Interactive Proofs

Lecture 16
What the all-powerful can convince mere mortals of
Recap
Recap

- Non-deterministic Computation
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
 - Non-determinism on steroids!
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
 - Non-determinism on steroids!
- Non-uniform computation
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
 - Non-determinism on steroids!
- Non-uniform computation
- Probabilistic Computation
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
 - Non-determinism on steroids!
- Non-uniform computation
- Probabilistic Computation
- Today: Interactive Proofs
Recap

- Non-deterministic Computation
- Polynomial Hierarchy
 - Non-determinism on steroids!
- Non-uniform computation
- Probabilistic Computation
- Today: Interactive Proofs
 - Non-determinism and Probabilistic computation on steroids!
Interactive Proofs
Interactive Proofs

Prover wants to convince verifier that x has some property
Interactive Proofs

- **Prover** wants to convince **verifier** that \(x \) has some property
- i.e. \(x \) is in language \(L \)
Interactive Proofs

- **Prover** wants to convince **verifier** that \(x \) has some property
- i.e. \(x \) is in language \(L \)
Interactive Proofs

Prover wants to convince verifier that x has some property

i.e. x is in language L
Interactive Proofs

- **Prover** wants to convince **verifier** that x has some property
- i.e. x is in language L
Interactive Proofs

Prover wants to convince verifier that x has some property

i.e. x is in language L
Interactive Proofs

- **Prover** wants to convince **verifier** that \(x \) has some property
- i.e. \(x \) is in language \(L \)
Interactive Proofs

- **Prover** wants to convince **verifier** that \(x \) has some property
- i.e. \(x \) is in language \(L \)
- All powerful prover, computationally bounded verifier

Prove to me!

\(x \in L \)

YES!
Interactive Proofs

- **Prover** wants to convince **verifier** that \(x \) has some property
- i.e. \(x \) is in language \(L \)
- All powerful prover, computationally bounded verifier
- Verifier doesn’t trust prover

Prove to me! \(x \in L \) YES!
Interactive Proofs

- **Prover** wants to convince **verifier** that x has some property.
- i.e. x is in language L
- All powerful prover, computationally bounded verifier
- Verifier doesn’t trust prover
- Limits the power
Interactive Proofs
Interactive Proofs

- Completeness
Interactive Proofs

Completeness

If x in L, honest Prover should convince honest Verifier
Interactive Proofs

- **Completeness**

 If x in L, **honest Prover** should convince **honest Verifier**

- **Soundness**
Interactive Proofs

- **Completeness**
 - If x in L, honest Prover should convince honest Verifier

- **Soundness**
 - If x not in L, honest Verifier won't accept any purported proof
Interactive Proofs

Completeness

- If \(x \in L \), \textit{honest Prover} should convince \textit{honest Verifier}.

Soundness

- If \(x \notin L \), \textit{honest Verifier} won't accept any purported proof.
Interactive Proofs

Completeness
- If \(x \) in \(L \), honest Prover should convince honest Verifier

Soundness
- If \(x \) not in \(L \), honest Verifier won’t accept any purported proof

\[x \in L \]
Interactive Proofs

- **Completeness**
 - If $x \in L$, honest Prover should convince honest Verifier

- **Soundness**
 - If $x \not\in L$, honest Verifier won’t accept any purported proof

$x \in L$

yeah right!
Interactive Proofs

Completeness

If $x \in L$, honest Prover should convince honest Verifier

Soundness

If $x \not\in L$, honest Verifier won’t accept any purported proof
Interactive Proofs

- **Completeness**
 - If $x \in L$, honest Prover should convince honest Verifier

- **Soundness**
 - If $x \not\in L$, honest Verifier won’t accept any purported proof
An Example
An Example

- Coke in bottle or can
An Example

- Coke in bottle or can
- Prover claims: coke in bottle and coke in can are different
An Example

- Coke in bottle or can
 - Prover claims: coke in bottle and coke in can are different
 - IP protocol:
An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:
An Example

- Coke in bottle or can
- Prover claims: coke in bottle and coke in can are different
- IP protocol:
An Example

- Coke in bottle or can
 - Prover claims: coke in bottle and coke in can are different
- IP protocol:

Pour into from can or bottle
An Example

- Coke in bottle or can
 - Prover claims: coke in bottle and coke in can are different
 - IP protocol:
 - prover tells whether cup was filled from can or bottle
An Example

