Interactive Proofs

Lecture 17
IP = PSPACE
So far
So far

IP
So far

- IP
- AM, MA
So far

- IP
- AM, MA
- GNI ∈ IP
So far

- IP
- AM, MA
- GNI ∈ IP
- GNI ∈ AM
So far

- IP
- AM, MA
- GNI ∈ IP
- GNI ∈ AM

Using AM protocol for set lower-bound
So far

- IP
- AM, MA
- GNI ∈ IP
- GNI ∈ AM

Using AM protocol for set lower-bound

In fact, IP[k] in AM[k+2]
IP = PSPACE
IP = PSPACE

Recall, IP means IP[poly]
IP = PSPACE

- Recall, IP means IP[poly]
- \(IP \subseteq PSPACE \)
IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

Even though prover unbounded, cannot convince poly time verifier of everything
IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

Even though prover unbounded, cannot convince poly time verifier of everything

PSPACE ⊆ IP
IP = PSPACE

- Recall, IP means IP[poly]
- IP ⊆ PSPACE
 - Even though prover unbounded, cannot convince poly time verifier of everything
- PSPACE ⊆ IP
 - Prover can convince verifier of high complexity statements
IP \subseteq \text{PSPACE}
\[\text{IP} \subseteq \text{PSPACE} \]

❄️ Easier direction!
IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate Pr[yes] of honest verifier, maximum over all “prover strategies”
IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate $\Pr[\text{yes}]$ of honest verifier, maximum over all “prover strategies”

Warm-up: public-coins (i.e., AM[\text{poly}])
IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate $\Pr[\text{yes}]$ of honest verifier, maximum over all “prover strategies”

Warm-up: public-coins (i.e., $\text{AM}[\text{poly}]$)

Could then use the “fact” that $\text{IP}[\text{poly}]=\text{AM}[\text{poly}]$
IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate $\Pr[\text{yes}]$ of honest verifier, maximum over all “prover strategies”

Warm-up: public-coins (i.e., AM[poly])

Could then use the “fact” that IP[poly]=AM[poly]

Or modify the proof (as we’ll do)
$\text{AM[poly]} \subseteq \text{PSPACE}$
AM[poly] ⊆ PSPACE

Plan: For given input calculate max Pr[yes] over all “prover strategies”
AM[\text{poly}] \subseteq \text{PSPACE}

Plan: For given input calculate max Pr[yes] over all “prover strategies”

Assume for convenience (w.l.o.g) each message is a single bit and P, V alternate
Plan: For given input calculate max \Pr[\text{yes}] over all “prover strategies”

Assume for convenience (w.l.o.g) each message is a single bit and P, V alternate

Since public-coin, V messages are simply uniform random bits
AM[\text{poly}] \subseteq \text{PSPACE}

Plan: For given input calculate maximum $\Pr[\text{yes}]$ over all "prover strategies"

Assume for convenience (w.l.o.g) each message is a single bit and P, V alternate

Since public-coin, V messages are simply uniform random bits

Protocol's configuration tree: path to a node corresponds to the transcript so far
AM[poly] ⊆ PSPACE

Plan: For given input calculate max Pr[yes] over all “prover strategies”

Assume for convenience (w.l.o.g) each message is a single bit and P, V alternate

Since public-coin, V messages are simply uniform random bits

Protocol’s configuration tree: path to a node corresponds to the transcript so far
AM[poly] ⊆ PSPACE
AM[poly] ⊆ PSPACE

Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]
\(\text{AM[poly]} \subseteq \text{PSPACE} \)

Plan: For given input calculate maximum value, over all "prover strategies," of \(\Pr[\text{yes}] \)

Note that finding the honest prover strategy may require super-PSPACE computation
\[\text{AM[poly]} \subseteq \text{PSPACE} \]

Plan: For given input calculate maximum value, over all “prover strategies,” of Pr[yes]

- Note that finding the honest prover strategy may require super-PSPACE computation
- Recursively for each node, calculate maximum Pr[yes]
AM[poly] ⊆ PSPACE

Plan: For given input calculate maximum value, over all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation

Recursively for each node, calculate maximum Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by running verifier’s program
Plan: For given input calculate maximum value, over all “prover strategies,” of $\Pr[\text{yes}]$.

