Probabilistic Computation

Lecture 14
BPP, ZPP
Zoo
Zoo
Zoo
BPP-Complete Problem?
BPP-Complete Problem?

Not known!
BPP-Complete Problem?

Not known!

$L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \}$?
BPP-Complete Problem?

- Not known!

- \(L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \) ?

- Is indeed BPP-Hard
BPP-Complete Problem?

Not known!

$L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \}$?

Is indeed BPP-Hard

But in BPP?
BPP–Complete Problem?

Not known!

$L = \{ (M,x,1^t) | M(x) = \text{yes in time } t \text{ with probability } > 2/3 \}$?

Is indeed BPP–Hard

But in BPP?

Just run $M(x)$ for t steps and accept if it accepts?
BPP-Complete Problem?

Not known!

\[L = \{ (M, x, 1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \]

Is indeed BPP-Hard

But in BPP?

Just run \(M(x) \) for \(t \) steps and accept if it accepts?

If \((M, x, 1^t) \) in \(L \), we will indeed accept with prob. \(> 2/3 \)
BPP-Complete Problem?

Not known!

\[L = \{ (M, x, 1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \]

Is indeed BPP-Hard

But in BPP?

Just run \(M(x) \) for \(t \) steps and accept if it accepts?

If \((M, x, 1^t) \) in \(L \), we will indeed accept with prob. \(> 2/3 \)

But \(M \) may not have a bounded gap. Then, if \((M, x, 1^t) \) not in \(L \), we may accept with prob. very close to \(2/3 \).
BPTIME-Hierarchy Theorem?
BPTIME-Hierarchy Theorem?

Does $\text{BPTIME}(n) \subseteq \text{BPTIME}(n^{100})$ hold?
BPTIME-Hierarchy Theorem?

- $\text{BPTIME}(n) \subseteq \text{BPTIME}(n^{100})$?
- Not known!
BPTIME-Hierarchy Theorem?

- \(\text{BPTIME}(n) \subset \text{BPTIME}(n^{100})? \)
- Not known!
- But is true for BPTIME(T)/1
Some Probabilistic Algorithmic Concepts
Some Probabilistic Algorithmic Concepts

Sampling to determine some probability
Some Probabilistic Algorithmic Concepts

- Sampling to determine some probability

- Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time
Some Probabilistic Algorithmic Concepts

- Sampling to determine some probability

- Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time

- Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.
Some Probabilistic Algorithmic Concepts

- Sampling to determine some probability

- Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time

- Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.

- Random Walks (for sampling)
Some Probabilistic Algorithmic Concepts

Sampling to determine some probability

Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time

Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.

Random Walks (for sampling)

Monte Carlo algorithms for calculations
Some Probabilistic Algorithmic Concepts

- Sampling to determine some probability

- Checking if determinant of a symbolic matrix is zero: Substitute random values for the variables and evaluate using Gaussian elimination in polynomial time

- Polynomial Identity Testing: polynomial given as an arithmetic circuit. Like above, but values can be too large. So work over a random modulus.

- Random Walks (for sampling)

- Monte Carlo algorithms for calculations

- Reachability tests
Random Walks
Random Walks

Which nodes does the walk touch and with what probability?
Random Walks

Which nodes does the walk touch and with what probability?

How do these probabilities vary with number of steps?
Random Walks

- Which nodes does the walk touch and with what probability?
- How do these probabilities vary with number of steps?
- Analyzing a random walk
Random Walks

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps?

- Analyzing a random walk

- Probability Vector: \(p \)
Random Walks

- Which nodes does the walk touch and with what probability?
- How do these probabilities vary with number of steps?

Analyzing a random walk

- Probability Vector: \(p \)
- Transition probability matrix: \(M \)
Random Walks

- Which nodes does the walk touch and with what probability?
 - How do these probabilities vary with number of steps

- Analyzing a random walk
 - Probability Vector: \(p \)
 - Transition probability matrix: \(M \)
 - One step of the walk: \(p' = Mp \)
Random Walks

Which nodes does the walk touch and with what probability?

How do these probabilities vary with number of steps

Analyzing a random walk

- Probability Vector: \(p \)
- Transition probability matrix: \(M \)
- One step of the walk: \(p' = Mp \)
- After \(t \) steps: \(p^{(t)} = M^t p \)
Space-Bounded Probabilistic Computation
Space-Bounded Probabilistic Computation

PL, RL, BPL
Space-Bounded Probabilistic Computation

- PL, RL, BPL
- Logspace analogues of PP, RP, BPP
Space-Bounded Probabilistic Computation

- PL, RL, BPL
- Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
Space-Bounded Probabilistic Computation

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
- Recall NL ⊆ P (because PATH ∈ P)
Space-Bounded Probabilistic Computation

- PL, RL, BPL
 - Logspace analogues of PP, RP, BPP
- Note: RL \subseteq NL, RL \subseteq BPL
- Recall NL \subseteq P (because PATH \in P)
- So RL \subseteq P
Space-Bounded Probabilistic Computation

- PL, RL, BPL
- Logspace analogues of PP, RP, BPP
- Note: RL ⊆ NL, RL ⊆ BPL
- Recall NL ⊆ P (because PATH ∈ P)
- So RL ⊆ P
- In fact BPL ⊆ P
BPL \subseteq P
Consider the BPL algorithm, on input x, as a random walk over configurations.
Consider the BPL algorithm, on input x, as a random walk over configurations.