- **Coke in bottle or can**
 - Prover claims: coke in bottle and coke in can are different
 - IP protocol:
 - prover tells whether cup was filled from can or bottle
 - repeat till verifier is convinced

Pour into from can or bottle

Can/bottle
An Example
An Example

- Graph non-isomorphism (GNI)
An Example

- Graph non-isomorphism (GNI)
- Prover claims: G_0 not isomorphic to G_1
An Example

- **Graph non-isomorphism (GNI)**
 - Prover claims: G_0 not isomorphic to G_1
 - IP protocol:
An Example

- **Graph non-isomorphism (GNI)**
 - Prover claims: G_0 not isomorphic to G_1
 - IP protocol:
An Example

- **Graph non-isomorphism (GNI)**
- Prover claims: G_0 not isomorphic to G_1
- IP protocol:

Set G^\ast to be $\pi(G_0)$ or $\pi(G_1)$ (π a random permutation)
An Example

- **Graph non-isomorphism (GNI)**
 - Prover claims: G_0 not isomorphic to G_1
 - **IP protocol:**
 - Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π a random permutation)
An Example

- **Graph non-isomorphism (GNI)**
 - Prover claims: G_0 not isomorphic to G_1
 - IP protocol:
 - prover tells whether G^* came from G_0 or G_1

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π a random permutation)
An Example

- **Graph non-isomorphism (GNI)**
 - Prover claims: G_0 not isomorphic to G_1
 - **IP protocol:**
 - prover tells whether G^* came from G_0 or G_1
 - repeat till verifier is convinced

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π a random permutation)
Interactive Proofs
Interactive Proofs

- Completeness
Interactive Proofs

- **Completeness**
 - If x in L, honest Prover will convince honest Verifier
Interactive Proofs

Complteness

- If $x \in L$, honest Prover will convince honest Verifier
- With probability at least $2/3$
Interactive Proofs

- Completeness
 - If $x \in L$, honest Prover will convince honest Verifier
 - With probability at least $2/3$

- Soundness
Interactive Proofs

Completeness
- If $x \in L$, honest Prover will convince honest Verifier
- With probability at least $2/3$

Soundness
- If $x \notin L$, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness

- If x in L, honest Prover will convince honest Verifier
- With probability at least $2/3$

Soundness

- If x not in L, honest Verifier won’t accept any purported proof
 - Except with probability at most $1/3$
Deterministic IP?
Deterministic IP?

- Deterministic Verifier IP
Deterministic IP?

- Deterministic Verifier IP
- Prover can construct the entire transcript, which verifier can verify deterministically
Deterministic IP?

- Deterministic Verifier IP
- Prover can construct the entire transcript, which verifier can verify deterministically
- NP certificate
Deterministic IP?

- Deterministic Verifier IP
 - Prover can construct the entire transcript, which verifier can verify deterministically
 - NP certificate
 - Deterministic Verifier IP = NP
Deterministic IP?

- Deterministic Verifier IP
 - Prover can construct the entire transcript, which verifier can verify deterministically
 - NP certificate

- Deterministic Verifier IP = NP

- Deterministic Prover IP = IP
Deterministic IP?

- Deterministic Verifier IP
- Prover can construct the entire transcript, which verifier can verify deterministically
- NP certificate
- Deterministic Verifier IP = NP
- Deterministic Prover IP = IP
- For each input prover can choose the random tape which maximizes $\Pr[\text{yes}]$ (probability over honest verifier’s randomness)
Public and Private Coins
Public and Private Coins

Public coins: Prover sees verifier’s coin tosses
Public and Private Coins

- Public coins: Prover sees verifier’s coin tosses
- Verifier might as well send nothing but the coins to the prover
Public and Private Coins

- Public coins: Prover sees verifier’s coin tosses
 - Verifier might as well send nothing but the coins to the prover

- Private coins: Verifier does not send everything about the coins
Public and Private Coins

- **Public coins**: Prover sees verifier’s coin tosses
 - Verifier might as well send nothing but the coins to the prover
- **Private coins**: Verifier does not send everything about the coins
 - e.g. GNI protocol: verifier keeps coin tosses hidden; uses it to create challenge
Arthur Merlin Proofs
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - Arthur: polynomial time verifier
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a beacon
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - Arthur: polynomial time verifier
 - Merlin: unbounded prover
 - Random coins come from a beacon
Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a beacon