Note that finding the honest prover strategy may require super-PSPACE computation.

Recursively for each node, calculate maximum $\Pr[\text{yes}]$.

Leaves: $\Pr[\text{yes}] = 0$ or 1, determined by running verifier’s program.

P nodes: max of children.
AM[poly] ⊆ PSPACE

Plan: For given input calculate maximum value, over all "prover strategies," of Pr[yes]

Note that finding the honest prover strategy may require super-PSPACE computation

Recursively for each node, calculate maximum Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by running verifier’s program

P nodes: max of children

V nodes: average of children
AM[poly] ⊆ PSPACE

- **Plan:** For given input calculate maximum value, over all "prover strategies," of $Pr[\text{yes}]$

- **Note:** Finding the honest prover strategy may require super-PSPACE computation

- **Recursively for each node, calculate maximum $Pr[\text{yes}]$**

- **Leaves:** $Pr[\text{yes}] = 0$ or 1, determined by running verifier's program

- **P nodes:** max of children

- **V nodes:** average of children

- **In PSPACE:** depth polynomial
\[\text{IP } \subseteq \text{PSPACE} \]
$\text{IP} \subseteq \text{PSPACE}$

Calculate max $\text{Pr}[\text{yes}]$ when prover's strategy can depend only on messages and not private coins
IP ⊆ PSPACE

- Calculate max $Pr[yes]$ when prover’s strategy can depend only on messages and not private coins.
- Maintain the set of consistent random-tapes at each V node.
IP ⊆ PSPACE

- Calculate max $\text{Pr}[\text{yes}]$ when prover’s strategy can depend only on messages and not private coins.

- Maintain the set of consistent random-tapes at each V node.

- Children of V node not always chosen with $1/2 - 1/2$ probability. Instead weighted by fraction of consistent random-tapes.
IP ⊆ PSPACE

- Calculate max Pr[yes] when prover’s strategy can depend only on messages and not private coins
- Maintain the set of consistent random-tapes at each V node
- Children of V node not always chosen with 1/2-1/2 probability. Instead weighted by fraction of consistent random-tapes
- Leaves: Pr[yes] determined by running verifier’s program on all consistent random-tapes of verifier
$\text{IP} \subseteq \text{PSPACE}$

- Calculate max $Pr[\text{yes}]$ when prover’s strategy can depend only on messages and not private coins.
- Maintain the set of consistent random-tapes at each V node.
- Children of V node not always chosen with 1/2-1/2 probability. Instead weighted by fraction of consistent random-tapes.
- Leaves: $Pr[\text{yes}]$ determined by running verifier’s program on all consistent random-tapes of verifier.
- P nodes: max of children.
IP ⊆ PSPACE

- Calculate max \(\Pr[\text{yes}] \) when prover’s strategy can depend only on messages and not private coins.
- Maintain the set of consistent random-tapes at each V node.
- Children of V node not always chosen with \(1/2 - 1/2 \) probability. Instead weighted by fraction of consistent random-tapes.
- Leaves: \(\Pr[\text{yes}] \) determined by running verifier’s program on all consistent random-tapes of verifier.
- \(P \) nodes: max of children.
- \(V \) nodes: (weighted) average of children.
PSPACE ⊆ IP
PSPACE \subseteq IP

Enough to show an IP protocol for TQBF
PSPACE ⊆ IP

Enough to show an IP protocol for TQBF

For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership
PSPACE ⊆ IP

- Enough to show an IP protocol for TQBF
- For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership
- Recall TQBF
PSPACE \subseteq IP

