Computational Complexity

Lecture 2
in which we talk about
NP-completeness
(reductions, reductions)
Recap
Recap

Languages in NP are of the form:
Recap

Languages in NP are of the form:

\[L = \{ x \mid \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x,w) \in L' \}, \text{ where } L' \text{ is in } P \]
Recap

Languages in NP are of the form:

\[L = \{ x \mid \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x, w) \in L' \}, \text{ where } L' \text{ is in } P \]

Today: Hardest problems in NP
Reductions
Reductions

At the heart of today’s complexity theory
Reductions

At the heart of today’s complexity theory

$L_1 \leq L_2$ if problem of deciding L_1 “reduces to that of deciding” L_2
Reductions

- At the heart of today’s complexity theory
- $L_1 \leq L_2$ if problem of deciding L_1 “reduces to that of deciding” L_2
 - if can decide L_2, can decide L_1
Turing and Many-One
Turing and Many-One

Turing reduction:
Turing and Many-One

Turing reduction:

* Build a TM (oracle machine) M_{L_1}, s.t. using the oracle O_{L_2} which decides L_2, $M_{L_1}^O_{L_2}$ decides L_1
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) \(M_{L1} \), s.t. using the oracle \(O_{L2} \) which decides \(L_2 \), \(M_{L1} \uparrow O_{L2} \) decides \(L_1 \)

- \(M_{L1} \) may query \(O_{L2} \) many times (with different inputs)
Turing and Many-One

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L_2, $M_{L1}^{O_{L2}}$ decides L_1

M_{L1} may query O_{L2} many times (with different inputs)

Many-One:
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) M_{L_1}, s.t. using the oracle O_{L_2} which decides L_2, $M_{L_1}^O_{L_2}$ decides L_1
- M_{L_1} may query O_{L_2} many times (with different inputs)

Many-One:

- M_{L_1} can query O_{L_2} only once, and must output what O_{L_2} outputs
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) \(M_{L1} \), s.t. using the oracle \(O_{L2} \) which decides \(L_2 \), \(M_{L1}^O_{L2} \) decides \(L_1 \)

- \(M_{L1} \) may query \(O_{L2} \) many times (with different inputs)

Many-One:

- \(M_{L1} \) can query \(O_{L2} \) only once, and must output what \(O_{L2} \) outputs

- \(M_{L1} \) maps its input \(x \) to an input \(f(x) \) for \(O_{L2} \)
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L_2, $M_{L1}^O_{L2}$ decides L_1
- M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

- M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs
- M_{L1} maps its input x to an input $f(x)$ for O_{L2}
 - $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L_2, $M_{L1}^O_{L2}$ decides L_1
- M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

- M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs
- M_{L1} maps its input x to an input $f(x)$ for O_{L2}

- $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$
Turing and Many-One

Turing reduction:

- Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L_2, $M_{L1}^O_{L2}$ decides L_1
- M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

- M_{L1} can query O_{L2} only once, and must output what O_{L2} outputs
- M_{L1} maps its input x to an input $f(x)$ for O_{L2}
- $x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$
Turing and Many-One

Turing reduction:

Build a TM (oracle machine) M_{L_1}, s.t. using the oracle O_{L_2} which decides L_2, $M_{L_1} \uparrow O_{L_2}$ decides L_1

M_{L_1} may query O_{L_2} many times (with different inputs)

Many-One:

M_{L_1} can query O_{L_2} only once, and must output what O_{L_2} outputs

M_{L_1} maps its input x to an input $f(x)$ for O_{L_2}

$x \in L_1 \Rightarrow f(x) \in L_2$ and $x \notin L_1 \Rightarrow f(x) \notin L_2$
Polynomial-Time Reduction
Polynomial-Time Reduction

Many-one reduction, where M_{L1} runs in polynomial time
Polynomial-Time Reduction

Many-one reduction, where M_{L_1} runs in polynomial time

$L_1 \leq_p L_2$
Polynomial-Time Reduction

- Many-one reduction, where M_{L_1} runs in polynomial time

- $L_1 \leq_p L_2$

- L_2 is "computationally (almost) as hard or harder" compared to $L_1"
Polynomial-Time Reduction

- Many-one reduction, where M_{L_1} runs in polynomial time
- $L_1 \leq_p L_2$
- L_2 is “computationally (almost) as hard or harder” compared to L_1
 - “almost”: reduction overheads (reduction time, size blow-up)
Polynomial-Time Reduction

