Decision Trees

Lecture 23
To left or to right
Decision Trees
Decision Trees

- A different complexity measure
Decision Trees

- A different complexity measure
 - Number of bits of input read
Decision Trees

- A different complexity measure
 - Number of bits of input read
 - For simpler problems
Decision Trees

- A different complexity measure
 - Number of bits of input read
 - For simpler problems
- Interested in lower-bounds
Decision Trees

- A different complexity measure
 - Number of bits of input read
 - For simpler problems
 - Interested in lower-bounds
 - So even allow unbounded computational power
Decision Trees

- A different complexity measure
 - Number of bits of input read
 - For simpler problems
 - Interested in lower-bounds
 - So even allow unbounded computational power
 - Simpler combinatorial structure (need not understand P vs. NP etc.)
Decision Trees
Decision Trees

Configuration graph of a computation, as it reads each bit
Decision Trees

Configuration graph of a computation, as it reads each bit
Decision Trees

Configuration graph of a computation, as it reads each bit

For n-bit input, depth at most n
Decision Trees

- Configuration graph of a computation, as it reads each bit
- For n-bit input, depth at most n
- Some paths may be shorter
Decision Trees

- Configuration graph of a computation, as it reads each bit
 - For n-bit input, depth at most n
 - Some paths may be shorter
- \(\text{DTree}(L) = \min_{\text{alg } A} \max_{\text{input } x} T_{A,x} \)
 where \(T_{A,x} \) is the number of bits of \(x \) read by \(A \)
Examples
Examples

- Simpler problems
Examples

- Simpler problems
 - OR(x)=1 if at least one bit of x is 1
Examples

- Simpler problems
 - $\text{OR}(x)=1$ if at least one bit of x is 1
 - $\text{PARITY}(x)=1$ if odd number of bits of x are 1
Examples

- Simpler problems
 - OR(x)=1 if at least one bit of x is 1
 - PARITY(x)=1 if odd number of bits of x are 1
 - SAT_C(x) if x is a satisfying assignment for circuit (or circuit family) C
Examples

Simpler problems

- OR(x)=1 if at least one bit of x is 1
- PARITY(x)=1 if odd number of bits of x are 1
- SAT\(_C\)(x) if x is a satisfying assignment for circuit (or circuit family) C
- CONNECTED(G) = 1 if G is the adjacency matrix of a connected graph
Examples

Simpler problems

- $\text{OR}(x) = 1$ if at least one bit of x is 1
- $\text{PARITY}(x) = 1$ if odd number of bits of x are 1
- $\text{SAT}_C(x)$ if x is a satisfying assignment for circuit (or circuit family) C
- $\text{CONNECTED}(G) = 1$ if G is the adjacency matrix of a connected graph

We are interested in showing DTREE lower-bounds for these problems
Adversary Argument
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: *Given a decision tree find inputs which lead it to the same leaf but must have different outputs*
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: Given a decision tree find inputs which lead it to the same leaf but must have different outputs

e.g.: DTrees(OR) = n (i.e., any correct decision tree will need to read all bits in the worst case)
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: Given a decision tree find inputs which lead it to the same leaf but must have different outputs

e.g.: $\text{DTree}(\text{OR}) = n$ (i.e., any correct decision tree will need to read all bits in the worst case)

Given any decision tree: Start with all inputs
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: **Given a decision tree find inputs which lead it to the same leaf but must have different outputs**

- e.g.: \(\text{DTree(OR)} = n \) (i.e., any correct decision tree will need to read all bits in the worst case)

- Given any decision tree: Start with all inputs

- At first node restrict to inputs which answer 0, and consider the tree’s behavior on such inputs
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: Given a decision tree find inputs which lead it to the same leaf but must have different outputs

e.g.: DTREE(OR) = n (i.e., any correct decision tree will need to read all bits in the worst case)

Given any decision tree: Start with all inputs
At first node restrict to inputs which answer 0, and consider the tree’s behavior on such inputs
On second node, further restrict to inputs which answer 0
Adversary Argument

Identifying one input which will cause a shallow decision tree to go wrong: Given a decision tree find inputs which lead it to the same leaf but must have different outputs

e.g.: DTREE(OR) = n (i.e., any correct decision tree will need to read all bits in the worst case)

Given any decision tree: Start with all inputs

At first node restrict to inputs which answer 0, and consider the tree’s behavior on such inputs

On second node, further restrict to inputs which answer 0

Before n nodes, set of inputs contain O^n and another input, no matter what bits where queried at the nodes
Graph Connectivity
Graph Connectivity

\[\text{DTree(CONNECTED)} = \frac{n(n-1)}{2} \text{ (i.e., all possible edges)} \]
Graph Connectivity

\[\text{DTree}(\text{CONNECTED}) = n(n-1)/2 \] (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that edges answered “Yes” plus unqueried edges form a connected graph.
Graph Connectivity

- DTREE(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer "No," but maintain the invariant that edges answered "Yes" plus unqueried edges form a connected graph.

