Complexity of Counting

Lecture 21

#P
FP

Turing Machines computing a (not necessarily Boolean) function of the input
Turing Machines computing a (not necessarily Boolean) function of the input

Writes the output on an output tape
FP

- Turing Machines computing a (not necessarily Boolean) function of the input
- Writes the output on an output tape
- **FP**: class of efficiently computable functions
FP

- Turing Machines computing a (not necessarily Boolean) function of the input
 - Writes the output on an output tape
- **FP**: class of efficiently computable functions
 - Computed by a TM running in polynomial time
Counting Problems
Counting Problems

Counting: Functions of the form \("\text{number of witnesses}\)\)
Counting Problems

Counting: Functions of the form "number of witnesses"

\#R(x) = |\{w: R(x,w)=1}\|
Counting Problems

Counting: Functions of the form “number of witnesses”

\[\#R(x) = |\{w: R(x,w)=1\}| \]

e.g: Number of subgraphs of a given graph with some property (trees, cycles, spanning trees, cycle covers, etc.)
Counting Problems

Counting: Functions of the form “number of witnesses”

\[
#R(x) = |\{w: R(x,w)=1\}|
\]

e.g: Number of subgraphs of a given graph with some property (trees, cycles, spanning trees, cycle covers, etc.)

e.g.: Number of satisfying assignments to a boolean formula
Counting Problems

Counting: Functions of the form “number of witnesses”

#R(x) = |{w: R(x,w)=1}|

e.g.: Number of subgraphs of a given graph with some property (trees, cycles, spanning trees, cycle covers, etc.)

e.g.: Number of satisfying assignments to a boolean formula

e.g.: Number of inputs in a language L that are less than x (lexicographically)
Class of functions of the form number of witnesses for an NP language
#P

Class of functions of the form **number of witnesses for an NP language**

\[\#R(x) = |\{w: R(x,w)=1\}|, \text{ where } R \text{ is a polynomial time relation} \]
#P

Class of functions of the form \textbf{number of witnesses for an NP language}

\(\#R(x) = \left| \{ w : R(x,w) = 1 \} \right| \), where \(R \) is a polynomial time relation

\textbf{e.g.:} \(\#\text{SPANTREE}(G) = \) number of spanning trees in a graph \(G \)
#P

Class of functions of the form number of witnesses for an NP language

\[\#R(x) = |\{w: R(x,w)=1\}|, \text{ where } R \text{ is a polynomial time relation} \]

- e.g.: \#SPANTREE(G) = number of spanning trees in a graph G
- e.g.: \#CYCLE(G) = number of simple cycles in a directed graph G
#P

Class of functions of the form number of witnesses for an NP language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

- e.g.: #SPANTREE(G) = number of spanning trees in a graph G
- e.g.: #CYCLE(G) = number of simple cycles in a directed graph G
- e.g.: #SAT(φ) = number of satisfying assignments of φ
Class of functions of the form number of witnesses for an NP language

\[\#R(x) = |\{w: R(x, w) = 1\}|, \] where \(R \) is a polynomial time relation

e.g.: \(\#\text{SPANTREE}(G) \) = number of spanning trees in a graph \(G \)
e.g.: \(\#\text{CYCLE}(G) \) = number of simple cycles in a directed graph \(G \)
e.g.: \(\#\text{SAT}(\phi) \) = number of satisfying assignments of \(\phi \)

Easy to see: \(\text{FP} \subseteq \#\text{P} \) (interpreting numbers as strings suitably)

[Exercise]
#P vs. NP
#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time relation
#P vs. NP

\#R(x) = |\{w: R(x,w)=1\}|, were R is a polynomial time relation

To compute a function in #P: compute \#R(x)
#P vs. NP

#R(x) = |\{w: R(x,w)=1\}|, were R is a polynomial time relation

- To compute a function in #P: compute #R(x)
- To decide a language in NP: check if #R(x) > 0
#P vs. NP

- #R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

 - To compute a function in #P: compute #R(x)

 - To decide a language in NP: check if #R(x) > 0

- #P "harder" than NP
#P vs. NP

\#R(x) = \|\{w: R(x,w)=1\}\|, \text{ were } R \text{ is a polynomial time relation}