Many-one reduction, where M_{L_1} runs in polynomial time

$L_1 \leq_p L_2$

L_2 is “computationally (almost) as hard or harder” compared to L_1

“almost”: reduction overheads (reduction time, size blow-up)

L_2 may be way harder
Cook, Karp, Levin
Cook, Karp, Levin

Polynomial-time reduction
Cook, Karp, Levin

- Polynomial-time reduction
- Cook: Turing reduction
Cook, Karp, Levin

- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
Cook, Karp, Levin

- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for \leq_p
Cook, Karp, Levin

- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for \leq_p

- Between NP languages
Cook, Karp, Levin

Polynomial-time reduction
- Cook: Turing reduction
- Karp: Many-one reduction
 - We use this for \leq_p

Between NP languages
- Levin: Karp + witnesses easily transformed back and forth
Cook, Karp, Levin

- Polynomial-time reduction
 - Cook: Turing reduction
 - Karp: Many-one reduction
 - We use this for \leq_P

- Between NP languages
 - Levin: Karp + witnesses easily transformed back and forth
 - Parsimonious: Karp + number of witnesses doesn’t change
NP-completeness
NP-completeness

A language L is NP-Hard if for all L' in NP, $L' \leq_p L$.
A language L is **NP-Hard** if for all L' in NP, $L' \leq_p L$

A language L is **NP-Complete** if it is NP-Hard and is in NP
A language \(L \) is **NP-Hard** if for all \(L' \) in NP, \(L' \leq_p L \)

A language \(L \) is **NP-Complete** if it is NP-Hard and is in NP

To efficiently solve all problems in NP, you need to efficiently solve \(L \) and nothing more
A simple NPC language
A simple NPC language

\[\text{TMSAT} = \{ (M, z, 1^n, 1^t) \mid \exists w, |w| < n, \text{ s.t. TM represented by } M \text{ accepts } (z, w) \text{ within time } t \} \]
A simple NPC language

\[T_{\text{MSAT}} = \{ (M, z, 1^n, 1^t) \mid \exists w, |w| < n, \text{ s.t. TM represented by } M \text{ accepts } (z, w) \text{ within time } t \} \]

\(T_{\text{MSAT}} \) is in \(NP \): \(T_{\text{MVAL}} = \{ (M, z, 1^n, 1^t, w) \mid |w| < n \text{ and TM represented by } M \text{ accepts } (z, w) \text{ within time } t \} \) is in \(P \)
A simple NPC language

\[\text{TMSAT} = \{ (M,z,1^n,1^t) \mid \exists w, |w|<n, \text{ s.t. TM represented by } M \text{ accepts } (z,w) \text{ within time } t \} \]

\[\text{TMSAT is in NP: TMVAL} = \{ (M,z,1^n,1^t,w) \mid |w|<n \text{ and TM represented by } M \text{ accepts } (z,w) \text{ within time } t \} \text{ is in P} \]

\[\text{TMSAT is NP-hard: Given a language } L \text{ in NP defined as } L = \{ x \mid \exists w, |w|<n \text{ s.t. } M_{L'} \text{ accepts } (x,w) \} \text{ and } M_{L'} \text{ runs within time } t, (\text{where } n,t \text{ are poly(|x|)}), \text{ let the Karp reduction be } f(x) = (M_{L'},x,1^n,1^t) \]
A simple NPC language

TMSAT = \{ (M, z, 1^n, 1^t) | \exists w, |w| < n, s.t. TM represented by M accepts (z, w) within time \(t \) \}

TMSAT is in \(\text{NP} \): TMVAL = \{ (M, z, 1^n, 1^t, w) | |w| < n and TM represented by M accepts (z, w) within time \(t \) \} is in \(\text{P} \)

TMSAT is \(\text{NP-hard} \): Given a language \(L \) in \(\text{NP} \) defined as \(L = \{ x | \exists w, |w| < n \text{ s.t. } M_{L'} \text{ accepts } (x, w) \} \) and \(M_{L'} \) runs within time \(t \), (where \(n, t \) are poly(|x|)), let the Karp reduction be \(f(x) = (M_{L'}, x, 1^n, 1^t) \)

Any “natural” NPC language?
Boolean Circuits
Boolean Circuits

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
Boolean Circuits

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph

- Circuit evaluation **CKT-VAL**:
 - given (ckt,inputs) find ckt's boolean output value
Boolean Circuits

Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph

Circuit evaluation CKT-VAL:
given (ckt, inputs) find ckt’s boolean output value

Can be done very efficiently: CKT-VAL is in P
Boolean Circuits

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph

 Circuit evaluation **CKT-VAL**: given (ckt,inputs) find ckt’s boolean output value

 Can be done very efficiently: CKT-VAL is in P

CKT-SAT: given ckt, is there a “satisfying” input (output=1). In NP.
CKT-SAT is NP-Complete
CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT
CKT-SAT is NP-Complete

- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T
CKT-SAT is NP-Complete

- Reduce any NP language L to CKT-SAT
 - Let’s start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
CKT-SAT is NP-Complete

- Reduce any NP language L to CKT-SAT
 - Let's start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
 - This circuit is an instance of CKT-SAT
CKT-SAT is NP-Complete

- Reduce any NP language L to CKT-SAT
 - Let’s start from the TM for verifying membership in L, with time bound T
 - Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
 - This circuit is an instance of CKT-SAT
 - Ensure reduction is poly-time
TM to Circuit

(x, w)
Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head
TM to Circuit

- **Wires for configurations:** a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head (x, w)
TM to Circuit

- **Wires for configurations**: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head.

- **Circuitry for evolution**: each bundle depends only on 3 previous bundles.
Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head.

Circuitry for evolution: each bundle depends only on 3 previous bundles.

(Part of) initial configuration, namely w, to be plugged in as input.
TM to Circuit

- **Wires for configurations**: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head.

- **Circuitry for evolution**: each bundle depends only on 3 previous bundles.

- *(Part of)* initial configuration, namely \(w \), to be plugged in as input.
Wires for configurations: a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head.

Circuitry for evolution: each bundle depends only on 3 previous bundles.

(Part of) initial configuration, namely w, to be plugged in as input.
TM to Circuit

- **Wires for configurations:** a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head.

- **Circuitry for evolution:** each bundle depends only on 3 previous bundles.

- *(Part of)* initial configuration, namely \(w \), to be plugged in as input.

- \(T \) configurations, \(T \) bundles each.
TM to Circuit

- **Wires for configurations:** a bundle for each tape cell, encoding (content, state), where state is encoded in the cell with the head.

- **Circuitry for evolution:** each bundle depends only on 3 previous bundles.

- (Part of) initial configuration, namely \(w \), to be plugged in as input.

- \(T \) configurations, \(T \) bundles each.

- Circuit size = \(O(T^2) \)
TM to Circuit

(x,w)
Reducing any NP language L to CKT-SAT
TM to Circuit

Reducing any NP language L to CKT-SAT

TM for verifying membership in L, time-bound T, and input x

\rightarrow A circuit which on input w outputs what the TM outputs on (x,w) within T steps
Reducing any NP language \(L \) to CKT-SAT

TM for verifying membership in \(L \), time-bound \(T \), and input \(x \)

\(\rightarrow \) A circuit which on input \(w \) outputs what the TM outputs on \((x,w) \) within \(T \) steps

Poly-time reduction
Reducing any NP language L to CKT-SAT

TM for verifying membership in L, time-bound T, and input x

→ A circuit which on input w outputs what the TM outputs on (x,w) within T steps

Poly-time reduction

CKT-SAT is NP-complete
Other NP-complete problems
Other NP-complete problems

SAT and 3SAT
Other NP-complete problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)
Other NP-complete problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals
Other NP-complete problems

- SAT and 3SAT
 - SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
Other NP-complete problems

- SAT and 3SAT
 - SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more
Other NP-complete problems

- SAT and 3SAT
 - SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more
- Shown using already known ones:
Other NP-complete problems

- SAT and 3SAT
 - SAT: Are all given “clauses” simultaneously satisfiable? (Conjunctive Normal Form)
 - 3SAT: Each clause has at most 3 literals
- CLIQUE, INDEP-SET, VERTEX-COVER
- Hundreds (thousands?) more
- Shown using already known ones:
 - If \(L \leq_p L_1 \) and \(L_1 \leq_p L_2 \), then \(L \leq_p L_2 \)
CKT-SAT \leq_p SAT
CKT-SAT \leq_p SAT

Converting a circuit to a collection of clauses:
CKT-SAT \leq_p SAT

- Converting a circuit to a collection of clauses:
- For each wire (connected component), add a variable
CKT-SAT \leq_p SAT

Converting a circuit to a collection of clauses:

- For each wire (connected component), add a variable
- For each gate, add a clause involving variables for wires connected to the gate:
Converting a circuit to a collection of clauses:

- For each wire (connected component), add a variable
- For each gate, add a clause involving variables for wires connected to the gate:

 e.g. \(x \text{ AND } z \): \((z \Rightarrow x) \), \((z \Rightarrow y) \), \((\neg z \Rightarrow \neg x \lor \neg y) \).

 i.e., \((\neg z \lor x) \), \((\neg z \lor y) \), \((z \lor \neg x \lor y) \).
CKT-SAT \leq_p SAT

Converting a circuit to a collection of clauses:

- For each wire (connected component), add a variable
- For each gate, add a clause involving variables for wires connected to the gate:

 e.g. \(y \rightarrow z \): \((z \Rightarrow x), (z \Rightarrow y), (\neg z \Rightarrow \neg x \lor \neg y).\)

 i.e., \((\neg z \lor x), (\neg z \lor y), (z \lor \neg x \lor y).\)

 and \(x \rightarrow \neg y \rightarrow z \): \((z \Rightarrow x \lor y), (\neg z \Rightarrow \neg x), (\neg z \Rightarrow \neg y).\)
SAT \leq_p 3SAT
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.

More directly:
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.

More directly:

\[(a \lor b \lor c \lor d \lor e) \rightarrow (a \lor b \lor x), (\neg x \lor c \lor d \lor e)\]
\[\rightarrow (a \lor b \lor x), (\neg x \lor c \lor y), (\neg y \lor d \lor e)\]
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.

More directly:

$$(a \lor b \lor c \lor d \lor e) \rightarrow (a \lor b \lor x), (\neg x \lor c \lor d \lor e)$$

$$(a \lor b \lor x), (\neg x \lor c \lor y), (\neg y \lor d \lor e)$$

Reduction needs 3SAT
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.

More directly:

(a \lor b \lor c \lor d \lor e) \rightarrow (a \lor b \lor x), (\neg x \lor c \lor d \lor e)
\rightarrow (a \lor b \lor x), (\neg x \lor c \lor y), (\neg y \lor d \lor e)

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]
SAT \leq_p 3SAT

Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT \leq_p 3SAT.

More directly:

$$(a \lor b \lor c \lor d \lor e) \rightarrow (a \lor b \lor x), (\neg x \lor c \lor d \lor e)$$

$$(a \lor b \lor x), (\neg x \lor c \lor y), (\neg y \lor d \lor e)$$

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])
$3\text{SAT} \leq_p \text{CLIQUE}$
3SAT \leq_p CLIQUE

Clauses \rightarrow Graph
3SAT \leq_p CLIQUE

Clauses \rightarrow Graph

$(x \lor \neg y \lor \neg z)$

$(w \lor y)$

$(w \lor x \lor \neg z)$
3SAT \leq_p CLIQUE

- **Clauses \rightarrow Graph**
- **Vertices:** each clause’s satisfying assignments (for its variables)

- $(x \lor \neg y \lor \neg z)$
- $(w \lor y)$
- $(w \lor x \lor \neg z)$
3SAT \leq_p CLIQUE

- **Clauses \rightarrow Graph**

- Vertices: each clause's satisfying assignments (for its variables)
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph

- Vertices: each clause’s satisfying assignments (for its variables)

\[(x \lor \neg y \lor \neg z)\]

\[(w \lor y)\]

\[(w \lor x \lor \neg z)\]
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph

- Vertices: each clause's satisfying assignments (for its variables)

Clauses:
- $(x \lor \neg y \lor \neg z)$
- $(w \lor y)$
- $(w \lor x \lor \neg z)$
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)

\[(x \lor \neg y \lor \neg z)\]
\[(w \lor y)\]
\[(w \lor x \lor \neg z)\]
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph

- Vertices: each clause's satisfying assignments (for its variables)

\[
(x \lor \neg y \lor \neg z)
\]

\[
(w \lor y)
\]

\[
(w \lor x \lor \neg z)
\]
3SAT \leq_p CLIQUE

- **Clauses → Graph**
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments

Expression:
- $(x \lor \neg y \lor \neg z)$
- $(w \lor y)$
- $(w \lor x \lor \neg z)$
$3\text{SAT} \leq_p \text{CLIQUE}$

- Clauses \rightarrow Graph
- vertices: each clause's satisfying assignments (for its variables)
- edges between consistent assignments

\[(x \lor \neg y \lor \neg z) \]
\[(w \lor y) \]
\[(w \lor x \lor \neg z) \]
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments

- $\begin{align*}
(x \lor \neg y \lor \neg z) \\
(w \lor y) \\
(w \lor x \lor \neg z)
\end{align*}$
3SAT \leq_p CLIQUE

- **Clauses \rightarrow Graph**
- Vertices: each clause's satisfying assignments (for its variables)
- Edges between consistent assignments

- $(x \lor \neg y \lor \neg z)$
- $(w \lor y)$
- $(w \lor x \lor \neg z)$
3SAT \leq_p CLIQUE

- Clauses \rightarrow Graph
 - Vertices: each clause's satisfying assignments (for its variables)
 - Edges between consistent assignments
3SAT \leq_p \text{ CLIQUE}

- Clauses → Graph

- vertices: each clause's satisfying assignments (for its variables)

- edges between consistent assignments

\begin{align*}
(x \lor \neg y \lor \neg z) \\
(w \lor y) \\
(w \lor x \lor \neg z)
\end{align*}
3SAT \leq_p CLIQUE

- **Clauses → Graph**
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
 - m-clique iff all m clauses satisfiable

\[(x \lor \neg y \lor \neg z)\]
\[(w \lor y)\]
\[(w \lor x \lor \neg z)\]
\[3\text{SAT} \leq_p \text{CLIQUE} \]

- **Clauses → Graph**
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
 - \(m \)-clique iff all \(m \) clauses satisfiable

\[(x \lor \neg y \lor \neg z)\]
\[(w \lor y)\]
\[(w \lor x \lor \neg z)\]
3SAT \leq_p CLIQUE

- **Clauses \rightarrow Graph**
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between consistent assignments
- m-clique iff all m clauses satisfiable

Graph example:

- 3-Clique
- Sat assignment: 1110
INDEP-SET and VERTEX-COVER
INDEPENDENT-SET and VERTEX-COVER

CLUDIQUE \leq_p INDEPENDENT-SET
INDEP-SET and VERTEX-COVER

\[\text{CLIQUE} \leq_p \text{INDEP-SET} \]

\(G \) has an \(m \)-clique iff \(G' \) has an \(m \)-independent-set
INDEP-SET and VERTEX-COVER

- CLIQUE \leq_p INDEP-SET
 - G has an m-clique iff G' has an m-independent-set

- INDEP-SET \leq_p VERTEX-COVER
INDEP-SET and VERTEX-COVER

\[\text{CLIQUE} \leq_p \text{INDEP-SET}\]

- G has an m-clique iff \(G'\) has an m-independent-set

\[\text{INDEP-SET} \leq_p \text{VERTEX-COVER}\]

- G has an m-indep-set iff G has an \((n-m)\)-vertex-cover
NP, P, co-NP and NPC
NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions” if $(L_1 \leq_p L_2 \text{ and } L_2 \text{ in class } X)$ implies L_1 in X
NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions” if $(L_1 \leq_p L_2 \text{ and } L_2 \text{ in class } X)$ implies $L_1 \text{ in } X$

e.g. P, NP are closed under polynomial reductions
NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions” if \((L_1 \leq_p L_2 \text{ and } L_2 \text{ in class } X) \implies L_1 \text{ in } X\)

- e.g. P, NP are closed under polynomial reductions
- So is co-NP (If X is closed, so is co-X. Why?)
NP, P, co-NP and NPC

- We say class X is "closed under polynomial reductions" if $(L_1 \leq_p L_2$ and L_2 in class X) implies L_1 in X

 - e.g. P, NP are closed under polynomial reductions

 - So is co-NP (If X is closed, so is co-X. Why?)

- If any NPC language is in P, then NP = P
We say class X is “closed under polynomial reductions” if $(L_1 \leq_p L_2$ and L_2 in class X) implies L_1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP
NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions” if $(L_1 \leq_p L_2$ and L_2 in class X) implies L_1 in X.

e.g. P, NP are closed under polynomial reductions.

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then $NP = P$.

If any NPC language is in co-NP, $NP = $co-NP.

Note: if L in NPC, L^c is in co-NPC.
Today
Today

- Polynomial-time reductions
Today

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
Today

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
- Trivially, TMSAT
Today

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER
Today

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER
 - If any NPC language in P, then P=NP
Next Time
Next Time

Ladner’s Theorem: If $NP \neq P$, then non-P, non-NPC languages
Next Time

- Ladner's Theorem: If $\text{NP} \neq \text{P}$, then non-P, non-NPC languages
- Time hierarchy theorems: More time, more power, strictly!