Public coin proof-system
Arthur Merlin Proofs

- **Arthur-Merlin proof-systems**
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a **beacon**
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
- Random coins come from a beacon
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a beacon
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a beacon
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
Arthur Merlin Proofs

- **Arthur**-**Merlin** proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a beacon
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
Arthur Merlin Proofs

- Arthur-Merlin proof-systems
 - **Arthur**: polynomial time verifier
 - **Merlin**: unbounded prover
 - Random coins come from a beacon
 - Public coin proof-system
 - Arthur sends no messages nor flips any coins
MA and AM
MA and AM

Class of languages with two message Arthur-Merlin protocols
MA and AM

- Class of languages with two message Arthur-Merlin protocols
 - AM (or AM[2]): One message from beacon, followed by one message from Merlin
MA and AM

Class of languages with two message Arthur-Merlin protocols

AM (or AM[2]): One message from beacon, followed by one message from Merlin

MA (or MA[2]): One message from Merlin followed by one message from beacon
MA and AM

- Class of languages with two message Arthur-Merlin protocols

 - AM (or AM[2]): One message from beacon, followed by one message from Merlin
 - MA (or MA[2]): One message from Merlin, followed by one message from beacon

- Contain NP and BPP
Multiple-message proofs
Multiple-message proofs

- AM[k], MA[k], IP[k]: k(n) messages
Multiple-message proofs

- $\text{AM}[k]$, $\text{MA}[k]$, $\text{IP}[k]$: $k(n)$ messages
- Turns out $\text{IP}[k] \subseteq \text{AM}[k+2]$!
Multiple-message proofs

- $AM[k]$, $MA[k]$, $IP[k]$: $k(n)$ messages
- Turns out $IP[k] \subseteq AM[k+2]$!
- Turns out $IP[\text{const}] = AM[\text{const}] = AM[2]!$
Multiple-message proofs

- AM[k], MA[k], IP[k]: k(n) messages
- Turns out IP[k] ⊆ AM[k+2]!
- Turns out IP[const] = AM[const] = AM[2]!
- Called AM
Multiple-message proofs

- $\text{AM}[k], \text{MA}[k], \text{IP}[k]: k(n)$ messages
- Turns out $\text{IP}[k] \subseteq \text{AM}[k+2]$!
- Turns out $\text{IP}[\text{const}] = \text{AM}[\text{const}] = \text{AM}[2]$!
 - Called AM
- Turns out $\text{IP}[\text{poly}] = \text{AM}[\text{poly}] = \text{PSPACE}$!
Multiple-message proofs

- $AM[k], MA[k], IP[k]: k(n)$ messages

- Turns out $IP[k] \subseteq AM[k+2]$!

- Turns out $IP[\text{const}] = AM[\text{const}] = AM[2]$!

- Called AM

- Turns out $IP[\text{poly}] = AM[\text{poly}] = \text{PSPACE}$!

- Called $IP (= \text{PSPACE})$
Multiple-message proofs

- AM[k], MA[k], IP[k]: k(n) messages
 - Turns out \(\text{IP}[k] \subseteq \text{AM}[k+2]! \)
 - Turns out \(\text{IP}[\text{const}] = \text{AM}[\text{const}] = \text{AM}[2]! \)
 - Called AM
 - Turns out \(\text{IP}[\text{poly}] = \text{AM}[\text{poly}] = \text{PSPACE}! \)
 - Called IP (= PSPACE)
- Later.
How can private coins be avoided?
How can private coins be avoided?

Example: GNI
How can private coins be avoided?

- Example: GNI

- Recall GNI protocol used private coins
How can private coins be avoided?

- Example: GNI
 - Recall GNI protocol used private coins
 - An alternate view of GNI
How can private coins be avoided?

- Example: GNI
 - Recall GNI protocol used private coins
- An alternate view of GNI
 - Each of G_0 and G_1 has $n!$ isomorphic graphs
How can private coins be avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G_0 and G_1 has $n!$ isomorphic graphs

(Assuming no automorphisms. Else, count with multiplicity.)
How can private coins be avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G_0 and G_1 has $n!$ isomorphic graphs

(Assuming no automorphisms. Else, count with multiplicity.)