- Enough to show an IP protocol for TQBF

- For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership

- Recall TQBF

- Decide whether a QBF is true or not
PSPACE \subseteq IP

- Enough to show an IP protocol for TQBF
- For any L in PSPACE, both prover and verifier can first reduce input to a TQBF instance, and then prover proves its membership

Recall TQBF

- Decide whether a QBF is true or not
- QBF: $Q_1x_1 \ Q_2x_2 \ ... \ Q_nx_n \ F(x_1,\ldots,x_n)$ for quantifiers Q_i and a formula F on boolean variables
Arithmetization
Arithmetization

- A Boolean formula as a polynomial
Arithmetization

- A Boolean formula as a polynomial
- Arithmetic over a (finite, exponentially large) field
Arithmetization

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - 0 and 1 (identities of addition and multiplication) instead of True and False
Arithmetization

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - 0 and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector b and corresponding 0-1 vector x we have $F(b) = P(x)$
Arithmetization

- A Boolean formula as a polynomial

- Arithmetic over a (finite, exponentially large) field

- 0 and 1 (identities of addition and multiplication) instead of True and False

- For formula F, polynomial P such that for boolean vector \(b \) and corresponding 0-1 vector \(x \) we have \(F(b) = P(x) \)

- NOT: \((1-x) \); AND: \(x \cdot y \)
Arithmetization

- A Boolean formula as a polynomial
 - Arithmetic over a (finite, exponentially large) field
 - 0 and 1 (identities of addition and multiplication) instead of True and False
 - For formula F, polynomial P such that for boolean vector b and corresponding 0-1 vector x we have $F(b) = P(x)$
 - NOT: $(1-x)$; AND: $x \cdot y$
 - OR (as NOT of AND of NOT): $1 - (1-x) \cdot (1-y)$
Arithmetization

A Boolean formula as a polynomial

- Arithmetic over a (finite, exponentially large) field
- 0 and 1 (identities of addition and multiplication) instead of True and False

For formula F, polynomial P such that for boolean vector b and corresponding 0-1 vector x we have $F(b) = P(x)$

- NOT: $(1-x)$; AND: $x.y$
- OR (as NOT of AND of NOT): $1 - (1-x).(1-y)$

Exercise: Arithmetize $x=y$ (now!). Degree? Size?
Arithmetization

- A Boolean formula as a polynomial

- Arithmetic over a (finite, exponentially large) field

- 0 and 1 (identities of addition and multiplication) instead of True and False

- For formula F, polynomial P such that for boolean vector b and corresponding 0-1 vector x we have $F(b) = P(x)$

- NOT: $(1-x)$; AND: $x.y$

- OR (as NOT of AND of NOT): $1 - (1-x).(1-y)$

- Exercise: Arithmetize $x=y$ (now!). Degree? Size?

- Can always use a polynomial linear in each variable since $x^n = x$ for $x=0$ and $x=1$
Arithmetization
Arithmetization

- A QBF as a polynomial
Arithmetization

- A QBF as a polynomial

- TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
Arithmetization

A QBF as a polynomial

TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)

Suppose for Boolean formula F, polynomial P
Arithmetization

- **A QBF as a polynomial**
 - TRUE will correspond to \(> 0 \), and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)
 - Suppose for Boolean formula \(F \), polynomial \(P \)
 - \(\exists x \, F(x) \rightarrow P(0) + P(1) > 0 \) (i.e., \(\sum_{x=0,1} P(x) > 0 \))
Arithmetization

A QBF as a polynomial

TRUE will correspond to > 0, and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., \(\Sigma_{x=0,1} P(x) > 0\))

∀x F(x) → P(0).P(1) > 0 (i.e., \(\Pi_{x=0,1} P(x) > 0\))
Arithmetization

A QBF as a polynomial

TRUE will correspond to > 0, and FALSE $= 0$ (when variables are assigned 1/0 for TRUE/FALSE)

Suppose for Boolean formula F, polynomial P

$\exists x \ F(x) \rightarrow P(0) + P(1) > 0$ (i.e., $\sum_{x=0,1} P(x) > 0$)

