Computational Complexity

Lecture 4
in which Diagonalization takes on itself,
and we enter Space Complexity
Meta-Questions
Meta-Questions
Meta-Questions

“Real” Questions
Meta-Questions

“Real” Questions “Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem
 NP-complete?

Results non-specialists
 would care about

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

Results non-specialists would care about

“Meta” Questions

What can we do with an oracle for SAT?
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

Results non-specialists would care about

“Meta” Questions

What can we do with an oracle for SAT?

Will this proof technique work?
Meta-Questions

"Real" Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

Results non-specialists would care about

"Meta" Questions

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results
Meta-Questions

“Real” Questions

SAT in \text{DTIME}(n^2)?

Is my problem \text{NP}-complete?

Results non-specialists would care about

“Meta” Questions

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

Under-the-hood stuff
Oracles
Oracles

What if we had an oracle for language A
Oracles

What if we had an oracle for language A

- **Class** P_A: $L \in P_A$ if
What if we had an oracle for language A

Class P^A: $L \in P^A$ if

L decided by a TM M^A, in poly time
Oracles

What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time

- Turing reduction: $L \leq_T A$
Oracles

What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time
- Turing reduction: $L \leq_T A$

- **Class NP^A:** $L \in NP^A$ if
Oracles

What if we had an oracle for language A

Class P^A: $L \in P^A$ if
- L decided by a TM M^A, in poly time

Turing reduction: $L \leq_T A$

Class NP^A: $L \in NP^A$ if
- L decided by an NTM M^A, in poly time
Oracles

What if we had an oracle for language A

Class P^A: $L \in P^A$ if
- L decided by a TM M^A, in poly time

Turing reduction: $L \leq_T A$

Class NP^A: $L \in NP^A$ if
- L decided by an NTM M^A, in poly time

Equivalently, $L = \{x | \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x, w) \in L' \}$, where L' is in P^A
Oracles

What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time

- Turing reduction: $L \leq_T A$

- **Class NP^A:** $L \in NP^A$ if
 - L decided by an NTM M^A, in poly time

Equivalently, $L = \{x| \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x,w) \in L'\}$, where L' is in P^A

Equivalence carries over!
Proofs that Relativize
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along

- e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along.

- e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle \(A \).

- Said to “relativize”
P vs. NP with oracles
P vs. NP with oracles

How does P vs. NP fare relative to different oracles?
P vs. NP with oracles

- How does P vs. NP fare relative to different oracles?
- Does their relation (equality or not) relativize?
P vs. NP with oracles

- How does P vs. NP fare relative to different oracles?
- Does their relation (equality or not) relativize?
- No! Different in different worlds!
P vs. NP with oracles

- How does P vs. NP fare relative to different oracles?
- Does their relation (equality or not) relativize?
- No! Different in different worlds!

- There exist languages A, B such that
 \(P^A = NP^A \), but \(P^B \neq NP^B \)!
A s.t. $P^A = NP^A$
A s.t. $P^A = NP^A$

If A is EXP-complete (w.r.t \leq_{Cook} or \leq_{P}), $P^A = NP^A = EXP$
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$
- A EXP-hard $\Rightarrow EXP \subseteq P^A \subseteq NP^A$
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$
- A EXP-hard \Rightarrow $EXP \subseteq P^A \subseteq NP^A$
- A in EXP \Rightarrow $NP^A \subseteq EXP$ (note: to decide a language in NP^A can try all possible witnesses, and carry out P^A computation in exponential time)
A s.t. \(P^A = NP^A \)

- If A is EXP-complete (w.r.t \(\leq_{\text{Cook}} \) or \(\leq_{P} \)), \(P^A = NP^A = \text{EXP} \)

- A EXP-hard \(\Rightarrow \) \(\text{EXP} \subseteq P^A \subseteq NP^A \)

- A in EXP \(\Rightarrow \) \(NP^A \subseteq \text{EXP} \) (note: to decide a language in \(NP^A \) can try all possible witnesses, and carry out \(P^A \) computation in exponential time)