Yes edges by themselves connect the entire graph only if set of unqueried edges is empty.
Graph Connectivity

- $\text{DTree(CONNECTED)} = \frac{n(n-1)}{2}$ (i.e., all possible edges)

- If possible, answer "No," but maintain the invariant that edges answered "Yes" plus unqueried edges form a connected graph.

- Yes edges by themselves connect the entire graph only if set of unqueried edges is empty

- Otherwise some Yes edge was unforced: consider the cycle formed by an unqueried edge and the connected Yes graph
Graph Connectivity

DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that edges answered “Yes” plus unqueried edges form a connected graph.

Yes edges by themselves connect the entire graph only if set of unqueried edges is empty

Otherwise some Yes edge was unforced: consider the cycle formed by an unqueried edge and the connected Yes graph

Until then, graph can be connected or disconnected: by setting all unqueried edges to Yes or all to No
Elusive Languages
Elusive Languages

Languages which require the decision tree to read all the bits in the worst case
Elusive Languages

Languages which require the decision tree to read all the bits in the worst case

e.g.: OR, PARITY, CONNECTED
Elusive Languages

- Languages which require the decision tree to read all the bits in the worst case

 - e.g.: OR, PARITY, CONNECTED

- Argued using adversary strategies
Elusive Languages

Languages which require the decision tree to read all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

Maj(x) = 1 iff #1s in x > #0s (assume |x| odd)
Elusive Languages

Languages which require the decision tree to read all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

\(\text{Maj}(x) = 1 \text{ iff } \#1s \text{ in } x > \#0s \text{ (assume } |x| \text{ odd)} \)

Adversary strategy: alternately answer 0 and 1
Monotonic Tree Circuits
Monotonic Tree Circuits

- Tree of AND gates and OR gates (monotonic)
Monotonic Tree Circuits

- Tree of AND gates and OR gates (monotonic)
- Each variable (leaf) used only once
Monotonic Tree Circuits

- Tree of AND gates and OR gates (monotonic)
- Each variable (leaf) used only once
- Is elusive
Monotonic Tree Circuits

- Tree of AND gates and OR gates (monotonic)
- Each variable (leaf) used only once
- Is elusive

Answer so that each gate kept undetermined until all its leaf-descendants are queried
Monotonic Tree Circuits

- Tree of AND gates and OR gates (monotonic)
- Each variable (leaf) used only once
- Is elusive

 Answer so that each gate kept undetermined until all its leaf-descendants are queried

- Exercise
Certificate Complexity
Certificate Complexity

1-certificate
Certificate Complexity

1-certificate

For x s.t. $L(x)=1$, a subset of the bits of x which proves that $L(x)=1$: c s.t. $x|c \Rightarrow x \in L$ (i.e., no x' s.t. $L(x')=0$ and has the same values at those positions)
Certificate Complexity

1-certificate

For x s.t. $L(x)=1$, a subset of the bits of x which proves that $L(x)=1$: c s.t. $x|c \Rightarrow x \in L$ (i.e., no x' s.t. $L(x')=0$ and has the same values at those positions)

0-certificate: similarly for $x \not\in L$, c s.t. $x|c \Rightarrow x \not\in L$
Certificate Complexity

1-certificate

For \(x \) s.t. \(L(x)=1 \), a subset of the bits of \(x \) which proves that \(L(x)=1 \) : \(c \) s.t. \(x|c \Rightarrow x \in L \) (i.e., no \(x' \) s.t. \(L(x')=0 \) and has the same values at those positions)

0-certificate: similarly for \(x \notin L \), \(c \) s.t. \(x|c \Rightarrow x \notin L \)

Can be much lower than \(DTree(L) \) because for different \(x \)'s different sets of bits can be used
Certificate Complexity

1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves that L(x)=1: c s.t. x|c ⇒ x∈L (i.e., no x′ s.t. L(x′)=0 and has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c ⇒ x∉L

Can be much lower than DTree(L) because for different x’s different sets of bits can be used