- To compute a function in \#P: compute \#R(x)
- To decide a language in NP: check if \#R(x) > 0

\#P "harder" than NP

- If \#P = FP, then P = NP
#P vs. NP

- \(\#R(x) = |\{w: R(x,w)=1\}| \), were \(R \) is a polynomial time relation
 - To compute a function in \(\#P \): compute \(\#R(x) \)
 - To decide a language in \(NP \): check if \(\#R(x) > 0 \)

- \(\#P \) “harder” than \(NP \)
 - If \(\#P = FP \), then \(P = NP \)
 - How much harder?
How hard is it to count?
How hard is it to count?

Not hard for some problems
How hard is it to count?

- Not hard for some problems

 - e.g.: \#SPANTREE(G) = number of spanning trees in a graph G
How hard is it to count?

- Not hard for some problems
 - e.g.: \(\#\text{SPANTREE}(G) = \) number of spanning trees in a graph \(G \)
 - Kirchhoff's theorem: evaluating a simple determinant gives the answer
How hard is it to count?

- Not hard for some problems
 - e.g.: \#SPANTREE(G) = number of spanning trees in a graph G
 - **Kirchhoff's theorem**: evaluating a simple determinant gives the answer
- Hard for counting witnesses of NP-complete languages:
 - e.g. \#SAT (unless P=NP)
How hard is it to count?

- Not hard for some problems
 - e.g.: \#\text{SPANTREE}(G) = \text{number of spanning trees in a graph } G
 - **Kirchhoff's theorem**: evaluating a simple determinant gives the answer
- Hard for counting witnesses of \text{NP}-complete languages: e.g. \#\text{SAT} (unless P=NP)
- Hard for some other problems too
How hard is it to count?

- Not hard for some problems
 - e.g.: \(\text{#SPANTREE}(G) = \text{number of spanning trees in a graph } G \)
 - Kirchhoff’s theorem: evaluating a simple determinant gives the answer

- Hard for counting witnesses of NP-complete languages:
 - e.g. \(\text{#SAT} \) (unless \(P=NP \))

- Hard for some other problems too
 - If \(\text{#CYCLE} \in \text{FP} \), then \(P=NP \)
#CYCLE ∈ FP ⇒ P=NP
#CYCLE ∈ FP ⇒ P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G' such that #CYCLE(G') is “large” iff G has a Hamiltonian cycle.
#CYCLE ∈ FP ⇒ P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G' such that #CYCLE(G') is “large” iff G has a Hamiltonian cycle.

Replace each edge in G by a gadget such that each cycle in G becomes “many” cycles in G'.
#CYCLE \in FP \Rightarrow P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G' such that #CYCLE(G') is "large" iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in G becomes "many" cycles in G'

Longer the cycle in G, more the cycles in G' it results in
#CYCLE ∈ FP ⇒ P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G′ such that #CYCLE(G′) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in G becomes “many” cycles in G′

Longer the cycle in G, more the cycles in G′ it results in

A single n-long cycle in G will result in more cycles in G′ than produced by all shorter cycles in G put together
#CYCLE ∈ FP ⇒ P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’ such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’ than produced by all shorter cycles in G put together

At most \(n^{n-1} \) shorter cycles in G
#CYCLE ∈ FP ⇒ P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G' such that #CYCLE(G') is “large” iff G has a Hamiltonian cycle.

Replace each edge in G by a gadget such that each cycle in G becomes “many” cycles in G'.

Longer the cycle in G, more the cycles in G' it results in.

A single n-long cycle in G will result in more cycles in G' than produced by all shorter cycles in G put together.