- A simple EXP-complete language:
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$

- A EXP-hard \Rightarrow EXP $\subseteq P^A \subseteq NP^A$

- A in EXP $\Rightarrow NP^A \subseteq EXP$ (note: to decide a language in NP^A can try all possible witnesses, and carry out P^A computation in exponential time)

- A simple EXP-complete language:

 $EXPTM = \{ (M,x,1^n) \mid \text{TM represented by } M \text{ accepts } x \text{ within time } 2^n \}$
B s.t. $P^B \neq NP^B$
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$
$B \text{ s.t. } P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
Building B and L, s.t. L in $\text{NP}^B \setminus \text{P}^B$.

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
B s.t. \(P_B \neq NP_B \)

Building B and L, s.t. L in \(NP_B \setminus P_B \)

\(L = \{1^n| \exists w, |w|=n \text{ and } w \in B\} \)
B s.t. \(P^B \neq NP^B \)

Building B and L, s.t. L in \(NP^B \setminus P^B \)

\[L = \{1^n | \exists w, |w| = n \text{ and } w \in B \} \]
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

\[L = \{1^n | \exists w, |w| = n \text{ and } w \in B\} \]

L in NP^B. To do: L not in P^B
Building B and L, s.t. L in $\text{NP}^B \setminus \text{P}^B$

$L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
\[B \text{ s.t. } P^B \neq NP^B \]

Building \(B \) and \(L \), s.t. \(L \) in \(NP^B \backslash P^B \)

- \(L = \{1^n| \exists w, |w|=n \text{ and } w \in B\} \)
- \(L \) in \(NP^B \). To do: \(L \) not in \(P^B \)
 - For each \(i \), ensure \(M_i^B \) in \(2^{n-1} \) time gets \(L(1^n) \) wrong (for some new \(n \))
\(B \) s.t. \(P^B \neq NP^B \)

Building \(B \) and \(L \), s.t. \(L \) in \(NP^B \backslash P^B \)

- \(L = \{1^n| \exists w, |w|=n \text{ and } w \in B \} \)
- \(L \) in \(NP^B \). To do: \(L \) not in \(P^B \)
 - For each \(i \), ensure \(M_i^B \) in \(2^{n-1} \) time gets \(L(1^n) \) wrong (for some new \(n \)
Building B and L, s.t. L in $\mathsf{NP}^B \setminus \mathsf{P}^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$

L is in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
B s.t. \(P^B \neq NP^B \)

Building \(B \) and \(L \), s.t. \(L \) in \(NP^B \setminus P^B \)

- \(L = \{ 1^n \mid \exists w, |w| = n \text{ and } w \in B \} \)
- \(L \) in \(NP^B \). To do: \(L \) not in \(P^B \)
 - For each \(i \), ensure \(M_i^B \) in \(2^{n-1} \) time gets \(L(1^n) \) wrong (for some new \(n \))
 - Pick \(n \) s.t. \(B \) not yet set beyond \(1^{n-1} \). Run \(M_i \) on \(1^n \) for \(2^{n-1} \) steps.
Building B and L, s.t. L in $\text{NP}^B \setminus \text{P}^B$

$L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

- For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

- Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

- $L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
Building B and L, s.t. L is in $\text{NP}^B \setminus \text{P}^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$

L is in NP^B. To do: L is not in P^B.

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new new n).

Pick n s.t. B is not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

- $L=\{1^n | \exists w, |w|=n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. $L \in NP^B \backslash P^B$

$L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

- For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

- Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.