Construct the transition matrix M.

$\textbf{BPL} \subseteq \textbf{P}$
Consider the BPL algorithm, on input x, as a random walk over configurations.

Construct the transition matrix M.

Size of graph is poly(n), probability values are 0, 0.5 and 1.
Consider the BPL algorithm, on input x, as a random walk over configurations.

Construct the transition matrix M.

Size of graph is $\text{poly}(n)$, probability values are 0, 0.5 and 1.

Calculate M^t for $t = \max\text{ running time} = \text{poly}(n)$.
Consider the BPL algorithm, on input x, as a random walk over configurations

- Construct the transition matrix M

- Size of graph is $\text{poly}(n)$, probability values are 0, 0.5 and 1

- Calculate M^t for $t = \text{max running time} = \text{poly}(n)$

- Accept if $(M^t p^\text{start})_{\text{accept}} > 2/3$ where p^start is the probability distribution with all the weight on the start configuration
Zoo
Zoo
Zoo
Zoo
Zoo
Zoo
Zoo
Zoo
Zoo
Expected Running Time
Expected Running Time

Running time is a random variable too
Expected Running Time

- Running time is a random variable too
- As is the outcome of yes/no
Expected Running Time

Running time is a random variable too

As is the outcome of yes/no

May ask for running time to be polynomial only in expectation, or with high probability
Expected Running Time

- Running time is a random variable too.
- As is the outcome of yes/no.
- May ask for running time to be polynomial only in expectation, or with high probability.
- Las Vegas algorithms: only expected running time is polynomial; but when it terminates, it produces the correct answer.
Expected Running Time

- Running time is a random variable too
 - As is the outcome of yes/no
- May ask for running time to be polynomial only in expectation, or with high probability
- Las Vegas algorithms: only expected running time is polynomial; but when it terminates, it produces the correct answer
 - Zero error probability
Zero-Error Computation
Zero-Error Computation

- e.g. A simple algorithm for finding median in expected linear time
Zero-Error Computation

e.g. A simple algorithm for finding median in expected linear time

(There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes $O(n \log n)$ time.)
Zero-Error Computation

e.g. A simple algorithm for finding median in expected linear time

(There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes $O(n \log n)$ time.)

Procedure Find-element(L,k) to find k^{th} smallest element in list L
Zero-Error Computation

- e.g. A simple algorithm for finding median in expected linear time
 - (There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes $O(n \log n)$ time.)

- Procedure Find-element(L,k) to find kth smallest element in list L
 - Pick random element x in L. Scan L; divide it into $L_{>x}$ (elements > x) and $L_{<x}$ (elements < x); also determine position m of x in L.
Zero-Error Computation

e.g. A simple algorithm for finding median in expected linear time

(There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes $O(n \log n)$ time.)

Procedure Find-element(L,k) to find k^{th} smallest element in list L

Pick random element x in L. Scan L; divide it into $L_{>x}$ (elements $> x$) and $L_{<x}$ (elements $< x$); also determine position m of x in L.

If $m = k$, return x. If $m > k$, call Find-element($L_{<x}$,k), else call Find-element($L_{>x}$,k-m)
Zero-Error Computation

e.g. A simple algorithm for finding median in expected linear time

(There are non-trivial algorithms to do it in deterministic linear time. Simple sorting takes $O(n \log n)$ time.)

Procedure `Find-element(L,k)` to find k^{th} smallest element in list L

- Pick random element x in L. Scan L; divide it into $L_{>x}$ (elements $> x$) and $L_{<x}$ (elements $< x$); also determine position m of x in L.
- If $m = k$, return x. If $m > k$, call `Find-element(L_{<x},k)`, else call `Find-element(L_{>x},k-m)`

Correctness obvious. Expected running time?
Zero-Error Computation
Zero-Error Computation

- Expected running time (worst case over all lists of size n, and all k) be $T(n)$
Zero-Error Computation

- Expected running time (worst case over all lists of size n, and all k) be $T(n)$

- Time for non-recursive operations is linear: say bounded by cn. Will show inductively $T(n)$ at most $4cn$ (base case $n=1$).
Zero-Error Computation

Expected running time (worst case over all lists of size \(n \), and all \(k \)) be \(T(n) \)

Time for non-recursive operations is linear: say bounded by \(cn \). Will show inductively \(T(n) \) at most \(4cn \) (base case \(n=1 \)).

\[
T(n) \leq cn + \frac{1}{n} \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]
\]
Expected running time (worst case over all lists of size n, and all k) be $T(n)$

Time for non-recursive operations is linear: say bounded by cn. Will show inductively $T(n)$ at most $4cn$ (base case $n=1$).