At most n^{n-1} shorter cycles in G.

t-long cycle in G $\rightarrow (2^m)^t = n^{nt}$ cycles in G' ($m := n \log n$)
#CYCLE \in FP \Rightarrow P=NP

Reduce HAMILTONICITY to #CYCLE: Given G, to construct G' such that #CYCLE(G') is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in G becomes “many” cycles in G'

Longer the cycle in G, more the cycles in G' it results in

A single n-long cycle in G will result in more cycles in G' than produced by all shorter cycles in G put together

At most n^{n-1} shorter cycles in G

t-long cycle in G $\rightarrow (2^m)^t = n^{nt}$ cycles in G' ($m := n \log n$)

HAMILTONICITY(G) \iff #CYCLES(G) $\geq n^{n^2}$
#P vs. PP
#P vs. PP

Recall PP: x in L if for at least half the strings w (of some length) we have R(x,w)=1
#P vs. PP

Recall PP: x in L if for at least half the strings w (of some length) we have $R(x,w)=1$

i.e., checking the most significant bits of $\#R$
Recall PP: x in L if for at least half the strings w (of some length) we have $R(x,w)=1$

i.e., checking the most significant bits of $\#R$

Recall: We already saw $NP \subseteq PP$
#P vs. PP

- Recall PP: x in L if for at least half the strings w (of some length) we have R(x,w)=1
 - i.e., checking the most significant bits of #R
 - Recall: We already saw NP ⊆ PP
 - PP as powerful as #P (and vice versa)
#P vs. PP

Recall PP: x in L if for at least half the strings w (of some length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

#P ⊆ FP^{PP} [exercise] (and PP ⊆ P^{#P} [why?])
Recall PP: x in L if for at least half the strings w (of some length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

#P ⊆ FP^{PP} [exercise] (and PP ⊆ P^{#P} [why?])

So if PP = P, then #P = FP (and vice versa)
#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced to f
\[f \in \#P \text{ is } \#P\text{-complete if any } g \in \#P \text{ can be Cook-reduced to } f \]
#P completeness

- $f \in \#P$ is \#P-complete if any $g \in \#P$ can be Cook-reduced to f

- From parsimonious reduction of g's NP problem to an NP-complete problem (w.r.t Karp-reductions)

Allows multiple oracle calls. Alternately, allow only one call.
\#P completeness

- $f \in \#P$ is \#P-complete if any $g \in \#P$ can be Cook-reduced to f

- From *parsimonious* reduction of g’s NP problem to an NP-complete problem (w.r.t Karp-reductions)

- \#SAT is \#P-complete
#P completeness

- $f \in \#P$ is \#P-complete if any $g \in \#P$ can be Cook-reduced to f

- From parsimonious reduction of g’s NP problem to an NP-complete problem (w.r.t Karp-reductions)

- \#SAT is \#P-complete

- Other \#P-complete problems whose decision problems are in P
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced to f

From parsimonious reduction of g’s NP problem to an NP-complete problem (w.r.t Karp-reductions)

#SAT is #P-complete

Other #P-complete problems whose decision problems are in P

Permanent (for binary matrices) is #P-complete
Permanent
Permanent

Permanent of a square matrix A
Permanent

- Permanent of a square matrix A
- If A is binary (0,1 entries): $\text{perm}(A) = \text{number of perfect matchings in a bipartite graph } B_A$ whose adjacency matrix is A
Permanent

- Permanent of a square matrix A

 - If A is binary (0,1 entries): $\text{perm}(A) = \text{number of perfect matchings in a bipartite graph } B_A$ whose adjacency matrix is A

 - Note: finding if there exists a perfect matching is in \mathbb{P} (using network flow)
Permanent

Permanent of a square matrix A

- If A is binary (0,1 entries): $\text{perm}(A) = \text{number of perfect matchings in a bipartite graph } B_A$ whose adjacency matrix is A

 - Note: finding if there exists a perfect matching is in P (using network flow)

- Algebraically: $\text{perm}(A) = \sum_\sigma \prod_i A_{i,\sigma(i)}$ where σ are permutations
Permanent

- Permanent of a square matrix A

- If A is binary (0,1 entries): $\text{perm}(A) = \text{number of perfect matchings in a bipartite graph } B_A$ whose adjacency matrix is A

 - Note: finding if there exists a perfect matching is in P (using network flow)

- Algebraically: $\text{perm}(A) = \sum_{\sigma} \prod_i A_{i,\sigma(i)}$ where σ are permutations

 - Note: Similar to determinant (which is in FP)
Permanent

permanent of a square matrix A

If A is binary (0,1 entries): $\text{perm}(A) =$ number of perfect matchings in a bipartite graph B_A whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P (using network flow)