- When M_i queries B on $x > 1^{n-1}$, set $B(X)=0$
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w|=n$ and $w \in B\}$
L in NP^B. To do: L not in P^B
- For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
- Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
- When M_i queries B on $x > 1^{n-1}$, set $B(X) = 0$
- After M_i finished set B up to $x=1^n$ s.t. $L(1^n) \neq M_i^B(1^n)$
Meta-Result of the Day
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
- Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
- Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
- Do not further depend on internals of computation
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
- Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
- Do not further depend on internals of computation
- e.g. of non-relativizing proof: that of Cook-Levin theorem
Space Complexity
Space Complexity
Space Complexity

- Natural complexity question
Space Complexity

- Natural complexity question
- How much memory is needed
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can’t generate memory on the fly
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can’t generate memory on the fly
 - Or maybe less pressing:
Space Complexity

- Natural complexity question
- How much memory is needed
- More pressing than time:
 - Can't generate memory on the fly
- Or maybe less pressing:
 - Turns out, often a little memory can go a long way (if we can spare the time)
DSPACE and NSPACE
DSPACE and NSPACE

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows o(n) memory usage
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows $o(n)$ memory usage
- DSPACE(n) may already be inefficient in terms of time
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows $o(n)$ memory usage
- DSPACE(n) may already be inefficient in terms of time
- We shall stick to $\Omega(\log n)$
DSPACE and NSPACE

- Measure of \textit{working} memory (work-tape) used by a TM/NTM: input kept in a read-only tape

- Model allows $o(n)$ memory usage

- $\text{DSPACE}(n)$ may already be inefficient in terms of time

- We shall stick to $\Omega(\log n)$

- Less than log is too little space to remember locations in the input
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

- Model allows $o(n)$ memory usage

 - DSPACE(n) may already be inefficient in terms of time

 - We shall stick to $\Omega(\log n)$

 - Less than log is too little space to remember locations in the input

- DSPACE/NSPACE more robust across models
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

- Model allows $o(n)$ memory usage

- $\text{DSPACE}(n)$ may already be inefficient in terms of time

- We shall stick to $\Omega(\log n)$

- Less than \log is too little space to remember locations in the input

- $\text{DSPACE}/\text{NSPACE}$ more robust across models

- Constant factor ($+O(\log n)$) simulation overhead
$L \in \text{NSPACE}(S)$: Two Equivalent views
$L \in \text{NSPACE}(S)$: Two Equivalent views

Non-deterministic M
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
\(L \in \text{NSPACE}(S) \): Two Equivalent views

- Non-deterministic \(M \)
- \text{input: } x
- makes non-det choices
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- $x \in L$ iff some thread of M accepts
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- $x \in L$ iff some thread of M accepts
- in at most $S(|x|)$ space
\(L \in \text{NSPACE}(S) \):
Two Equivalent views

- **Non-deterministic M**
 - input: \(x \)
 - makes non-det choices
 - \(x \in L \) iff some thread of \(M \) accepts
 - in at most \(S(|x|) \) space

- **Deterministic \(M' \)**
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $S(|x|)$ space

- Deterministic M'
 - input: x and read-once w
L ∈ NSPACE(S):
Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x ∈ L$ iff some thread of M accepts
 - in at most $S(|x|)$ space

- Deterministic M'
 - input: x and read-once w
 - reads bits from w (certificate)
\(L \in \text{NSPACE}(S): \) Two Equivalent views

- Non-deterministic \(M \)
 - input: \(x \)
 - makes non-det choices
 - \(x \in L \) iff some thread of \(M \) accepts
 - in at most \(S(|x|) \) space

- Deterministic \(M' \)
 - input: \(x \) and read-once \(w \)
 - reads bits from \(w \) (certificate)
 - \(x \in L \) iff for some cert. \(w \), \(M' \) accepts
\(L \in \text{NSPACE}(S): \) Two Equivalent views

- **Non-deterministic M**
 - input: \(x \)
 - makes non-det choices
 - \(x \in L \) iff some thread of \(M \) accepts
 - in at most \(S(|x|) \) space

- **Deterministic \(M' \)**
 - input: \(x \) and read-once \(w \)
 - reads bits from \(w \) (certificate)
 - \(x \in L \) iff for some cert. \(w \), \(M' \) accepts
 - in at most \(S(|x|) \) space
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $S(|x|)$ space