$\forall x \ F(x) \rightarrow P(0).P(1) > 0$ (i.e., $\prod_{x=0,1} P(x) > 0$)

Extends to more quantifiers: i.e., if $F(x)$ is a QBF above
Arithmetization

- A QBF as a polynomial

TRUE will correspond to \(> 0 \), and FALSE = 0 (when variables are assigned 1/0 for TRUE/FALSE)

Suppose for Boolean formula \(F \), polynomial \(P \)

\(\exists x \ F(x) \rightarrow P(0) + P(1) > 0 \) (i.e., \(\sum_{x=0,1} P(x) > 0 \))

\(\forall x \ F(x) \rightarrow P(0).P(1) > 0 \) (i.e., \(\prod_{x=0,1} P(x) > 0 \))

Extends to more quantifiers: i.e., if \(F(x) \) is a QBF above

So, how do you arithmetize \(\exists x \forall y \ G(x,y) \) and \(\forall y \exists x \ G(x,y) \)?
Arithmetization

A QBF as a polynomial

TRUE will correspond to > 0, and FALSE $= 0$ (when variables are assigned 1/0 for TRUE/FALSE)

Suppose for Boolean formula F, polynomial P

$\exists x \ F(x) \rightarrow P(0) + P(1) > 0 \ (\text{i.e., } \sum_{x=0,1} P(x) > 0)$

$\forall x \ F(x) \rightarrow P(0).P(1) > 0 \ (\text{i.e., } \prod_{x=0,1} P(x) > 0)$

Extends to more quantifiers: i.e., if $F(x)$ is a QBF above

So, how do you arithmetize $\exists x \forall y \ G(x,y)$ and $\forall y \exists x \ G(x,y)$?

$\sum_{x=0,1} \prod_{y=0,1} P(x,y) > 0$ and $\prod_{y=0,1} \sum_{x=0,1} P(x,y) > 0$
Arithmetization
Arithmetization

For a protocol for TQBF: Give a protocol for proving that $Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ldots Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0$, where Q_i are Σ or Π, and P is a (multi-linear) polynomial.
Arithmetization

For a protocol for TQBF: Give a protocol for proving that $Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ ... \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0$, where Q_i are Σ or Π, and P is a (multi-linear) polynomial.

Instead suppose all Q_i are Σ.
Arithmetization

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \land Q_2(x_2=0,1) \land \cdots \land Q_n(x_n=0,1) \land P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \), and \(P \) is a (multi-linear) polynomial.

Instead suppose all \(Q_i \) are \(\Sigma \)

Counts number of satisfying assignments to an (unquantified) boolean formula \(F \).
Arithmetization

For a protocol for TQBF: Give a protocol for proving that
\(Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \) where \(Q_i \) are \(\Sigma \) or \(\Pi \), and \(P \) is a (multi-linear) polynomial

Instead suppose all \(Q_i \) are \(\Sigma \)

Counts number of satisfying assignments to an (unquantified) boolean formula \(F \)

Proving \(> 0 \) is trivial
For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \), and \(P \) is a (multi-linear) polynomial

Instead suppose all \(Q_i \) are \(\Sigma \)

Counts number of satisfying assignments to an (unquantified) boolean formula \(F \)

Proving \(> 0 \) is trivial

Consider proving \(= K \) (will be useful in the general case)
Sum-check protocol
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P
Sum-check protocol

- To prove: $\Sigma x_1 \cdots \Sigma x_n P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

- Note: to evaluate need to add up 2^n values

Verifier has only oracle access to P
Sum-check protocol

To prove: $\sum_{x_1} \ldots \sum_{x_n} P(x_1,\ldots,x_n) = K$ for some degree d polynomial P

Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.
To prove: \(\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = K \) for some degree \(d \) polynomial \(P \)

Note: to evaluate need to add up \(2^n \) values

Base case: \(n=0 \). Verifier will simply use oracle access to \(P \).