If G_0 and G_1 isomorphic, same set of $n!$ isomorphic graphs
How can private coins be avoided?

- Example: GNI

 - Recall GNI protocol used private coins

- An alternate view of GNI

 - Each of G_0 and G_1 has $n!$ isomorphic graphs
 - (Assuming no automorphisms. Else, count with multiplicity.)

 - If G_0 and G_1 isomorphic, same set of $n!$ isomorphic graphs

 - Else $2(n!)$ isomorphic graphs
How can private coins be avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G_0 and G_1 has $n!$ isomorphic graphs

(Assuming no automorphisms. Else, count with multiplicity.)

If G_0 and G_1 isomorphic, same set of $n!$ isomorphic graphs

Else $2(n!)$ isomorphism graphs

Prover to prove that $|\{H: H \equiv G_0 \text{ or } H \equiv G_1\}| > n!$
Set Lower-bound
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$
- $S \subseteq U$, a sampleable universe, membership in S certifiable
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

- $S \subseteq U$, a sampleable universe, membership in S certifiable

- Suppose K large (say $K=|U|/3$). Then simple protocol:
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

- $S \subseteq U$, a sampleable universe, membership in S certifiable

- Suppose K large (say $K=|U|/3$). Then simple protocol:
 - Verifier picks a random element $x \in U$
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$
- $S \subseteq U$, a sampleable universe, membership in S certifiable
- Suppose K large (say $K = |U|/3$). Then simple protocol:
 - Verifier picks a random element $x \in U$
 - If $x \in S$, prover returns certificate
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$
- $S \subseteq U$, a sampleable universe, membership in S certifiable
- Suppose K large (say $K=|U|/3$). Then simple protocol:
 - Verifier picks a random element $x \in U$
 - If $x \in S$, prover returns certificate
 - If certificate valid, verifier accepts
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

$S \subseteq U$, a sampleable universe, membership in S certifiable

Suppose K large (say $K=|U|/3$). Then simple protocol:

- Verifier picks a random element $x \in U$
- If $x \in S$, prover returns certificate
- If certificate valid, verifier accepts

If $|S| > 2K$, $Pr[\text{yes}] > 2/3$. If $|S| \leq K$, $Pr[\text{yes}] \leq 1/3$
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

- $S \subseteq U$, a sampleable universe, membership in S certifiable

- Suppose K large (say $K=|U|/3$). Then simple protocol:
 - Verifier picks a random element $x \in U$
 - If $x \in S$, prover returns certificate
 - If certificate valid, verifier accepts

 - If $|S| > 2K$, $\Pr[\text{yes}] > 2/3$. If $|S| \leq K$, $\Pr[\text{yes}] \leq 1/3$

- But what if $K/|U|$ is exponentially small?
Set Lower-bound
Set Lower-bound

Prover wants to prove that \(|S| > K \), for a set \(S \) such that \(|S| \geq 2K \)
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)

Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$.

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$).

Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:

Verifier picks a random element $y \in H(U)$.
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)

Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:

Verifier picks a random element $y \in H(U)$

If $y \in H(S)$, prover returns certificate: $x \in S$ (+cert.), $y=H(x)$
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)

Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:

Verifier picks a random element $y \in H(U)$
If $y \in H(S)$, prover returns certificate: $x \in S$ (+cert.), $y=H(x)$
If certificate valid, verifier accepts
Set Lower-bound

Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)

Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:

Verifier picks a random element $y \in H(U)$

If $y \in H(S)$, prover returns certificate: $x \in S$ (+cert.), $y=H(x)$

If certificate valid, verifier accepts

Is there such a hash function for all small sets S?
Set Lower-bound

- Prover wants to prove that $|S| > K$, for a set S such that $|S| \geq 2K$

- But K can be very small (say $|U|=2^n$, $K=2^{n/2}$)

- Idea: First “hash down” U to almost size $2K$, so that small sets (like S) do not shrink much (and of course, do not grow). Then, prove that $H(S)$ is a large subset of $H(U)$:

 - Verifier picks a random element $y \in H(U)$
 - If $y \in H(S)$, prover returns certificate: $x \in S$ (+cert.), $y=H(x)$
 - If certificate valid, verifier accepts

- Is there such a hash function for all small sets S?

