Probabilistic Computation

Lecture 13
Understanding BPP
Recap
Recap

- Probabilistic computation
Recap

- Probabilistic computation
- NTM (on “random certificates”) for L:
Recap

- Probabilistic computation
- NTM (on "random certificates") for L:
 - $\Pr[M(x) = \text{yes}]$:
Recap

- Probabilistic computation
- NTM (on “random certificates”) for L:
 - $\Pr[M(x) = \text{yes}]:$

$x \notin L$

$x \in L$
Recap

- Probabilistic computation
- NTM (on “random certificates”) for L:
 - $\Pr[M(x) = yes]$: [Diagram showing $x \not\in L$ and $x \in L$.]
 - PTM for L: $Pr[yes]$: [Diagram showing $x \not\in L$ and $x \in L$.]
Recap

- Probabilistic computation
- NTM (on “random certificates”) for L:
 - \(\Pr[M(x) = \text{yes}] \):
 - PTM for L: \(\Pr[\text{yes}] \):
 - BPTM for L: \(\Pr[\text{yes}] \):
Recap

- Probabilistic computation
- NTM (on “random certificates”) for L:
 - $\Pr[M(x)=\text{yes}]:$
 - PTM for L: $\Pr[\text{yes}]:$
 - BPTM for L: $\Pr[\text{yes}]:$
 - RTM for L: $\Pr[\text{yes}]:$
Recap
Recap

PP, RP, co-RP, BPP
Recap

- PP, RP, co-RP, BPP
- PP too powerful: NP \subseteq PP
Recap

- PP, RP, co-RP, BPP
- PP too powerful: NP \subseteq PP
- RP, BPP, with bounded gap
Recap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1−1/exp
Recap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model
Recap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from $1/poly$ to $1-1/exp$
 - A realistic/useful computational model
- Today:
Recap

- PP, RP, co-RP, BPP
 - PP too powerful: \(\text{NP} \subseteq \text{PP} \)
 - RP, BPP, with bounded gap
 - Gap can be boosted from \(1/\text{poly} \) to \(1 - 1/\text{exp} \)
 - A realistic/useful computational model
- Today:
 - \(\text{NP} \not\subseteq \text{BPP} \), unless \(\text{PH} \) collapses
Recap

- PP, RP, co-RP, BPP
 - PP too powerful: NP ⊆ PP
 - RP, BPP, with bounded gap
 - Gap can be boosted from 1/poly to 1-1/exp
 - A realistic/useful computational model

Today:

- NP ⊄ BPP, unless PH collapses
- BPP ⊆ Σ₂^P ∩ Π₂^P
BPP vs. NP
BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?
BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: $\text{NP} \subseteq \text{BPP} \Rightarrow \text{PH} = \Sigma_2^P$
BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: $\text{NP} \subseteq \text{BPP} \Rightarrow \text{PH} = \Sigma_2^P$

Will show $\text{BPP} \subseteq \text{P/poly}$
BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: $\text{NP} \subseteq \text{BPP} \Rightarrow \text{PH} = \Sigma_2^P$

Will show $\text{BPP} \subseteq \text{P/poly}$

Then $\text{NP} \subseteq \text{BPP} \Rightarrow \text{NP} \subseteq \text{P/poly}$
BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: $\text{NP} \subseteq \text{BPP} \Rightarrow \text{PH} = \Sigma_2^P$

Will show $\text{BPP} \subseteq \text{P/poly}$

Then $\text{NP} \subseteq \text{BPP} \Rightarrow \text{NP} \subseteq \text{P/poly}$

$\Rightarrow \text{PH} = \Sigma_2^P$
BPP ⊆ P/poly
BPP \subseteq P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2^n inputs of length n
BPP \subseteq P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2^n inputs of length n.
BPP ⊆ P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2^n inputs of length n.

Then, can give that random tape as advice.
BPP ⊆ P/poly

- If error probability is sufficiently small, will show there should be at least one random tape which works for all 2^n inputs of length n.

- Then, can give that random tape as advice.