For \(n>0 \): Let \(R(X) := \sum_{x_2} \ldots \sum_{x_n} P(X, x_2, \ldots, x_n) \)
Sum-check protocol

To prove: $\Sigma x_1 \cdots \Sigma x_n P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.

For $n>0$: Let $R(X) := \Sigma x_2 \cdots \Sigma x_n P(X, x_2, \ldots, x_n)$

$\Sigma x_1 \cdots \Sigma x_n P(x_1, \ldots, x_n) = R(0) + R(1)$
Sum-check protocol

To prove: \(\Sigma x_1 \ldots \Sigma x_n P(x_1, \ldots, x_n) = K \) for some degree \(d \) polynomial \(P \)

Note: to evaluate need to add up \(2^n \) values

Base case: \(n=0 \). Verifier will simply use oracle access to \(P \).

For \(n>0 \): Let \(R(X) := \Sigma x_2 \ldots \Sigma x_n P(X, x_2, \ldots, x_n) \)

\(\Sigma x_1 \ldots \Sigma x_n P(x_1, \ldots, x_n) = R(0) + R(1) \)

\(R \) has only one variable and degree at most \(d \)
Sum-check protocol

To prove: $\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.

For $n>0$: Let $R(X) := \sum_{x_2} \ldots \sum_{x_n} P(X, x_2, \ldots, x_n)$

$
\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = R(0) + R(1)$

R has only one variable and degree at most d
Sum-check protocol

To prove: $\Sigma_{x_1}...\Sigma_{x_n} P(x_1,...,x_n) = K$ for some degree d polynomial P

- Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.

For $n>0$: Let $R(X) := \Sigma_{x_2}...\Sigma_{x_n} P(x_2,...,x_n)$

- $\Sigma_{x_1}...\Sigma_{x_n} P(x_1,...,x_n) = R(0) + R(1)$

- R has only one variable and degree at most d

- Prover sends $T=R$ (as $d+1$ coefficients) to verifier
To prove: $\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.

For $n>0$: Let $R(X) := \sum_{x_2} \ldots \sum_{x_n} P(X, x_2, \ldots, x_n)$

$\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = R(0) + R(1)$

R has only one variable and degree at most d

Prover sends $T=R$ (as $d+1$ coefficients) to verifier
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Note: to evaluate need to add up 2^n values

Base case: $n=0$. Verifier will simply use oracle access to P.

For $n>0$: Let $R(X) := \Sigma_{x_2} \ldots \Sigma_{x_n} P(X, x_2, \ldots, x_n)$

$\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = R(0) + R(1)$

R has only one variable and degree at most d

Prover sends $T=R$ (as $d+1$ coefficients) to verifier

Verifier checks $K = T(0) + T(1)$. Still needs to check $T=R$
Sum-check protocol
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P
Sum-check protocol

To prove: $\Sigma x_1 \ldots \Sigma x_n P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \Sigma x_2 \ldots \Sigma x_n P(X, x_2, \ldots, x_n)$
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \Sigma_{x_2} \ldots \Sigma_{x_n} P(X, x_2, \ldots, x_n)$

Picks random field element a (large enough field)
Sum-check protocol

To prove: $\Sigma_{x_1 \ldots x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \Sigma_{x_2 \ldots x_n} P(X, x_2, \ldots, x_n)$

Picks random field element a (large enough field)

Asks prover to prove that $T(a) = R(a) = \Sigma_{x_2 \ldots x_n} P(a, x_2, \ldots, x_n)$
Sum-check protocol

To prove: $\sum_{x_1} \ldots \sum_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \sum_{x_2} \ldots \sum_{x_n} P(X, x_2, \ldots, x_n)$

Picks random field element a (large enough field)

Asks prover to prove that $T(a) = R(a) = \sum_{x_2} \ldots \sum_{x_n} P(a, x_2, \ldots, x_n)$

Recurse on $P_1(x_2, \ldots, x_n) = P(a, x_2, \ldots, x_n)$ of one variable less
Sum-check protocol