Produced by someone who has seen all bits of x
Certificate Complexity

1-certificate

For \(x \) s.t. \(L(x) = 1 \), a subset of the bits of \(x \) which proves that \(L(x) = 1 \) : \(c \) s.t. \(x | c \Rightarrow x \in L \) (i.e., no \(x' \) s.t. \(L(x') = 0 \) and has the same values at those positions)

0-certificate: similarly for \(x \not\in L \), \(c \) s.t. \(x | c \Rightarrow x \not\in L \)

Can be much lower than \(\text{DTree}(L) \) because for different \(x \)'s different sets of bits can be used

Produced by someone who has seen all bits of \(x \)

1-Cert(L): \(\max_{x \in L} \min_{c: x | c \Rightarrow x \in L} |c| \) (e.g. 1-Cert(OR) = 1)
Certificate Complexity

1-certificate

For x s.t. $L(x)=1$, a subset of the bits of x which proves that $L(x)=1 : c$ s.t. $x|c \Rightarrow x \in L$ (i.e., no x' s.t. $L(x')=0$ and has the same values at those positions)

0-certificate: similarly for $x \not\in L$, c s.t. $x|c \Rightarrow x \not\in L$

Can be much lower than $DTree(L)$ because for different x’s different sets of bits can be used

Produced by someone who has seen all bits of x

1-Cert(L): $\max_{x \in L} \min_{c: x|c \Rightarrow x \in L} |c|$ (e.g. 1-Cert(OR) = 1)

0-Cert(L): $\max_{x \not\in L} \min_{c: x|c \Rightarrow x \not\in L} |c|$ (e.g. 0-Cert(OR) = n)
\[\text{DTree}(L) \leq \text{0Cert}(L) \times \text{1Cert}(L) \]
DTree(L) ≤ 0Cert(L) x 1Cert(L)

A Decision tree algorithm
DTree(L) ≤ OCert(L) x 1Cert(L)

A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)
DTree(L) ≤ OCert(L) x 1Cert(L)

A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)

While both pools non-empty
DTre(L) ≤ OCert(L) × 1Cert(L)

A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all 0 and 1 certificates inconsistent with the bits revealed
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all 0 and 1 certificates inconsistent with the bits revealed

One pool must be non-empty. Output the corresponding answer
DTree(L) ≤ 0Cert(L) x 1Cert(L)

A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates (for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all 0 and 1 certificates inconsistent with the bits revealed

One pool must be non-empty. Output the corresponding answer

Clearly correct. Number of bits read?
DTree(L) ≤ OCert(L) \times 1Cert(L)
DTree(L) ≤ OCert(L) × 1Cert(L)

- An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate
DTree(L) ≤ 0Cert(L) × 1Cert(L)

- An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate.
- Otherwise it is possible to have an x consistent with both those certificates!
DTree(L) ≤ 0Cert(L) × 1Cert(L)

- An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate.

- Otherwise it is possible to have an x consistent with both those certificates!

- Picking such a 0-certificate and querying reduces number of unrevealed bits of each remaining 1-certificate by at least 1.
DTree(L) \leq 0\text{Cert}(L) \times 1\text{Cert}(L)

- An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate.

- Otherwise it is possible to have an x consistent with both those certificates!

- Picking such a 0-certificate and querying reduces number of unrevealed bits of each remaining 1-certificate by at least 1.

- Initially at most 1\text{Cert}(L) bits in each 1-certificate.
\[\text{DTree}(L) \leq 0\text{Cert}(L) \times 1\text{Cert}(L) \]

- An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate.

- Otherwise it is possible to have an x consistent with both those certificates!

- Picking such a 0-certificate and querying reduces number of unrevealed bits of each remaining 1-certificate by at least 1.

- Initially at most 1\text{Cert}(L) bits in each 1-certificate.

- So at most 1\text{Cert}(L) iterations.
DTree(L) ≤ 0Cert(L) × 1Cert(L)

An undetermined 0-certificate has at least one unrevealed conflicting bit with each undetermined 1-certificate.

Otherwise it is possible to have an x consistent with both those certificates!

Picking such a 0-certificate and querying reduces number of unrevealed bits of each remaining 1-certificate by at least 1.

Initially at most 1Cert(L) bits in each 1-certificate.

So at most 1Cert(L) iterations.

