Problem 1: 2-Universal Hash Function Family.

The first couple of problems deal with 2-Universal Hash Function Families.

Define a hash function family as a function \mathcal{H} of the form $\mathcal{H} : H \times X \rightarrow R$, where H is the set of “hash functions” in the family, X is the input space and R the output space of the hash functions. H, X, R are all finite sets. When the family is understood, $\mathcal{H}(h, x) = y$ is often abbreviated as $h(x) = y$. Given an input $x \in X$ we will be interested in hashing it using a random $h \in H$.

Call a hash function family pairwise independent if for all $x_1 \neq x_2 \in X$ and $y_1, y_2 \in R$, $\Pr[h(x_1) = y_1 \land h(x_2) = y_2] = \Pr[h(x_1) = y_1] \cdot \Pr[h(x_2) = y_2]$. Call a hash function family 2-universal if for all $x_1 \neq x_2 \in X$ and $y_1, y_2 \in R$, $\Pr[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{|R|^2}$. The first couple of problems deal with 2-Universal Hash Function Families.

1. Show that a hash function family \mathcal{H} of the form $\mathcal{H} : H \times X \rightarrow R$, where H is the set of “hash functions” in the family, X is the input space and R the output space of the hash functions, has a maximum collision probability $\max_{x_1 \neq x_2 \in X} \Pr[h(x_1) = h(x_2)]$.

2. Show that a hash function family is uniform if and only if it is 2-universal. Also show that for such a hash function family, the maximum collision probability is $\frac{1}{|R|^2}$.

3. Suppose $\mathcal{H} : H \times X \rightarrow R$, where $\mathcal{H}(h, x) = f(\mathcal{H}(h, x))$ is 2-universal. Note that this can be used to shrink the output space of a hash function family without affecting the other parameters.

4. A function $f : X' \rightarrow X$ is called one-to-one if for each $x \in X$, $|\{x' : f(x') = x\}| \leq 1$. Suppose $\mathcal{H} : H \times X \rightarrow R$ is a 2-universal hash function family and $f : X' \rightarrow X$ is one-to-one. Show that $\mathcal{H}' : H \times X \rightarrow R'$, where $\mathcal{H}'(h, x) = \mathcal{H}(h, f(x))$ is 2-universal. Note that this can be used to shrink the input space of a hash function family without affecting the other parameters.

Problem 2:

This problem shows why 2-universal hash function families are useful for the (public-coin) set lower-bound protocol. (See Lecture 15.)

For $S \subseteq X$ and $h : X \rightarrow R$, define $h(S) \subseteq R$ as $h(S) = \{h(x) : x \in S\}$. Define $\text{shrink}(h, S) = |S| - |h(S)|$. Note that $\text{shrink}(h, S) \geq 0$. Let $\text{collision}(h, S) = |\{x_1, x_2 \in S : x_1 < x_2 \text{ and } h(x_1) = h(x_2)\}|$.

1. Show that $\text{shrink}(h, S) \leq \text{collision}(h, S)$.

2. Suppose $\mathcal{H} : H \times X \rightarrow R$ has a maximum collision probability p. Show that $\mathbb{E}_{h \sim H}[\text{collision}(h, S)] \leq p|S|^2$. Using part (1) conclude that $\mathbb{E}_{h \sim H}[\text{shrink}(h, S)] \leq p|S|^2$.

3. Suppose $\mathcal{H} : H \times X \rightarrow R$ is a 2-universal hash function family, then show that for any $T \subseteq X$ such that $|T| = |R|/4$, $\mathbb{E}_{h \sim H}[\text{shrink}(h, T)] \leq \frac{|T|}{16}$.

4. Use this to argue soundness and completeness of the set lower-bound protocol shown in class. Consider for completeness $S \subseteq X$ such that $|S| \geq |R|/4$ and, for soundness $S \subseteq X$ such that $|S| \leq |R|/8$. (Explain clearly what completeness and soundness mean in this context.)

Problem 3:

Show that $\text{FP} \subseteq \mathcal{G}$. (Hint: Associate a count with the output of a function, such that the count when written in binary is identical to the original output.)
Problem 4:

In this problem you will show that $\sharp P \subseteq \mathsf{FP}^{\mathsf{PP}}$.

