Problem 1:

This is a quick refresher for basic probability concepts. A probability distribution over a (finite) set S is a function $\pi : S \rightarrow [0,1]$ such that $\sum_{x \in S} \pi(x) = 1$. A (real-valued) random variable X is a function $X : S \rightarrow \mathbb{R}$ along with a probability distribution π. We define $\Pr_{s \sim \pi}[X(s) = x] = \sum_{s: X(s) = x} \pi(s)$ (often shortened to $\Pr[X = x]$, when π is understood). We define expectation $E_{s \sim \pi}[X(s)] = \sum_{s \in S} X(s) \cdot \pi(s)$ (often shortened to $E[X]$, when π is understood).

(a) (Linearity of expectation.) Given two random variables X_1, X_2, define a new random variable X as $X(s) = aX_1(s) + bX_2(s)$ (for some real numbers a and b). Show that $E[X(s)] = aE[X_1(s)] + bE[X_2(s)]$.

(b) (Markov’s inequality.) Given a non-negative random variable X, show that $\Pr[X > t \mu] < 1/t$, where $\mu = E[X]$. (Here $t > 0$.)

(c) Given a random variable X, suppose we define a new random variable Z_X as $Z_X(s) = X(s) - \mu$ where $\mu = E[X]$. Calculate $E[Z_X]$.

(d) (Variance and Chebychev’s inequality.) Given a random variable X, define a new random variable Z_X as $Z_X(s) = (X(s) - \mu)^2$ where $\mu = E[X]$. Then the variance of X is defined as $\text{Var}(X) = E[Z_X]$ and the standard deviation as $\sigma(X) = \sqrt{\text{Var}(X)}$. Use Markov’s inequality to bound $\Pr[|X - \mu| > t\sigma(X)]$.

(e) Two random variables X and Y are said to be independent if for all real numbers x, y, $\Pr[X = x \text{ and } Y = y] = \Pr[X = x] \cdot \Pr[Y = y]$. Show that if X and Y are independent, $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$. Further, if $\{X_i\}_{i=1}^t$ are t random variables which are pairwise independent (that is, X_i and X_j are independent for all $i \neq j$), show that $\text{Var}\left(\sum_i X_i\right) = \sum_i \text{Var}(X_i)$.

(f) Suppose $\{X_i\}_{i=1}^t$ are t pairwise independent random variables which take binary (0-1) values such that $\Pr[X_i = 1] = p$ for all i. Use Chebychev’s inequality to prove that

$$\Pr\left[\left|\frac{\sum_{i=1}^t X_i}{t} - p\right| > \delta \right] = O\left(\frac{1}{\delta^2 t}\right).$$

Problem 2:

Let M be a probabilistic TM. Define the gap of M for a language L to be $\min_{x \in L} \Pr[M(x) = \text{yes}] - \max_{x \not\in L} \Pr[M(x) = \text{yes}]$, and its error for L to be $\max_x \Pr[M(x) \neq L(x)]$. Bound the gap and error in terms of each other.

Problem 3:

Define Expected-Time-PP to be the class of languages decided by probabilistic Turing machines (via acceptance probability $> \frac{1}{2}$) whose expected running-time is polynomial (as opposed to PP, where the running time is worst-case polynomial). Show that $\text{EXP} \subseteq \text{Expected-Time-PP}$. What can you say about inclusion in Expected-Time-PP for classes larger than EXP? What if the expected running time is restricted to be constant instead of polynomial?

Problem 4:

In this problem we shall prove impossibility of deterministic extraction from Santha-Vazirani sources. We work with probability distributions over $S = \{0,1\}^n$, the set of n-bit strings.

For $x \in \{0,1\}^n$, let x_i denote the i-th bit of x and x_i^c denote the other $n - 1$ bits of x. Call a distribution π δ-balanced at position i if for all $y \in \{0,1\}^{n-1}$, $\Pr[x_i = 0 | x_i^c = y]$ and $\Pr[x_i = 1 | x_i^c = y]$ differ by at most δ.