- One such random tape if average (over x) error probability is less than 2^{-n}.
BPP ⊆ P/poly

If error probability is sufficiently small, will show there should be at least one random tape which works for all 2^n inputs of length n

Then, can give that random tape as advice

One such random tape if average (over x) error probability is less than 2^{-n}

BPP: can make worst error probability < 2^{-n}
BPP vs. PH
BPP vs. PH

\[\text{BPP} \subseteq \Sigma_2^P \]
BPP vs. PH

- $\text{BPP} \subseteq \Sigma_2^p$

- So $\text{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p$
\[\text{BPP} \subseteq \Sigma_2^p \]
$\text{BPP} \subseteq \Sigma_2^p$

$x \in L$: “for almost all” r, $M(x,r) = \text{yes}$
\[\text{BPP} \subseteq \Sigma_2^p \]

- \(x \in L \): “for almost all” \(r \), \(M(x,r) = \text{yes} \)
- \(x \notin L \): \(M(x,r) = \text{yes} \) for very few \(r \)
\[\text{BPP} \subseteq \Sigma^p_2 \]

- \(x \in L \): “for almost all” \(r \), \(M(x,r)=\text{yes} \)
- \(x \notin L \): \(M(x,r)=\text{yes} \) for very few \(r \)
- \(L = \{ x | \text{for almost all } r, M(x,r)=\text{yes} \} \)
BPP \subseteq \Sigma_2^P

- \(x \in L \): “for almost all” \(r \), \(M(x,r) = \text{yes} \)
- \(x \notin L \): \(M(x,r) = \text{yes} \) for very few \(r \)

\[L = \{ x | \text{for almost all } r, \ M(x,r) = \text{yes} \} \]

- If it were “for all”, in coNP
\[
BPP \subseteq \Sigma_2^p
\]

\- \(x \in L \): “for almost all” \(r \), \(M(x, r) = yes \)

\- \(x \notin L \): \(M(x, r) = yes \) for very few \(r \)

\[L = \{ x \mid \text{for almost all } r, \ M(x, r) = yes \} \]

\- If it were “for all”, in \(coNP \)

\[L = \{ x \mid \exists \text{ a small “neighborhood”, } \forall z, \text{ for some } r \text{ “near” } z, \ M(x, r) = yes \} \]
BPP ⊆ Σ^{2}_{p}

- \(x \in L \): “for almost all” \(r \), \(M(x,r)=yes \)
- \(x \notin L \): \(M(x,r)=yes \) for very few \(r \)
- \(L = \{ x \mid \text{for almost all } r, M(x,r)=yes \} \)

- If it were “for all”, in coNP

 \(L = \{ x \mid \exists a \text{ small “neighborhood”, } \forall z, \text{ for some } r \text{ “near” } z, M(x,r)=yes \} \)

- Note: Neighborhood of \(z \) is small (polynomially large), so can go through all of them in polynomial time
\[\text{BPP} \subseteq \Sigma_2^P \]

Space of random tapes = \(\{0,1\}^m \)

\(\text{Yes}_x = \{r \mid M(x,r) = \text{yes} \} \)
\(\text{BPP} \subseteq \Sigma_2^p \)

\[x \in L: |\text{Yes}_x| > (1 - 2^{-n})2^m \]

Space of random tapes = \(\{0,1\}^m \)

\[\text{Yes}_x = \{r | M(x,r) = \text{yes} \} \]
$\text{BPP} \subseteq \Sigma_2^p$

$x \in L: |\text{Yes}_x| > (1-2^{-n})2^m$

$x \notin L: |\text{Yes}_x| < 2^{-n}2^m$

Space of random tapes = $\{0,1\}^m$

$\text{Yes}_x = \{r | M(x,r) = \text{yes} \}$
BPP ⊆ \Sigma_2^P

\[
\begin{align*}
 x \in L: |\text{Yes}_x| &> (1 - 2^{-n})2^m \\
 x \notin L: |\text{Yes}_x| &< 2^{-n}2^m
\end{align*}
\]

Space of random tapes = \{0,1\}^m

\[\text{Yes}_x = \{r | M(x,r) = \text{yes}\}\]

\[\text{\textbullet x} \in L: \text{Will show that there exist a small set of shifts of Yes}_x \text{ that cover all } z\]
$\text{BPP} \subseteq \Sigma_2^p$

$x \in L: |\text{Yes}_x| > (1 - 2^{-n}) 2^m$

$x \notin L: |\text{Yes}_x| < 2^{-n} 2^m$

Space of random tapes = $\{0,1\}^m$

$\text{Yes}_x = \{r | M(x,r) = \text{yes} \}$

$\hat{\diamond} x \in L: \text{Will show that there exist a small set of shifts of } \text{Yes}_x \text{ that cover all } z$

$\hat{\diamond} \text{If } z \text{ is a shift of } r \in \text{Yes}_x, \text{ } r \text{ is in the neighborhood of } z$
$\textbf{BPP} \subseteq \Sigma_2^P$