An implicit representation of a binary string α of length 2^m is a polynomial sized (in m) circuit A^α such that $A^\alpha(i) = \alpha_i$, the i-th bit of α.

1. Consider a binary string α of length 2^m. Your task is to count the number of 1s in the string, in polynomial time (in m). Show how to do this if you are given an oracle T_α, which when given a threshold τ tells you whether the string has more than τ fraction of 1s or not. (That is $T_\alpha(\tau) = 1$ if α has more than $\tau |\alpha|$ 1s.)

2. Suppose you are given an oracle H_α which can only answer with respect to the threshold $\tau = \frac{1}{2}$, but allows you to give an implicit description of another string β of length 2^m and answers whether the string $\alpha \beta$ has more than $\frac{1}{2}$ 1s in it. (That is $H_\alpha(\beta) = 1$ if the string $\alpha \beta$ has more than $\frac{1}{2} |\alpha \beta|$ 1s.) Show how to implement the oracle T_α using access to the oracle H_α.

3. Consider the language L, such that $L(A^\alpha, A^\beta) = H_\alpha(\beta)$. Show that L is in PP.

4. Conclude that given oracle access to the PP language L, any function in $\sharp P$ can be computed in polynomial time. i.e., $\sharp P \subseteq \mathsf{FP}^\mathsf{P}$.

Problem 5 (Extra Credit):

Recall the definition of alternating threshold Turing Machines from class (Lecture 17). Given $M_+ = \text{ATTM}[k, (\exists \geq r, \exists), R]$ (i.e. an ATTM with k alternations between thresholds $\exists \geq r$ and \exists, and a relation R at the leaves; the degrees of the different $\exists \geq r$ ans \exists configuration nodes are left out of the notation for clarity), with $r > \frac{1}{2}$, define it’s complementary ATTM $M_- = \text{ATTM}[k, (\exists \geq r, \forall), \overline{R}]$. Such a pair (M_+, M_-) is said to decide a language L if $x \in L \iff M_+(x) = 1, M_-(x) = 0$ and $x \not\in L \iff M_+(x) = 0, M_-(x) = 1$.

Also recall the definition of an AM[k] protocol defined by a verification procedure for Arthur, A (and the lengths of the k messages, alternating between random strings from Arthur and messages from Merlin, starting with one from Arthur). an AM protocol A is said to decide a language L with error probability at most ε if $x \in L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \geq 1 - \varepsilon$ and $x \not\in L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \leq \varepsilon$.

1. Given an AM[k] protocol A, define a pair of complementary ATTMs (M_+, M_-) as $M_+ = \text{ATTM}[k, (\exists \geq r, \exists), R]$ and $M_- = \text{ATTM}[k, (\exists \geq r, \forall), \overline{R}])$, (with degrees of the configuration nodes being the message lengths of the protocol to the power of 2) with $R = A$ and $r = \frac{3}{4}$. Show that if A is an AM protocol that decides a language L with error probability at most $2^{-(k+3)}$, then (M_+, M_-) decides L.

Hint: First try $k = 2$. Consider the protocol’s tree, and define the maximum-average acceptance probability for each node (as shown in class). For $x \in L$, using completeness guarantee, what can you say about the fraction of first messages that lead to a node with acceptance probability greater than $1 - 4\varepsilon$? For $x \not\in L$ use soundness guarantee.

2. Given a pair of complementary ATTMs $(M_+, M_-) = (\text{ATTM}[k, (\exists \geq r, \exists), R], \text{ATTM}[k, (\exists \geq r, \forall), \overline{R}]))$, (with degrees of the configuration nodes being powers of 2) define an AM[k] protocol with $A = R$ (and lengths of the messages being logarithms (base 2) of the degrees of the ATTM pair). Show that if (M_+, M_-) decides a language L and if $r \geq 1 - \frac{1}{4k}$, then A_R is an AM protocol that decides L with error probability at most $1/4$.

Hint: For $x \in L$, using M_+, what can you say about the maximum-acceptance probability of nodes of the constructed protocol’s tree. First try $k = 2$. To extend to general k, consider two levels at a time, and use the “union-bound” inequality $(1 - p)^t \geq 1 - pt$.