To prove: $\Sigma_{x_1}...\Sigma_{x_n} P(x_1,...,x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \Sigma_{x_2}...\Sigma_{x_n} P(X,x_2,...,x_n)$

Picks random field element a (large enough field)

Asks prover to prove that $T(a) = R(a) = \Sigma_{x_2}...\Sigma_{x_n} P(a,x_2,...,x_n)$

Recurse on $P_1(x_2,...,x_n) = P(a,x_2,...,x_n)$ of one variable less

i.e., Recurse to prove $\Sigma_{x_2}...\Sigma_{x_n} P_1(x_2,...,x_n) = T(a)$
Sum-check protocol

To prove: $\Sigma_{x_1} \ldots \Sigma_{x_n} P(x_1, \ldots, x_n) = K$ for some degree d polynomial P

Verifier wants to check $T(X) = R(X) := \Sigma_{x_2} \ldots \Sigma_{x_n} P(X, x_2, \ldots, x_n)$

Picks random field element a (large enough field)

Asks prover to prove that $T(a) = R(a) = \Sigma_{x_2} \ldots \Sigma_{x_n} P(a, x_2, \ldots, x_n)$

Recurse on $P_1(x_2, \ldots, x_n) = P(a, x_2, \ldots, x_n)$ of one variable less

i.e., Recurse to prove $\Sigma_{x_2} \ldots \Sigma_{x_n} P_1(x_2, \ldots, x_n) = T(a)$

Note: P_1 has degree at most d; verifier has oracle access to P_1 (as it knows a, and has oracle access to P)
Sum-check protocol
Sum-check protocol

Why does sum-check protocol work?
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a) = R(a)$ for a single random a in the field
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a) = R(a)$ for a single random a in the field.
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a)=R(a)$ for a single random a in the field

Completeness is obvious
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a) = R(a)$ for a single random a in the field.

Completeness is obvious.

Soundness: Since $T(X)$ and $R(X)$ are of degree d, if $T \neq R$, at most d points where they agree.
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a) = R(a)$ for a single random a in the field.

Completeness is obvious.

Soundness: Since $T(X)$ and $R(X)$ are of degree d, if $T \neq R$, at most d points where they agree.

Error (picking a bad a), with probability $\leq d/p$, where field is of size p.

Can’t afford more than one check.
Sum-check protocol

Why does sum-check protocol work?

- Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a)=R(a)$ for a single random a in the field

- Completeness is obvious

- Soundness: Since $T(X)$ and $R(X)$ are of degree d, if $T \neq R$, at most d points where they agree

- Error (picking a bad a), with probability $\leq d/p$, where field is of size p

- Also possible error in recursive step (despite good a)
Sum-check protocol

Why does sum-check protocol work?

Instead of checking $T(X) = R(X)$, simply checks (recursively) if $T(a) = R(a)$ for a single random a in the field

Completeness is obvious

Soundness: Since $T(X)$ and $R(X)$ are of degree d, if $T \neq R$, at most d points where they agree

Error (picking a bad a), with probability $\leq d/p$, where field is of size p

Also possible error in recursive step (despite good a)

At most nd/p if n variables. Can take p exponential.
IP Protocol for TQBF
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.
For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove:
\[Q_1 \ x_1 \ldots \ Q_n \ x_n \ P(x_1,\ldots,x_n) = K \]
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ ... \ Q_n(x_n=0,1) \ P(x_1,...,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial

In fact a protocol to prove: \(Q_1 x_1... \ Q_n x_n \ P(x_1,...,x_n) = K \)

Problem with generalizing sum-check protocol: the univariate poly
\[R(X) := Q_2 x_2... \ Q_n x_n \ P(X,x_2,...,x_n) \] has exponential degree. Verifier can’t read \(T(X)=R(X) \)
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that

\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]

where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove: \(Q_1 x_1 \ldots Q_n x_n P(x_1,\ldots,x_n) = K \)