$x \in L$: $|\text{Yes}_x| > (1-2^{-n})2^m$

$x \notin L$: $|\text{Yes}_x| < 2^{-n}2^m$

Space of random tapes = $\{0,1\}^m$

$\text{Yes}_x = \{r | \text{M}(x,r) = \text{yes}\}$

$x \in L$: Will show that there exist a small set of shifts of Yes_x that cover all z

- If z is a shift of $r \in \text{Yes}_x$, r is in the neighborhood of z

$x \notin L$: Yes_x very small, so its few shifts cover only a small region
\text{BPP} \subseteq \Sigma^p_{2}
BPP \subseteq \Sigma_2^P

“A small set of shifts”: \(P = \{u_1, u_2, ..., u_k\} \)
BPP \subseteq \Sigma_2^P

“A small set of shifts”: \(P = \{u_1, u_2, \ldots, u_k\} \)

\(P(r) = \{ r\oplus u_1, r\oplus u_2, \ldots, r\oplus u_k \} \) where \(r, u_i \) are \(m \)-bit strings, and \(k \) is “small” (poly(n))
$\text{BPP} \subseteq \Sigma_2^P$

“A small set of shifts”: $P = \{u_1, u_2, \ldots, u_k\}$

$P(r) = \{r \oplus u_1, r \oplus u_2, \ldots, r \oplus u_k\}$ where r, u_i are m-bit strings, and k is “small” (poly(n))

For each $x \in L$, does there exist a P s.t. $P(\text{Yes}_x) := \cup_{r \in \text{Yes}(x)} P(r) = \{0, 1\}^m$?
\[\text{BPP} \subseteq \Sigma_2^P \]

"A small set of shifts": \(P = \{u_1, u_2, \ldots, u_k\} \)

\(P(r) = \{ r \oplus u_1, r \oplus u_2, \ldots, r \oplus u_k \} \) where \(r, u_i \) are \(m \)-bit strings, and \(k \) is "small" (\(\text{poly}(n) \))

For each \(x \in L \), does there exist a \(P \) s.t. \(P(\text{Yes}_x) := \bigcup_{r \in \text{Yes}_x} P(r) = \{0,1\}^m \)?

Yes! For all large \(S \) (like \(\text{Yes}_x \)) can indeed find a \(P \) s.t. \(P(S) = \{0,1\}^m \)
\[\text{BPP} \subseteq \Sigma_2^P \]

“A small set of shifts”: \(P = \{u_1, u_2, ..., u_k\} \)

\(P(r) = \{ r \oplus u_1, r \oplus u_2, ..., r \oplus u_k \} \) where \(r, u_i \) are m-bit strings, and \(k \) is “small” (\(\text{poly}(n) \))

For each \(x \in L \), does there exist a \(P \) s.t. \(P(\text{Yes}_x) := \bigcup_{r \in \text{Yes}(x)} P(r) = \{0,1\}^m \)?

Yes! For all large \(S \) (like \(\text{Yes}_x \)) can indeed find a \(P \) s.t. \(P(S) = \{0,1\}^m \)

In fact, most \(P \) work (if \(k \) big enough)!
$\text{BPP} \subseteq \Sigma^p_2$
\(\text{BPP} \subseteq \Sigma_2^P \)

- Probabilistic Method (finding hay in haystack)
$\text{BPP} \subseteq \Sigma_2^P$

- Probabilistic Method (finding hay in haystack)
- To prove $\exists \mathbf{P}$ with some property
$\text{BPP} \subseteq \Sigma_2^P$

- Probabilistic Method (finding hay in haystack)
- To prove $\exists P$ with some property
- Define a probability distribution over all candidate P's and prove that the property holds with positive probability (often even close to one)
\[\text{BPP} \subseteq \sum_2^P \]

- Probabilistic Method (finding hay in haystack)
 - To prove \(\exists P \) with some property
 - Define a probability distribution over all candidate \(P \)'s and prove that the property holds with positive probability (often even close to one)
 - Distribution s.t. easy to prove positive probability of property holding
\(\text{BPP} \subseteq \Sigma_2^p \)
\[\text{BPP} \subseteq \Sigma_2^P \]

Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \),
\(P(S) = \{0, 1\}^m \)
\[\text{BPP} \subseteq \Sigma_2^P \]

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \),
 \(P(S) = \{0,1\}^m \)
- Distribution over \(P \)'s: randomized experiment to generate \(P \)
\[\text{BPP} \subseteq \Sigma_2^p \]

