(M_f) \]

- If \(M = \sum_{i \leq r} B_i \) with \(\text{Rank}(B_i)=1 \), then \(\text{Rank}(M) \leq r \)

- \(M_f = \sum_{i \leq \chi(f)} \text{Tile}_i \)

 \(\text{(Tile}_i \text{ has a monochromatic rectangle and 0's elsewhere)} \)

 \(\text{Rank}(\text{Tile}_i)=1 \)

- \(\text{Rank}(M_f) \leq \chi(f) \)

- \(\text{CC}(f) \geq \log(\chi(f)) \geq \log(\text{Rank}(M_f)) \)
Discrepancy
Discrepancy

Discrepancy of a 0-1 matrix
Discrepancy

- Discrepancy of a 0-1 matrix
- max "imbalance" in any rectangle
Discrepancy

Discrepancy of a 0-1 matrix

max "imbalance" in any rectangle

Imbalance = | #1's - #0's |
Discrepancy

- Discrepancy of a 0-1 matrix
- max "imbalance" in any rectangle
- Imbalance = | #1's - #0's |
- Disc(M) = 1/(mn) max_{rect} imbalance(rect)
Discrepancy

Discrepancy of a 0-1 matrix

max "imbalance" in any rectangle

Imbalance = | #1's - #0's |

Disc(M) = 1/(mn) max_{rect} imbalance(rect)

eg.: Disc(M_{CONST}) = 1, Disc(M_{PARITY}) = 1/mn
Discrepancy

- Discrepancy of a 0-1 matrix
- max “imbalance” in any rectangle
- Imbalance = | #1’s - #0’s |
- Disc(M) = 1/(mn) \(\max_{\text{rect}} \) imbalance(rect)
- eg.: Disc(M_{\text{CONST}}) = 1, Disc(M_{\text{PARITY}}) = 1/mn
- \(\chi(f) \geq 1/\text{Disc}(M_f) \)
Discrepancy

Discrepancy of a 0-1 matrix

- max “imbalance” in any rectangle
- Imbalance = | #1’s - #0’s |
- \(\text{Disc}(M) = \frac{1}{mn} \max_{\text{rect}} \text{imbalance}(\text{rect}) \)
- eg.: \(\text{Disc}(M_{\text{CONST}}) = 1 \), \(\text{Disc}(M_{\text{PARITY}}) = \frac{1}{mn} \)
- \(\chi(f) \geq \frac{1}{\text{Disc}(M_f)} \)
- \(\text{Disc}(M_f) \geq \frac{1}{mn} \) (size of largest monochromatic tile)
Discrepancy

Discrepancy of a 0-1 matrix

max “imbalance” in any rectangle

Imbalance = | #1’s - #0’s |

\[\text{Disc}(M) = \frac{1}{mn} \max_{\text{rect}} \text{imbalance}(\text{rect}) \]

eg.: \(\text{Disc}(M_{\text{CONST}}) = 1, \text{Disc}(M_{\text{PARITY}}) = \frac{1}{mn} \)

\(\chi(f) \geq \frac{1}{\text{Disc}(M_f)} \)

\(\text{Disc}(M_f) \geq \frac{1}{(mn) \text{ (size of largest monochromatic tile)}} \)

\(\chi(f) \geq \frac{(mn)}{\text{(size of largest monochromatic tile)}} \)
CC Lower-bounds
Summary
CC Lower-bounds

Summary

\[CC(f) \geq \log(\#\text{transcripts}) \]
CC Lower-bounds

Summary

\[CC(f) \geq \log(\#\text{transcripts}) \]

\[\text{Tiling Lower-bound: } \#\text{transcripts} \geq \chi(f) \]
CC Lower-bounds

Summary

ุม CC(f) ≥ log(#transcripts)

Appearance Lower-bound: #transcripts ≥ χ(f)

Both fairly tight: CC(f) = O(log²(χ(f)))
CC Lower-bounds

Summary

- $\text{CC}(f) \geq \log(\#\text{transcripts})$
- Tiling Lower-bound: $\#\text{transcripts} \geq \chi(f)$
- Both fairly tight: $\text{CC}(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, $1/\text{Disc}$
CC Lower-bounds

Summary

\[CC(f) \geq \log(\#\text{transcripts}) \]

\[\text{Tiling Lower-bound: } \#\text{transcripts} \geq \chi(f) \]

\[\text{Both fairly tight: } CC(f) = O(\log^2(\chi(f))) \]

\[\text{To lower-bound } \chi(f): \text{ fooling-set, rank, } 1/\text{Disc} \]

\[\chi(f) \geq |\text{max fooling-set}| \leq (\text{Rank}(M_f))^2 \]
CC Lower-bounds Summary

- \(CC(f) \geq \log(\#\text{transcripts}) \)
- Tiling Lower-bound: \(\#\text{transcripts} \geq \chi(f) \)
- Both fairly tight: \(CC(f) = O(\log^2(\chi(f))) \)

To lower-bound \(\chi(f) \): fooling-set, rank, 1/Disc

- \(\chi(f) \geq |\text{max fooling-set}| \leq (\text{Rank}(M_f))^2 \)
- 1/Discrepancy lower-bounds can be very loose
CC Lower-bounds

Summary

\[CC(f) \geq \log(\#\text{transcripts}) \]

\[\text{Tiling Lower-bound: } \#\text{transcripts} \geq \chi(f) \]

Both fairly tight: \[CC(f) = O(\log^2(\chi(f))) \]

To lower-bound \[\chi(f) \]: fooling-set, rank, 1/Disc

\[\chi(f) \geq \max \text{ fooling-set} \leq (\text{Rank}(M_f))^2 \]

1/Discrepancy lower-bounds can be very loose

Conjecture: \[\text{Rank}(M_f) \] is fairly tight
CC Lower-bounds

Summary

- $CC(f) \geq \log(#\text{transcripts})$
- Tiling Lower-bound: $#\text{transcripts} \geq \chi(f)$
- Both fairly tight: $CC(f) = O(\log^2(\chi(f)))$
- To lower-bound $\chi(f)$: fooling-set, rank, $1/\text{Disc}$
 - $\chi(f) \geq \max \text{fooling-set} \leq (\text{Rank}(M_f))^2$
- $1/\text{Discrepancy}$ lower-bounds can be very loose
- Conjecture: $\text{Rank}(M_f)$ is fairly tight
 - i.e., $CC(f) = O(\text{polylog}(\text{Rank}(M_f)))$
Many Variants
Many Variants

Randomized protocols: significant savings in expectation
Many Variants

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. “Communication” now includes shared guess
Many Variants

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. “Communication” now includes shared guess
Many Variants

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess
- Number on the forehead version
Many Variants

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. “Communication” now includes shared guess
 - Number on the forehead version
- Non-boolean output
Many Variants

- Randomized protocols: significant savings in expectation
- Non-deterministic: Alice and Bob are non-deterministic. “Communication” now includes shared guess
 - Number on the forehead version
- Non-boolean output
- Multi-valued functions: agree on one value
Many Variants

Randomized protocols: significant savings in expectation

Non-deterministic: Alice and Bob are non-deterministic. "Communication" now includes shared guess

Multi-party: Input split across multiple parties. Broadcast channels for communication.

Number on the forehead version

Non-boolean output

Multi-valued functions: agree on one value

Different costs: asymmetric communication, average-case complexity