In each iteration at most 0Cert(L) bits queried.
$DTree(L) \leq 0\text{Cert}(L) \times 1\text{Cert}(L)$
$\text{DTree}(L) \leq 0\text{Cert}(L) \times 1\text{Cert}(L)$

Example: AND-OR trees
DTree(L) \leq 0\text{Cert}(L) \times 1\text{Cert}(L)

Example: AND-OR trees

0-certificate: enough variables so that can evaluate just one input wire for AND gates, and all input wires for OR gates
\(\text{DTree}(L) \leq \text{0Cert}(L) \times \text{1Cert}(L) \)

Example: AND-OR trees

- 0-certificate: enough variables so that can evaluate just one input wire for AND gates, and all input wires for OR gates

- 1-certificate: enough variables so that can evaluate just one input wire for OR gates, and all input wires for AND gates
$\text{DTree}(L) \leq \text{0Cert}(L) \times \text{1Cert}(L)$

Example: AND-OR trees

- 0-certificate: enough variables so that can evaluate just one input wire for AND gates, and all input wires for OR gates

- 1-certificate: enough variables so that can evaluate just one input wire for OR gates, and all input wires for AND gates

If “regular” AND-OR tree (same degree for nodes at the same depth), then $\text{0Cert}(L) \times \text{1Cert}(L) = \text{number of inputs} = \text{DTree}(L)$
Studying DT(DTree)(L)
Studying DTREE(L)

- Various techniques
Studying DTREE(L)

- Various techniques
 - **Arithmetization**: e.g.: Write the boolean function for L as a multi-linear polynomial of n boolean variables. Then degree is a lower-bound on DTREE(L)
Studying DTREE(L)

Various techniques

Arithmetization: e.g.: Write the boolean function for L as a multi-linear polynomial of n boolean variables. Then degree is a lower-bound on DTREE(L)

Topological criterion for monotone functions: construct a simplicial complex corresponding to the monotone boolean function. If the simplicial complex “not collapsible” then DTREE(L)=n
Studying DTREE(L)

Various techniques

- **Arithmetization**: e.g.: Write the boolean function for L as a multi-linear polynomial of n boolean variables. Then degree is a lower-bound on DTREE(L)

- **Topological criterion for monotone functions**: construct a simplicial complex corresponding to the monotone boolean function. If the simplicial complex “not collapsible” then DTREE(L)=n

- “Sensitivity” is a lower-bound on DTREE(L)
Studying DTree(L)

- Various techniques
 - **Arithmetization**: e.g.: Write the boolean function for L as a multi-linear polynomial of n boolean variables. Then degree is a lower-bound on DTree(L)
 - **Topological criterion for monotone functions**: construct a simplicial complex corresponding to the monotone boolean function. If the simplicial complex “not collapsible” then DTree(L)=n
 - **“Sensitivity”** is a lower-bound on DTree(L)

- Will explore some in exercises
Randomized Decision Trees
Randomized Decision Trees

- Recall two views of randomized computation
Randomized Decision Trees

Recall two views of randomized computation:

- Randomly decide (based on fresh coin flips, and queries and answers so far) what variable to query
Randomized Decision Trees

Recall two views of randomized computation:

- Randomly decide (based on fresh coin flips, and queries and answers so far) what variable to query
- Flip all coins up front and then run a deterministic computation
Randomized Decision Trees

Recall two views of randomized computation

- Randomly decide (based on fresh coin flips, and queries and answers so far) what variable to query
- Flip all coins up front and then run a deterministic computation

i.e., randomly choose a (deterministic) decision tree
Randomized Decision Trees
Randomized Decision Trees

- Complexity measure
Randomized Decision Trees

- Complexity measure
 - Expected number of bits read, max over all inputs
Randomized Decision Trees

- Complexity measure
 - Expected number of bits read, max over all inputs
 - Note: No error allowed (Las Vegas)
Randomized Decision Trees

Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial) input. i.e., input chosen “before” the random choice
Randomized Decision Trees

Complexity measure

- Expected number of bits read, max over all inputs

- Note: No error allowed (Las Vegas)

- Random decision tree chosen independent of the (adversarial) input. i.e., input chosen “before” the random choice

- Gets more power over the “adversary”
Randomized Decision Trees

- Complexity measure
 - Expected number of bits read, max over all inputs
 - Note: No error allowed (Las Vegas)
- Random decision tree chosen independent of the (adversarial) input. i.e., input chosen “before” the random choice
- Gets more power over the “adversary”
 - Adversary can’t find a single pair of inputs that force many reads for all random choices
Randomized Decision Trees