- Clearly no single function for all S!
Hash Function Family
Hash Function Family

- A family of hash functions
Hash Function Family

- A family of hash functions
- Given any small subset S, a random function h from the family will not shrink it much (say by $3/4$) with high probability
Hash Function Family

- A family of hash functions
- Given any small subset S, a random function h from the family will not shrink it much (say by $3/4$) with high probability
- (Though every h shrinks some small sets)
Hash Function Family

- A family of hash functions
- Given any small subset S, a random function h from the family will not shrink it much (say by $3/4$) with high probability
- (Though every h shrinks some small sets)
- Relate shrinking to “hash collision probability”
A family of hash functions

Given any small subset S, a random function h from the family will not shrink it much (say by $3/4$) with high probability

(Though every h shrinks some small sets)

Relate shrinking to “hash collision probability”

$\Pr_h[h(x) = h(x')]$ (max over $x \neq x'$)
Hash Function Family

- A family of hash functions

- Given any small subset S, a random function h from the family will not shrink it much (say by $3/4$) with high probability

- (Though every h shrinks some small sets)

- Relate shrinking to “hash collision probability”

 - $\Pr_h[h(x)=h(x')]$ (max over $x\neq x'$)

- Exercise!
2-Universal Hash Family
2-Universal Hash Family

(a.k.a pairwise-independent hashing)
2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions $h: U \rightarrow R$
2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions $h: U \to R$

$Pr_h[h(x) = y] = 1/|R|$ for all $x \in U$ and $y \in R$
2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions $h: U \rightarrow R$

$\Pr_h[h(x)=y] = \frac{1}{|R|}$ for all $x \in U$ and $y \in R$

$\Pr_h[h(x)=y \& h(x')=y'] = \frac{1}{|R|^2}$ for all $x \neq x' \in U$ and $y, y' \in R$
2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions $h: U \rightarrow R$

$\Pr[h(x) = y] = \frac{1}{|R|}$ for all $x \in U$ and $y \in R$

$\Pr[h(x) = y \land h(x') = y'] = \frac{1}{|R|^2}$ for all $x \neq x' \in U$ and $y, y' \in R$

E.g. in exercise
2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions $h: U \rightarrow R$

$\Pr_h[h(x)=y] = \frac{1}{|R|}$ for all $x \in U$ and $y \in R$

$\Pr_h[h(x)=y \land h(x')=y'] = \frac{1}{|R|^2}$ for all $x \neq x' \in U$ and $y, y' \in R$

E.g. in exercise

Hash collision probability $= \frac{1}{|R|}$
Public-coin protocol for
Set lower-bound
Public-coin protocol for Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)
Public-coin protocol for Set lower-bound

- Given a description of S and size K, to prove |S|>K (if |S|>2K)

- Verifier picks a random hash function h from a 2UHF family from U to R, with |R| = 8K (say), and a random element y in R, and sends (h,y) to Prover.
Public-coin protocol for Set lower-bound

Given a description of S and size K, to prove $|S| > K$ (if $|S| > 2K$)

Verifier picks a random hash function h from a 2UHF family from U to R, with $|R| = 8K$ (say), and a random element y in R, and sends (h, y) to Prover.

Prover sends back (if possible) $x \in S$ s.t. $h(x) = y$, with a certificate for $x \in S$
Public-coin protocol for Set lower-bound

Given a description of S and size K, to prove $|S| > K$ (if $|S| > 2K$)

Verifier picks a random hash function h from a 2UHF family from U to R, with $|R| = 8K$ (say), and a random element y in R, and sends (h, y) to Prover.

Prover sends back (if possible) $x \in S$ s.t. $h(x) = y$, with a certificate for $x \in S$

Verifier verifies $x \in S$ and $h(x) = y$, and if so outputs Yes
Public-coin protocol for Set lower-bound

Given a description of S and size K, to prove $|S| > K$ (if $|S| > 2K$)

Verifier picks a random hash function h from a 2UHF family from U to R, with $|R| = 8K$ (say), and a random element y in R, and sends (h, y) to Prover.

Prover sends back (if possible) $x \in S$ s.t. $h(x) = y$, with a certificate for $x \in S$

Verifier verifies $x \in S$ and $h(x) = y$, and if so outputs Yes

$Pr[Yes]$ has a constant gap between $|S| > 2K$ and $|S| < K$

[Exercise]