CS 579: Computational Complexity Class Test

Tuesday, March 29, 2011

Lecture notes are the only reference allowed during the test. Total points: 100.

Problem 1. Define the class \mathbf{BPP}^A , for any language A, as the class of languages L for which there is a polynomial time probabilistic oracle Turing Machine M, such that M^A accepts each $x \in L$ with probability at least $\frac{2}{3}$ and rejects each $x \notin L$ with probability at least $\frac{2}{3}$. Define $\mathbf{BPP}^{\mathbf{BPP}}$ as the union of all classes \mathbf{BPP}^A for $A \in \mathbf{BPP}$.

- 1. Show that $\mathbf{BPP^{BPP}} = \mathbf{BPP}$. (20 pts)
- 2. $\mathbf{RP^{RP}}$ is defined similarly: L is in $\mathbf{RP^{RP}}$ if there $A \in \mathbf{RP}$ and a probabilistic polynomial time oracle TM such that $x \in L$ is accepted with probability at least $\frac{2}{3}$, but $x \notin L$ is rejected with probability 1. Show that $\mathbf{RP^{RP}} = \mathbf{RP}$ implies $\mathbf{RP} = \mathbf{co} \mathbf{RP}$. (10 pts)

Problem 2. Define the class **X** as follows. **X** consists of all languages L for which there exist a pair of languages $A, B \in \mathbf{P}$ and a polynomial poly such that for each x the following hold:

- (a) There exists at least one $w \in \{0,1\}^{\text{poly}(|x|)}$ such that $(x,w) \in B$.
- (b) If $x \in L$, then if w is drawn randomly from $\{0,1\}^{\text{poly}(|x|)}$, $\Pr[(x,w) \in A | (x,w) \in B] \ge \frac{2}{3}$ (i.e., for at least $\frac{2}{3}$ fraction of w (of length poly(|x|)) such that $(x,w) \in B$, we have that $(x,w) \in A$).
- (c) If $x \notin L$ then if w is drawn randomly from $\{0,1\}^{\text{poly}(|x|)}$, $\Pr[(x,w) \in A | (x,w) \in B] < \frac{1}{3}$.
- 1. Show that $\mathbf{BPP} \subseteq \mathbf{X}$. (15 pts)
- 2. Show that $\mathbf{NP} \subseteq \mathbf{X}$. (20 pts)
- **Problem 3.** Recall that a uniform NC^0 circuit family consists of boolean circuits of constant depth and constant fan-in, such that the circuits in the family can be generated by a logarithmic space Turing Machine (logarithmic in the size of the input of circuit generated). Note that the output bit of an NC^0 circuit can depend only on a constant number of bits of the input. We consider NC^0 circuits which can output multiple bits. We shall say that such a circuit accepts its input if all the output bits are 1, and else rejects its input. A multi-bit output NC^0 circuit family is said to decide a language if for every binary string x, the circuit of input-size |x| accepts x if and only if x is in the language. We define a class of languages NC^0_{AND} to consist of languages that are decided (in the above sense) by uniform, multi-bit output NC^0 circuit families.
 - 1. Show that $\mathbf{NC}_{AND}^0 \subseteq \mathbf{P}$. (10 pts)
 - 2. Recall that \mathbf{NP} is the class of languages L for which there is a language $R \in \mathbf{P}$ and a polynomial poly such that $L = \{x | \exists w, |w| = \text{poly}(|x|), (x, w) \in R\}$. Show that instead of $R \in \mathbf{P}$, if we use $R \in \mathbf{NC}^0_{\text{AND}}$, the class defined is still \mathbf{NP} . In other words, show that if we restricted the verifier in the definition of \mathbf{NP} to use a uniform $\mathbf{NC}^0_{\text{AND}}$ circuit instead of polynomial time computation, the class defined remains the same. (25 pts) [Hint: Can you think of extra information to be provided along with the witness to enable lower complexity for verification?]