- Complexity measure
 - Expected number of bits read, max over all inputs
 - Note: No error allowed (Las Vegas)
- Random decision tree chosen independent of the (adversarial) input. i.e., input chosen “before” the random choice
- Gets more power over the “adversary”
 - Adversary can’t find a single pair of inputs that force many reads for all random choices
- Question: How to prove lower-bounds against randomization?
Yao's Min-Max
Yao’s Min-Max

Interested in expected cost (running time)
Yao’s Min-Max

Interested in expected cost (running time)
Yao’s Min-Max

Interested in expected cost (running time)

\[
\begin{array}{cccc}
0.125 & 0.25 & 0.5 & 0.125 \\
\end{array}
\]

\begin{array}{cccc}
\hline
\text{(Deterministic) Algorithms} \\
\hline
\text{Input} s & T_{A,x} \\
\hline
\end{array}
Yao’s Min-Max

- Interested in expected cost (running time)
- Standard setting: Pick your randomized algorithm R; input x given adversarially
Yao’s Min–Max

- Interested in expected cost (running time)
- Standard setting: Pick your randomized algorithm R; input x given adversarially
- (Or may allow random input: not useful to the adversary)
Yao’s Min-Max

Interested in expected cost (running time)

Standard setting: Pick your randomized algorithm R; input x given adversarially

(Or may allow random input: not useful to the adversary)

Another setting: Given adversarial input distribution X; pick your deterministic algorithm A
Yao’s Min-Max

- Interested in expected cost (running time)

- Standard setting: Pick your randomized algorithm R; input x given adversarially

 (Or may allow random input: not useful to the adversary)

- Another setting: Given adversarial input distribution X; pick your deterministic algorithm A

 (Allowing randomized algorithm no better)
Yao’s Min–Max

- Interested in expected cost (running time)

- Standard setting: Pick your randomized algorithm R; input x given adversarially

 (Or may allow random input: not useful to the adversary)

- Another setting: Given adversarial input distribution X; pick your deterministic algorithm A

 (Allowing randomized algorithm no better)

- Both have the same expected cost!! (not obvious: follows from LP duality)
Yao’s Min–Max
Yao’s Min–Max

\[\min_{\text{rand-alg } R} \max_{\text{input } x} E_{A \leftarrow R[T_A,x]} = \max_{\text{inp-distr } X} \min_{\text{alg } A} E_{X \leftarrow X[T_A,x]} \]
Yao’s Min–Max

\[\min_{\text{rand-alg } R} \max_{\text{input } x} E_{A \leftarrow R[T_A,x]} = \max_{\text{inp-distr } X} \min_{\text{alg } A} E_{X \leftarrow X[T_A,x]} \]

Simpler, but useful direction: for any randomized alg R and any input-distribution X, \[\max_{\text{input } x} E_{A \leftarrow R[T_A,x]} \geq \min_{\text{alg } A} E_{X \leftarrow X[T_A,x]} \]
Yao’s Min–Max

\[\min_{\text{rand-alg } R} \max_{\text{input } x} E_{A \leftarrow R}[T_{A,x}] = \max_{\text{inp-distr } X} \min_{\text{alg } A} E_{x \leftarrow X}[T_{A,x}] \]

Simpler, but useful direction: for any randomized alg \(R \) and any input-distribution \(X \), \(\max_{\text{input } x} E_{A \leftarrow R}[T_{A,x}] \geq \min_{\text{alg } A} E_{x \leftarrow X}[T_{A,x}] \)

If every algorithm \(A \) performs badly on an input-distribution \(X \), then a randomized combination of those algorithms also perform badly on \(X \). If \(R \) does badly on \(X \), on some \(x \) in its support it does at least as badly (\(x \) depends on \(R \))
Yao’s Min–Max

\[\min_{\text{rand-alg } R} \max_{\text{input } x} E_{A \leftarrow R[T_A,x]} = \max_{\text{inp-distr } X} \min_{\text{alg } A} E_{X \leftarrow X[T_A,x]} \]

Simpler, but useful direction: for any randomized alg R and any input-distribution X, \[\max_{\text{input } x} E_{A \leftarrow R[T_A,x]} \geq \min_{\text{alg } A} E_{X \leftarrow X[T_A,x]} \]

If every algorithm A performs badly on an input-distribution X, then a randomized combination of those algorithms also perform badly on X. If R does badly on X, on some x in its support it does at least as badly (x depends on R)

Useful: Can show lower-bound for randomized algorithms via lower-bound on distributional complexity for deterministic algorithms