- Deterministic M'
 - input: x and read-once w
 - reads bits from w (certificate)
 - $x \in L$ iff for some cert. w, M' accepts
 - in at most $S(|x|)$ space
L and NL
L and NL

$L = \text{DSPACE}(O(\log n))$
L and NL

\[L = \text{DSPACE}(O(\log n)) \]

\[L = \bigcup_{a,b > 0} \text{DSPACE}(a \log n + b) \]
L and NL

\[L = \bigcup_{a,b > 0} \text{DSPACE}(a \log n + b) \]

\[NL = \text{NSPACE}(O(\log n)) \]
L and NL

\[L = \text{DSPACE}(O(\log n)) \]
\[L = \bigcup_{a, b > 0} \text{DSPACE}(a \log n + b) \]
\[NL = \text{NSPACE}(O(\log n)) \]
\[NL = \bigcup_{a, b > 0} \text{NSPACE}(a \log n + b) \]
L and NL

L = \text{DSPACE}(O(\log n))

L = \bigcup_{a, b > 0} \text{DSPACE}(a \cdot \log n + b)

NL = \text{NSPACE}(O(\log n))

NL = \bigcup_{a, b > 0} \text{NSPACE}(a \cdot \log n + b)

"L and NL are to space what P and NP are to time"
Space Hierarchy
Space Hierarchy

- UTM space-overhead is only a constant factor
Space Hierarchy

- UTM space-overhead is only a constant factor

- **Tight hierarchy**: if $T(n) = o(T'(n))$ (no log slack) then $\text{DSPACE}(T(n)) \subsetneq \text{DSPACE}(T'(n))$
Space Hierarchy

- UTM space-overhead is only a constant factor

 - Tight hierarchy: if $T(n) = o(T'(n))$ (no log slack) then $DSPACE(T(n)) \subsetneq DSPACE(T'(n))$

- Same for NSPACE
Space Hierarchy

- UTM space-overhead is only a constant factor

- **Tight hierarchy**: if $T(n) = o(T'(n))$ (no log slack) then $\text{DSPACE}(T(n)) \subseteq \text{DSPACE}(T'(n))$

- Same for NSPACE

- Again, tighter than for NTIME (where in fact, we needed $T(n+1) = o(T'(n))$)
Space Hierarchy

UTM space-overhead is only a constant factor

Tight hierarchy: if \(T(n) = o(T'(n)) \) (no log slack) then
\(\text{DSPACE}(T(n)) \subseteq \text{DSPACE}(T'(n)) \)

Same for \(\text{NSPACE} \)

Again, tighter than for \(\text{NTIME} \) (where in fact, we needed \(T(n+1) = o(T'(n)) \))

No “delayed flip,” because, as we will see later, \(\text{NSPACE}(O(S)) = \text{co-NSPACE}(O(S)) \)!
Space, Today
Space, Today

DSpace, NSpace
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Coming up:
 - Connections with DTIME/NTIME
 - Savitch’s theorem: $\text{NSPACE}(S) \subseteq \text{DSPACE}(S^2)$
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.

Coming up:

- Connections with DTIME/NTIME
- Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S²)
 - Hence PSPACE = NPSPACE
Space, Today

- **DSpace, NSpace**
- **Tight hierarchy.**

Coming up:

- **Connections with DTIME/NTIME**
- **Savitch’s theorem:** $\text{NSPACE}(S) \subseteq \text{DSpace}(S^2)$
 - Hence $\text{PSPACE} = \text{NPSPACE}$
- **PSPACE-completeness and NL-completeness**
Space, Today

DSPACES, NSPACE

Tight hierarchy.

Coming up:

Connections with DTIME/NTIME

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S²)

Hence PSPACE = NPSPACE

PSPACE-completeness and NL-completeness

NSPACE = co-NSPACE
DSPACE, NSPACE

Tight hierarchy.

Coming up:

Connections with DTIME/NTIME
Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
Hence PSPACE = NPSPACE
PSPACE-completeness and NL-completeness
NSPACE = co-NSPACE