- Probabilistic method to find \(\mathbf{P} = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(\mathbf{P}(S) = \{0,1\}^m \)

- Distribution over \(\mathbf{P} \)'s: randomized experiment to generate \(\mathbf{P} \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)
\(\text{BPP} \subseteq \Sigma_2^p \)

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

- \(\Pr_{(\text{over } P)}[P(S) \neq \{0,1\}^m] = \Pr_{(\text{over } P)}[\exists z \; z \notin P(S)] \)
\[\text{BPP} \subseteq \Sigma_2^P \]

\footnotesize{Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

\footnotesize{Distribution over \(P \)'s: randomized experiment to generate \(P \)

\footnotesize{Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

\footnotesize{\(\text{Pr}(\text{over } P)[P(S) \neq \{0,1\}^m] = \text{Pr}(\text{over } P)[\exists z \ z \notin P(S)] \leq \sum_z \text{Pr}(\text{over } P)[z \notin P(S)] \)}
BPP ⊆ Σ²

Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0, 1\}^m \)

Distribution over \(P \)'s: randomized experiment to generate \(P \)

Pick each \(u_i \) independently, and uniformly at random from \(\{0, 1\}^m \)

\[\Pr(\text{over } P)[P(S) \neq \{0, 1\}^m] = \Pr(\text{over } P)[\exists z \ z \notin P(S)] \]
\[\leq \Sigma z \ \Pr(\text{over } p)[z \notin P(S)] = \Sigma z \ \Pr(\text{over } u_1 \ldots u_k)[\forall i \ z \oplus u_i \notin S] \]
\(\text{BPP} \subseteq \Sigma_2^P \)

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

- \(\Pr_{\text{over } P}[P(S) \neq \{0,1\}^m] = \Pr_{\text{over } P}[\exists z \ z \notin P(S)] \)
 \[\leq \sum_z \Pr_{\text{over } P}[z \notin P(S)] = \sum_z \Pr_{\text{over } u_1..u_k}[\forall i \ z \oplus u_i \notin S] \]
 \[= \sum_z \prod_i \Pr_{\text{over } u_i}[z \oplus u_i \notin S] \]
BPP \subseteq \Sigma_2^P

- Probabilistic method to find $P = \{u_1,u_2,\ldots,u_k\}$, s.t. for all large S, $P(S) = \{0,1\}^m$

- Distribution over P's: randomized experiment to generate P

- Pick each u_i independently, and uniformly at random from $\{0,1\}^m$

- $\Pr_{\text{over } P}[P(S) \neq \{0,1\}^m] = \Pr_{\text{over } P}[\exists z \ z \notin P(S)]$
 \[\leq \sum_z \Pr_{\text{over } P}[z \notin P(S)] = \sum_z \Pr_{\text{over } u_1..u_k}[\forall i \ z \oplus u_i \notin S] \]
 \[= \sum_z \prod_i \Pr_{\text{over } u_i}[z \oplus u_i \notin S] = \sum_z \prod_i \Pr_{\text{over } u_i}[u_i \notin z \oplus S] \]
\(\text{BPP} \subseteq \Sigma_2^P \)

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

\[
\Pr_{\text{over } P}[P(S) \neq \{0,1\}^m] = \Pr_{\text{over } P}[\exists z \; z \notin P(S)] \\
\leq \sum_z \Pr_{\text{over } P}[z \notin P(S)] = \sum_z \Pr_{\text{over } u_1..u_k}[\forall i \; z \oplus u_i \notin S] \\
= \sum_z \prod_i \Pr_{\text{over } u_i}[z \oplus u_i \notin S] = \sum_z \prod_i \Pr_{\text{over } u_i}[u_i \notin z \oplus S] \\
= \sum_z \prod_i (|S^c|/2^m)
\]
\[\text{BPP} \subseteq \Sigma_2^P \]

- Probabilistic method to find \(P = \{ u_1, u_2, ..., u_k \} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

- \(\Pr_{\text{over } P}[P(S) \neq \{0,1\}^m] = \Pr_{\text{over } P}[\exists z \ z \notin P(S)] \)

\[
\leq \sum_z \Pr_{\text{over } P}[z \notin P(S)] = \sum_z \Pr_{\text{over } u_1...u_k}[\forall i \ z \oplus u_i \notin S]
\]

\[
= \sum_z \Pi_i \Pr_{\text{over } u_i}[z \oplus u_i \notin S] = \sum_z \Pi_i \Pr_{\text{over } u_i}[u_i \notin z \oplus S]
\]

\[
= \sum_z \Pi_i \left(|S^c|/2^m \right) < \sum_z \Pi_i 2^{-n}
\]
\[\mathsf{BPP} \subseteq \Sigma_2^P \]