Problem with generalizing sum-check protocol: the univariate poly
\(R(X) := Q_2 x_2 \ldots Q_n x_n P(X,x_2,\ldots,x_n) \) has exponential degree. Verifier can't read \(T(X) = R(X) \)

Instead of \(T \), can work with “linearization” of \(T \). Roughly:
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \cdot Q_2(x_2=0,1) \cdot \ldots \cdot Q_n(x_n=0,1) \cdot P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove: \(Q_1 x_1 \ldots Q_n x_n P(x_1,\ldots,x_n) = K \)

Problem with generalizing sum-check protocol: the univariate poly
\(R(X) := Q_2 x_2 \ldots Q_n x_n P(X,x_2,\ldots,x_n) \) has exponential degree. Verifier
can’t read \(T(X)=R(X) \)

Instead of \(T \), can work with “linearization” of \(T \). Roughly:

Prover sends \(L(X) = (T(1)-T(0)) \cdot X + T(0) \)
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove:
\[Q_1 x_1 \ldots Q_n x_n P(x_1,\ldots,x_n) = K \]

Problem with generalizing sum-check protocol: the univariate poly
\[R(X) := Q_2 x_2 \ldots Q_n x_n P(X,x_2,\ldots,x_n) \] has exponential degree. Verifier can’t read \(T(X)=R(X) \)

Instead of \(T \), can work with “linearization” of \(T \). Roughly:

Prover sends \(L(X) = (T(1)-T(0)) X + T(0) \)
Verifier picks random \(a \), and asks prover to show \(R'(a) = L(a) \)
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \ Q_2(x_2=0,1) \ldots \ Q_n(x_n=0,1) \ P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove: \(Q_1 x_1 \cdots Q_n x_n P(x_1,\ldots,x_n) = K \)

Problem with generalizing sum-check protocol: the univariate poly \(R(X) := Q_2 x_2 \cdots Q_n x_n P(X,x_2,\ldots,x_n) \) has exponential degree. Verifier can't read \(T(X) = R(X) \)

Instead of \(T \), can work with "linearization" of \(T \). Roughly:

Prover sends \(L(X) = (T(1)-T(0)) X + T(0) \)
Verifier picks random \(a \), and asks prover to show \(R'(a) = L(a) \)
IP Protocol for TQBF

For a protocol for TQBF: Give a protocol for proving that
\[Q_1(x_1=0,1) \land Q_2(x_2=0,1) \land \ldots \land Q_n(x_n=0,1) \land P(x_1,\ldots,x_n) > 0, \]
where \(Q_i \) are \(\Sigma \) or \(\Pi \) and \(P \) is a multi-linear polynomial.

In fact a protocol to prove: \(Q_1 \land \ldots \land Q_n \land P(x_1,\ldots,x_n) = K \)

Problem with generalizing sum-check protocol: the univariate poly
\[R(X) := Q_2 \land \ldots \land Q_n \land P(X,x_2,\ldots,x_n) \]
has exponential degree. Verifier can't read \(T(X)=R(X) \)

Instead of \(T \), can work with “linearization” of \(T \). Roughly:

- Prover sends \(L(X) = (T(1)-T(0)) \cdot X + T(0) \)
- Verifier picks random \(a \), and asks prover to show \(R'(a) = L(a) \)
- Verifier checks (as appropriate) \(L(1) \cdot L(0) = K \) or \(L(1)+L(0) = K \)
IP Protocol for TQBF
IP Protocol for TQBF

- IP = PSPACE
IP Protocol for TQBF

- IP = PSPACE
- Protocol is public-coin
IP Protocol for TQBF

- $\text{IP} = \text{PSPACE}$
- Protocol is public-coin
 - $\text{IP} = \text{AM}[\text{poly}] = \text{PSPACE}$
IP Protocol for TQBF

- IP = PSPACE
- Protocol is public-coin
 - IP = AM[poly] = PSPACE
- Protocol has perfect completeness