$T(n) \leq cn + \frac{1}{n} [\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j)]$

$T(n) \leq cn + \frac{1}{n}4c[\sum_{j > k} j + \sum_{j < k}(n-j)]$ by inductive hypothesis

Zero-Error Computation
Zero-Error Computation

Expected running time (worst case over all lists of size n, and all k) be $T(n)$

Time for non-recursive operations is linear: say bounded by cn. Will show inductively $T(n)$ at most $4cn$ (base case $n=1$).

$T(n) \leq cn + 1/n \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]$

$T(n) \leq cn + 1/n.4c[\sum_{j > k} j + \sum_{j < k} (n-j)]$ by inductive hypothesis

$\sum_{j > k} j + \sum_{j < k} (n-j) = \sum_{j > k} j + (k-1)n - \sum_{j < k} j \leq \sum_{j} j + (k-1)n - 2 \sum_{j < k} j$
Expected running time (worst case over all lists of size n, and all k) be T(n)

Time for non-recursive operations is linear: say bounded by cn. Will show inductively T(n) at most 4cn (base case n=1).

T(n) ≤ cn + 1/n [Σ_{n≥j>k} T(j) + Σ_{0<j<k} T(n-j)]

T(n) ≤ cn + 1/n.4c[Σ_{j>k} j + Σ_{j<k} (n-j)] by inductive hypothesis

Σ_{j>k} j + Σ_{j<k} (n-j) = Σ_{j>k} j + (k-1)n - Σ_{j<k} j ≤ Σ_{j} j + (k-1)n -2 Σ_{j<k} j

≤ n^2/2 + (k-1)n - k(k-1) < n^2/2 + k(n-k) ≤ 3/4 n^2
Expected running time (worst case over all lists of size n, and all k) be $T(n)$

Time for non-recursive operations is linear: say bounded by cn. Will show inductively $T(n)$ at most $4cn$ (base case $n=1$).

$$T(n) \leq cn + 1/n \left[\sum_{n \geq j > k} T(j) + \sum_{0 < j < k} T(n-j) \right]$$

$$T(n) \leq cn + 1/n.4c[\sum_{j > k} j + \sum_{j < k} (n-j)]$$ by inductive hypothesis

$$\sum_{j > k} j + \sum_{j < k} (n-j) = \sum_{j > k} j + (k-1)n - \sum_{j < k} j \leq \sum_{j} j + (k-1)n - 2 \sum_{j < k} j$$

$$\leq n^2/2 + (k-1)n - k(k-1) < n^2/2 + k(n-k) \leq 3/4 \ n^2$$

$$T(n) \leq cn + 3cn$$ as required
Zero-Error Computation
Zero-Error Computation

Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)
Zero-Error Computation

Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)

ZPTIME(T): class of languages decided by a zero-error probabilistic TM, with expected running time at most T
Zero-Error Computation

Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)

ZPTIME(T): class of languages decided by a zero-error probabilistic TM, with expected running time at most T

ZPP = ZPTIME(poly)
Zero-Error Computation

Las-Vegas Algorithms: Probabilistic algorithms with deterministic outcome (but probabilistic run time)

ZPTIME(T): class of languages decided by a zero-error probabilistic TM, with expected running time at most T

ZPP = ZPTIME(poly)

ZPP = RP ∩ co-RP
\(\text{ZPP} \subseteq \text{RP} \)
ZPP \subseteq \text{RP}

Truncate after “long enough,” and say “no”
ZPP \subseteq RP

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
ZPP \subseteq RP

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
- Will run for “too long” only with small probability
ZPP ⊆ RP

- Truncate after "long enough," and say "no"
- Do we still have bounded (one-sided) error?
- Will run for "too long" only with small probability
 - Because expected running time short
ZPP ⊆ RP

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
- Will run for “too long” only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
ZPP \subseteq \text{RP}

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
- Will run for “too long” only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - \(\Pr[X > a \cdot E[X]] < \frac{1}{a} \) (non-negative \(X \))
ZPP ⊆ RP

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
- Will run for “too long” only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - \(\Pr[X > a \cdot E[X]] < 1/a \) (non-negative \(X \))
- Markov’s inequality
ZPP ⊆ RP

- Truncate after “long enough,” and say “no”
- Do we still have bounded (one-sided) error?
- Will run for “too long” only with small probability
 - Because expected running time short
 - With high probability the running time does not exceed the expected running time by much
 - $\Pr[X > a \cdot E[X]] < \frac{1}{a}$ (non-negative X)
 - Markov’s inequality
- $\Pr[\text{error}]$ at most $\frac{1}{a}$ if truncated after a times expected running time
\(\text{RP} \cap \text{co-RP} \subseteq \text{ZPP} \)
If \(L \in \text{RP} \cap \text{co-RP} \), then a ZPP algorithm for \(L \):

- Run both RP and coRP algorithms
- If former says yes or latter says no, output that answer
- Else, i.e., if former says no and latter says yes, repeat

\[\text{Expected number of repeats} = O(1) \]
Today
Today

- Zoo
 - \(\text{BPL} \subseteq \text{P} \)
- Expected running time
- Zero-Error probabilistic computation
- \(\text{ZPP} = \text{RP} \cap \text{co-RP} \)