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

\[\Pr_{\text{over } P}[P(S) \neq \{0,1\}^m] = \Pr_{\text{over } P}[\exists z \ z \notin P(S)] \leq \sum_z \Pr_{\text{over } P}[z \notin P(S)] = \sum_z \Pr_{\text{over } u_1 \ldots u_k}[\forall i \ z \oplus u_i \notin S] = \sum_z \prod_i \Pr_{\text{over } u_i}[z \oplus u_i \notin S] = \sum_z \prod_i \Pr_{\text{over } u_i}[u_i \notin z \oplus S] = \sum_z \prod_i (|S^c|/2^m) < \sum_z \prod_i 2^{-n} = 2^m.(2^{-n})^k = 1 \]
\[\text{BPP} \subseteq \Sigma_2^P \]

- Probabilistic method to find \(P = \{u_1, u_2, \ldots, u_k\} \), s.t. for all large \(S \), \(P(S) = \{0,1\}^m \)

- Distribution over \(P \)'s: randomized experiment to generate \(P \)

- Pick each \(u_i \) independently, and uniformly at random from \(\{0,1\}^m \)

- \(\Pr \text{(over } P) [P(S) \neq \{0,1\}^m] = \Pr \text{(over } P) [\exists z \ z \notin P(S)] \)

= \(\sum z \Pr \text{(over } P) [z \notin P(S)] = \sum z \Pr \text{(over } u_1 \ldots u_k) [\forall i \ z \oplus u_i \notin S] \)

= \(\sum z \prod_i \Pr \text{(over } u_i) [z \oplus u_i \notin S] = \sum z \prod_i \Pr \text{(over } u_i) [u_i \notin z \oplus S] \)

= \(\sum z \prod_i (|S^c|/2^m) < \sum z \prod_i 2^{-n} = 2^m(2^{-n})^k = 1 \)

- So (with \(|S| > (1-2^{-n})2^m \) and \(k=m/n \), \(\exists P, P(S) = \{0,1\}^m \)
\[\text{BPP} \subseteq \Sigma_2^p \]

\[x \in L: |\text{Yes}_x| > (1 - 2^{-n})2^m \]

\[x \notin L: |\text{Yes}_x| < 2^{-n}2^m \]

Space of random strings = \{0,1\}^m

\[\text{Yes}_x = \{ r \mid M(x,r) = \text{yes} \} \]
For each $x \in L$, $\exists P$ (of size $k=m/n$) s.t. $P(\text{Yes}_x) = \{0,1\}^m$.

$\text{BPP} \subseteq \Sigma_2^P$

$x \in L$: $|\text{Yes}_x| > (1 - 2^{-n})2^m$

$x \notin L$: $|\text{Yes}_x| < 2^{-n}2^m$

Space of random strings = $\{0,1\}^m$

$\text{Yes}_x = \{r | M(x,r) = \text{yes} \}$

For each $x \in L$, $\exists P$ (of size $k=m/n$) s.t. $P(\text{Yes}_x) = \{0,1\}^m$.
For each $x \in L$, $|\text{Yes}_x| > (1-2^{-n})2^m$

For each $x \notin L$, $P(\text{Yes}_x) \subseteq \{0,1\}^m$

$\text{BPP} \subseteq \Sigma_2^P$

Space of random strings = $\{0,1\}^m$

$\text{Yes}_x = \{r | M(x,r) = \text{yes}\}$

For each $x \in L$, $\exists P$ (of size $k=m/n$) s.t. $P(\text{Yes}_x) = \{0,1\}^m$

For each $x \notin L$, $P(\text{Yes}_x) \subseteq \{0,1\}^m$
\[\text{BPP} \subseteq \Sigma_2^P \]

For each \(x \in L \), \(\exists P \) (of size \(k = m/n \)) s.t. \(P(\text{Yes}_x) = \{0,1\}^m \)

For each \(x \not\in L \), \(P(\text{Yes}_x) \subset \{0,1\}^m \)

Space of random strings = \(\{0,1\}^m \)

\(\text{Yes}_x = \{ r \mid M(x,r) = \text{yes} \} \)

\[|P(\text{Yes}_x)| \leq k|\text{Yes}_x| = (m/n) 2^{-n}2^m < 2^m \]
\[\text{BPP} \subseteq \Sigma_2^p \]