(a) Verify that π is δ-balanced at position i if and only if for every $y \in \{0,1\}^{n-1}$,

$$\frac{1 - \delta}{1 + \delta} \leq \frac{\pi(y_1 \ldots y_{i-1}0y_{i+1} \ldots y_{n-1})}{\pi(y_1 \ldots y_{i-1}1y_{i+1} \ldots y_{n-1})} \leq \frac{1 + \delta}{1 - \delta}.$$
Call a distribution \(\delta \)-balanced if it is \(\delta \)-balanced at all positions \(i = 1, \ldots, n \). Note that if the output distribution of a randomness source is \(\delta \)-balanced it is a Santha-Vazirani source (but not vice-versa).

Consider an arbitrary boolean function \(f : \{0,1\}^n \to \{0,1\} \). Let \(\pi_f^0 \) be the probability that \(f(x) = 0 \) when \(x \) is drawn according to the distribution \(\pi \). That is, \(\pi_f^0 = \sum_{x \in \mathcal{X}} f(x) \pi(x) \). Similarly let \(\pi_f^1 = \sum_{x \in \mathcal{X}} f(x) \pi(x) \).

(b) Show that for every \(f : \{0,1\}^n \to \{0,1\} \), and every \(\delta \in [0,1] \), there exists a \(\delta \)-balanced distribution \(\pi \) over \(\{0,1\}^n \) such that \(|\pi_f^0 - \pi_f^1| \geq \delta \).

(Hint: Consider separately the functions \(f \) for which \(|\mathcal{U}_0 - \mathcal{U}_1| \geq \delta \) and those for which \(|\mathcal{U}_0 - \mathcal{U}_1| < \delta \), where \(\mathcal{U} \) is the uniform distribution over \(n \)-bit strings.)

Conclude that there are no simple (deterministic) extractors which can extract a single \(\epsilon \)-balanced bit from all \(\delta \)-balanced Santha-Vazirani sources, with \(\epsilon < \delta \).

Problem 5:

(a) (Randomized rounding.) Given a probability distribution \(\rho \) over \(R \) and random variable \(X \), with range \([0,1] \), define a probability distribution \(\pi \) over \(S = R \times \{0,1\} \) as follows:

\[
\text{For } r \in R : \pi((r,1)) = \rho(r) \cdot X(r) \text{ and } \pi((r,0)) = \rho(r)[1 - X(r)]
\]

Verify that \(\pi \) is indeed a valid probability distribution. Now define a binary random variable \(Z \) (i.e., with range \(\{0,1\} \)), with underlying probability distribution \(\pi \), as \(Z(r,0) = 0 \) and \(Z(r,1) = 1 \) for all \(r \in R \). Show that \(\mathbb{E}[Z] = \mathbb{E}[X] \).

(That is, instead of the real variable \(X \), the binary random variable \(Z \) can be used without changing the expectation (though the variance could increase). This is called randomized rounding because \(Z \) can be considered to be sampled as follows: draw a sample from \(X \), and using the value obtained as the bias, flip a coin, to get a rounded (0-1) value.)

(b) (Deterministic rounding.) Let \(X \) be as above. Consider a new random variable \(Z^* \) defined over \(R \) and with respect to the same probability distribution \(\rho \), as follows: \(Z^*(r) = 1 \) if \(X(r) > \frac{1}{2} \) and \(0 \) otherwise. Using Markov’s inequality, show that \(2\mathbb{E}[X] - 1 \leq \Pr[Z^* = 1] \leq 2\mathbb{E}[X] \). Conclude that if \(\mathbb{E}[X] > 7/8 \) then \(\Pr[Z^* = 1] > 3/4 \) and if \(\mathbb{E}[X] < 1/8 \) then \(\Pr[Z^* = 1] < 1/4 \).

(c) (Eliminating an auxiliary random source.) In this problem we consider a randomized algorithm \(A \) which draws its randomness from two independent random sources, a “main” source (with an arbitrary distribution) and an auxiliary perfect random source. Our goal is to change it to an algorithm \(B \) which uses only the main source, by enumerating over all random strings from the auxiliary source (while drawing only as many bits as \(A \) draws from the main source).