Algebraically: $\text{perm}(A) = \sum_\sigma \prod_i A_{i,\sigma(i)}$ where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph
Permanental of a square matrix A

If A is binary (0,1 entries): $\text{perm}(A) = \text{number of perfect matchings in a bipartite graph } B_A$ whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P (using network flow)

Algebraically: $\text{perm}(A) = \sum_{\sigma} \prod_i A_{i,\sigma(i)}$ where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph

Weight of a cycle cover σ, $W(\sigma) = \prod_i A_{i,\sigma(i)}$
Permanent

- Permanent of a square matrix A

- If A is binary (0,1 entries): $\text{perm}(A) =$ number of perfect matchings in a bipartite graph B_A whose adjacency matrix is A

- Note: finding if there exists a perfect matching is in P (using network flow)

- Algebraically: $\text{perm}(A) = \sum_{\sigma} \prod_i A_{i,\sigma(i)}$ where σ are permutations

- Note: Similar to determinant (which is in FP)

- Permutations are cycle covers of complete directed graph

- Weight of a cycle cover σ, $W(\sigma) = \prod_i A_{i,\sigma(i)}$

- $\text{Perm}(A) = \sum_{\sigma} W(\sigma)$ over all cycle covers σ of directed graph G_A (with edge-weights from A)
Permanent is \#P-complete
Permanent is \#P-complete

- First will reduce \#SAT to permanent of an integer (not binary) matrix
Permanent is \#P-complete

- First will reduce \#SAT to permanent of an integer (not binary) matrix

- Plan: Given a SAT instance \(\varphi \) with \(m \) clauses, build an integer-weighted directed graph \(A_\varphi \) such that
\[
\text{perm}(A_\varphi) = 4^{3m} \cdot \#\varphi
\]
Permanent is \#P-complete

First will reduce \#SAT to permanent of an integer (not binary) matrix

Plan: Given a SAT instance \(\varphi \) with \(m \) clauses, build an integer-weighted directed graph \(A_\varphi \) such that
\[
\text{perm}(A_\varphi) = 4^{3m} \cdot \#\varphi
\]

Almost Karp-reduction (need to rescale)
Permanent is \#P-complete
Permanent is \#P-complete

For each variable add a "variable gadget" and for each clause a "clause gadget"
Permanent is \#P-complete

For each variable add a "variable gadget" and for each clause a "clause gadget"
Permanent is \#P-complete

For each variable add a "variable gadget" and for each clause a "clause gadget"

Variable: two possible cycle covers of weight 1 -- uses either all the true-edges or the false-edge
Permanent is \#P-complete

For each variable add a “variable gadget” and for each clause a “clause gadget”

Variable: two possible cycle covers of weight 1 -- *uses* either all the true-edges or the false-edge

Clause: any cycle cover has to leave at least one variable-edge *free*

<table>
<thead>
<tr>
<th>Gadget:</th>
<th>Symbolic description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable gadget:</td>
<td></td>
</tr>
<tr>
<td>variable gadget:</td>
<td></td>
</tr>
<tr>
<td>False edge</td>
<td></td>
</tr>
<tr>
<td>external (true) edges - one per clause</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gadget:</th>
<th>Symbolic description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>clause gadget:</td>
<td></td>
</tr>
<tr>
<td>clause gadget:</td>
<td></td>
</tr>
<tr>
<td>external edges</td>
<td></td>
</tr>
<tr>
<td>external edges</td>
<td></td>
</tr>
<tr>
<td>external edges - one per variable</td>
<td></td>
</tr>
</tbody>
</table>

[Figures from the textbook]
Permanent is \#P-complete
Permanent is \#P-complete

- XOR gadget (with negative edge weights):
Permanent is \#P-complete

XOR gadget (with negative edge weights):

\[
\begin{array}{c}
\text{u} \\
\text{v}
\end{array}
\rightarrow
\begin{array}{c}
\text{u}' \\
\text{v}'
\end{array}
\]
Permanent is \#P-complete

- **XOR gadget** (with negative edge weights):
 - Replacing a pair of edges by an XOR gadget changes total weight of cycle covers using neither or both the edges to 0, and scales total weight of cycle covers using exactly one of them by 4.
Permanent is \#P-complete