For each \(x \in L \), \(\exists P \) (of size \(k = \frac{m}{n} \)) s.t. \(P(\text{Yes}_x) = \{0, 1\}^m \)

For each \(x \notin L \), \(P(\text{Yes}_x) \subseteq \{0, 1\}^m \)

\[| P(\text{Yes}_x) | \leq k | \text{Yes}_x | = \left(\frac{m}{n} \right) 2^{-n} 2^m < 2^m \]

\[L = \{ x | \exists P \forall z \text{ for some } r \in P^{-1}(z) \text{ M}(x,r) = \text{yes} \} \]

Space of random strings = \{0,1\}^m

\[\text{Yes}_x = \{ r | \text{M}(x,r) = \text{yes} \} \]
BPP-Complete Problem?
BPP-Complete Problem?

Not known!
BPP-Complete Problem?

Not known!

$L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \}$?
BPP-Complete Problem?

Not known!

$L = \{ (M,x,1^t) \mid \text{M(x)=yes in time } t \text{ with probability } > \frac{2}{3} \}$?

Is indeed BPP-Hard
BPP-Complete Problem?

Not known!

\[L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \]

Is indeed BPP-Hard

But in BPP?
BPP-Complete Problem?

Not known!

\[L = \{ (M,x,1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \]

Is indeed BPP-Hard

But in BPP?

Just run \(M(x) \) for \(t \) steps and accept if it accepts?
BPP-Complete Problem?

- Not known!
- \(L = \{ (M,x,1^t) \ | \ M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \) ?
- Is indeed BPP-Hard
- But in BPP?
 - Just run \(M(x) \) for \(t \) steps and accept if it accepts?
 - If \((M,x,1^t)\) in \(L \), we will indeed accept with prob. > 2/3
BPP-Complete Problem?

Not known!

\[L = \{ (M, x, 1^t) \mid M(x) = \text{yes in time } t \text{ with probability } > 2/3 \} \]

Is indeed BPP-Hard

But in BPP?

Just run \(M(x) \) for \(t \) steps and accept if it accepts?

If \((M, x, 1^t)\) in \(L \), we will indeed accept with prob. \(> 2/3 \)

But \(M \) may not have a bounded gap. Then, if \((M, x, 1^t)\) not in \(L \), we may accept with prob. very close to \(2/3 \).
BPTIME-Hierarchy Theorem?
BPTIME-Hierarchy Theorem?

BPTIME(n) ⊊ BPTIME(n^{100})?
BPTIME-Hierarchy Theorem?

- $\text{BPTIME}(n) \nsubseteq \text{BPTIME}(n^{100})$?
- Not known!
BPTIME-Hierarchy Theorem?

- $\text{BPTIME}(n) \subseteq \text{BPTIME}(n^{100})$?
- Not known!
- But is true for $\text{BPTIME}(T)/1$
Today
Today

Probabilistic computation
Today

- Probabilistic computation
- $\mathsf{BPP} \subseteq \mathsf{P/poly}$ (so if $\mathsf{NP} \subseteq \mathsf{BPP}$, then $\mathsf{PH}=\Sigma_2^P$)
Today

- Probabilistic computation
- \(\text{BPP} \subseteq \text{P/poly} \) (so if \(\text{NP} \subseteq \text{BPP} \), then \(\text{PH} = \Sigma_2^P \))
- \(\text{BPP} \subseteq \Sigma_2^P \cap \Pi_2^P \)
Today

- Probabilistic computation
- $\text{BPP} \subseteq \text{P/poly}$ (so if $\text{NP} \subseteq \text{BPP}$, then $\text{PH}=\Sigma_2^P$)
- $\text{BPP} \subseteq \Sigma_2^P \cap \Pi_2^P$
- Coming up
Today

- Probabilistic computation
- \(\text{BPP} \subseteq \text{P/poly} \) (so if \(\text{NP} \subseteq \text{BPP} \), then \(\text{PH}=\Sigma_2^P \))
- \(\text{BPP} \subseteq \Sigma_2^P \cap \Pi_2^P \)
- Coming up
 - Basic randomized algorithmic techniques
Today

- Probabilistic computation
- $\text{BPP} \subseteq \text{P/poly}$ (so if $\text{NP} \subseteq \text{BPP}$, then $\text{PH}=\Sigma_2^P$)
- $\text{BPP} \subseteq \Sigma_2^P \cap \Pi_2^P$
- Coming up
 - Basic randomized algorithmic techniques
 - Saving on randomness