Describe \(B \) so that if the probability of error of \(A \) is at most \(1/8 \) (when run using the two sources), then the probability of error of \(B \) is at most \(1/4 \) (when run using only the main source). Prove that \(B \) has these properties. (Hint: Use part (b). What should the real variable \(X \) be?)

Problem 6 (Extra Credit):

In this problem we use basic linear algebra to analyze (weak) extraction from an SV source (see Lecture 15).

(a) (Collision probability.) Define a probability distribution \(\pi \) over \(\{0,1\}^d \). We will view \(\pi \) as a real vector of length \(2^d \) (i.e. \(\pi \in \mathbb{R}^{2^d} \)), such that (with elements indexed by \(i \in \{0,1\}^d \)) \(\pi_i = \pi(i) \). Define collision probability of \(\pi \), \(\text{col}(\pi) \) to be the probability that two strings drawn independently according to \(\pi \) are the same. Show that \(\text{col}(\pi) = \|\pi\|^2 \), where \(\|v\| \) is defined as \(\sqrt{v,v} \).

(b) (An orthonormal basis.) Define \(2^d \) vectors \(\rho^{(s)} \) (for \(s \in \{0,1\}^d \)) as follows: \(\rho_j^{(s)} = \frac{1}{2^{\frac{d}{2}}}(-1)^{(s,j)} \). Note that \(\|\rho^{(s)}\| = 1 \), and each element in \(\rho^{(s)} \) is \(\pm \frac{1}{2^{\frac{d}{2}}} \), the sign depending on whether \((s,j) \) is even or odd. Show that \(\langle \rho^{(s)}, \rho^{(t)} \rangle = 0 \) for all \(s \neq t \).
(Hint: $s \neq t$ means there is at least one position where the vectors s and t differ. Use this to show that all the vectors can be partitioned into pairs (j_0, j_1) such that the parities of $\langle s, j_0 \rangle$ and $\langle t, j_0 \rangle$ are equal, and those of $\langle s, j_1 \rangle$ and $\langle t, j_1 \rangle$ are different.)

Hence these 2^d vectors form an orthonormal basis for the vector space \mathbb{R}^{2^d}. This basis is called the Fourier Basis.

(c) (Change of basis.) Recall that given an orthonormal basis any vector v can be written as a linear combination of the basis vectors, with the coefficients being the inner product of the vector v with basis vectors. So we can write $\pi = \sum_s \langle \pi, \rho(s) \rangle \rho(s)$. Use this to rewrite $\|\pi\|^2$.

(d) Consider the extractor which on input $r \in \{0,1\}^d$ and seed $s \in \{0,1\}^d$ outputs the bit $\langle r, s \rangle_2$. (Here we use $\langle \cdot, \cdot \rangle_2$ to denote dot product as integers modulo 2.) We consider feeding the extractor an input drawn according to the distribution π. For each seed value s, define $\text{Gap}_s^\pi = \Pr_{r \leftarrow \pi}[\langle r, s \rangle_2 = 0] - \Pr_{r \leftarrow \pi}[\langle r, s \rangle_2 = 1]$. Show that $\text{Gap}_s^\pi = 2^{d/2} \langle \pi, \rho(s) \rangle$.

(e) Deduce that $\mathbb{E}_{s \sim \mathcal{U}_d}[\text{Gap}_s^\pi]^2 = \text{col}(\pi)$, where \mathcal{U}_d is the uniform distribution over $\{0,1\}^d$.

(f) From this, using the fact that $\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$, conclude that

$$|\Pr_{r \leftarrow \pi, s \sim \mathcal{U}_d}[\langle r, s \rangle_2 = 0] - \Pr_{r \leftarrow \pi, s \sim \mathcal{U}_d}[\langle r, s \rangle_2 = 1]| \leq \|\pi\|.$$

Note that the left hand side is the bias of the extracted bit, when the input r is drawn according to the distribution π and the seed s is drawn independently from \mathcal{U}_d. Finally, show that when π is an SV source with bias bounded by a constant less than 1, $\|\pi\| = 2^{-\Omega(d)}$.