- XOR gadget (with negative edge weights):
 - Replacing a pair of edges by an XOR gadget changes total weight of cycle covers using neither or both the edges to 0, and scales total weight of cycle covers using exactly one of them by 4

- Final graph
Permanent is #P-complete

- XOR gadget (with negative edge weights):
 - Replacing a pair of edges by an XOR gadget changes total weight of cycle covers using neither or both the edges to 0, and scales total weight of cycle covers using exactly one of them by 4

- Final graph
Permanent is $\#P$-complete

XOR gadget (with negative edge weights):

- Replacing a pair of edges by an XOR gadget changes total weight of cycle covers using neither or both the edges to 0, and scales total weight of cycle covers using exactly one of them by 4

Final graph

- “XOR” each clause-gadget’s “variable-edge” with the corresponding edge in a variable-gadget: 3m XOR gadgets
Permanent is \#P-complete

- **XOR gadget** (with negative edge weights):
 - Replacing a pair of edges by an XOR gadget changes total weight of cycle covers using neither or both the edges to 0, and scales total weight of cycle covers using exactly one of them by 4

- **Final graph**
 - "XOR" each clause-gadget's "variable-edge" with the corresponding edge in a variable-gadget: 3m XOR gadgets
 - Each satisfying assignment gives a cycle cover of weight 4^{3m}
Permanent is #P-complete
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
- To replace -1: working modulo M+1 for large M (say \(M > 2^{n^2}\)) does not change positive values. -1 is then M.
Permanent is $\#P$-complete

- Can use binary matrix instead of integer matrix
- First change to +1/-1 weights (adding vertices)
- To replace -1: working modulo $M+1$ for large M (say $M > 2^{n^2}$) does not change positive values. -1 is then M.
- Also, let M be a power of 2 ($M = 2^k$). Replace M by $\log M$ edges of weight 2 in series, each further replaced by +1 weight edges
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
 - First change to +1/-1 weights (adding vertices)
 - To replace -1: working modulo $M+1$ for large M (say $M > 2^{n^2}$) does not change positive values. -1 is then M.
 - Also, let M be a power of 2 ($M = 2^k$). Replace M by log M edges of weight 2 in series, each further replaced by +1 weight edges
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix
 - First change to +1/-1 weights (adding vertices)
 - To replace -1: working modulo $M+1$ for large M (say $M > 2^{n^2}$) does not change positive values. -1 is then M.
 - Also, let M be a power of 2 ($M = 2^k$). Replace M by $\log M$ edges of weight 2 in series, each further replaced by +1 weight edges
Permanent is \#P-complete

- Can use binary matrix instead of integer matrix

- First change to +1/-1 weights (adding vertices)

- To replace -1: working modulo M+1 for large M (say M > 2^{n^2}) does not change positive values. -1 is then M.

- Also, let M be a power of 2 (M= 2^k). Replace M by log M edges of weight 2 in series, each further replaced by +1 weight edges
Today
Today

#P
Today

- #P
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
Today

- #P
- Can be hard: even #CYCLE is not in FP (unless P = NP)
- #P ⊆ FP^{PP} (and PP ⊆ P^{#P})
Today

- #P

- Can be hard: even #CYCLE is not in FP (unless P = NP)

- #P ⊆ FP^{PP} (and PP ⊆ P^{#P})

- #P complete problems
Today

- \#P
- Can be hard: even \#CYCLE is not in FP (unless P = NP)
- \#P \subseteq FP^{PP} (and PP \subseteq P^{#P})
- \#P complete problems
- \#SAT
Today

- #P
 - Can be hard: even #CYCLE is not in FP (unless P = NP)
 - #P ⊆ FP^{PP} (and PP ⊆ P^{#P})
 - #P complete problems
 - #SAT
 - Permanent
Today

- \#P
- Can be hard: even \#CYCLE is not in FP (unless P = NP)
- \#P ⊆ FP^{PP} (and PP ⊆ P^{#P})
- \#P complete problems
 - \#SAT
 - Permanent
- Next: Toda’s Theorem: PH ⊆ P^{#P} = P^{PP}