Computational Complexity

Lecture 1
in which we talk about
Time Complexity, P, NP and coNP
Evolution of Computation
The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)
Evolution of Computation

- The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)
- Input explicitly encoded in the initial configuration
Evolution of Computation

- The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)
 - input explicitly encoded in the initial configuration
- At every step the configuration evolves
Evolution of Computation

- The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)

- Input explicitly encoded in the initial configuration

- At every step the configuration evolves
Evolution of Computation

- The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)
 - input explicitly encoded in the initial configuration
- At every step the configuration evolves
The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration
Evolution of Computation

- The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)
 - input explicitly encoded in the initial configuration
- At every step the configuration evolves
- Until computation terminates: final configuration
Evolution of Computation

The program (Turing Machine) starts in an initial configuration (tape-contents, control-state, head-position)

- input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration

- output explicitly encoded in the final configuration (say, in the control-state)
Time Complexity
Time Complexity

Deterministic TM computation model
Time Complexity

- **Deterministic TM** computation model
- Program (deterministic TM) succinctly specifies the "next configuration" function
Deterministic TM computation model

Program (deterministic TM) succinctly specifies the “next configuration” function

Time Complexity of language L (worst case): if there is a TM that decides L (correct on all instances), and for any input instance of size n, it takes at most $T(n)$ steps then L in class $\text{DTIME}(T)$
Deterministic TM computation model

Program (deterministic TM) succinctly specifies the "next configuration" function

Time Complexity of language L (worst case): if there is a TM that decides L (correct on all instances), and for any input instance of size n, it takes at most $T(n)$ steps then L in class $DTIME(T)$
Time Complexity

- Deterministic TM computation model

- Program (deterministic TM) succinctly specifies the “next configuration” function

- Time Complexity of language \(L \) (worst case): if there is a TM that decides \(L \) (correct on all instances), and for any input instance of size \(n \), it takes at most \(T(n) \) steps then \(L \) in class \(\text{DTIME}(T) \)

 (Note: complexity \(T \) is a function of \(n \))
P for Polynomial Time
P for Polynomial Time

- If a problem is in \(\text{DTIME}(T) \) and \(T(n) = O(n^c) \) for some \(c \), then the problem is in \(P \)
P for Polynomial Time

If a problem is in $\text{DTIME}(T)$ and $T(n) = O(n^c)$ for some c, then the problem is in P

$\quad P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c+b)$
P for Polynomial Time

If a problem is in DTIME(T) and $T(n)=O(n^c)$ for some c, then the problem is in P

$P = \bigcup_{a,b,c > 0} \text{DTIME}(a \cdot n^c + b)$
P for Polynomial Time

Definition: If a problem is in $\text{DTIME}(T)$ and $T(n) = O(n^c)$ for some c, then the problem is in P.

$$P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c+b)$$
P for Polynomial Time

If a problem is in \text{DTIME}(T) and \(T(n)=O(n^c) \) for some \(c \), then the problem is in \(P \)

\[P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c+b) \]
P for Polynomial Time

- If a problem is in \(\text{DTIME}(T) \) and \(T(n) = O(n^c) \) for some \(c \), then the problem is in \(P \).

\[
P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c + b)
\]
P for Polynomial Time

- If a problem is in DTIME(T) and $T(n) = O(n^c)$ for some c, then the problem is in P

- $P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c+b)$

- DTIME(T) depends on the specifics of the TM model (no. of tapes, alphabet size)
If a problem is in DTIME(T) and $T(n)=O(n^c)$ for some c, then the problem is in P.

$P = \bigcup_{a,b,c > 0} \text{DTIME}(a.n^c+b)$

DTIME(T) depends on the specifics of the TM model (no. of tapes, alphabet size).

But P is robust: Models can simulate each other with only “polynomial slow down”
Non-deterministic Computation
Non-deterministic Computation

Not “realistic” as a computation model, but has realistic interpretations (coming up)
Non-deterministic Computation

Not “realistic” as a computation model, but has realistic interpretations (coming up)
Non-deterministic Computation

Not “realistic” as a computation model, but has realistic interpretations (coming up)
Non-deterministic Computation

Not “realistic” as a computation model, but has realistic interpretations (coming up)
Non-deterministic Computation

Not “realistic” as a computation model, but has realistic interpretations (coming up)
Non-deterministic Computation

- Not “realistic” as a computation model, but has realistic interpretations (coming up)

- An NTM is said to accept an input if any of the threads of execution accepts it
Non-deterministic Computation

- Not “realistic” as a computation model, but has realistic interpretations (coming up)

- An NTM is said to accept an input if any of the threads of execution accepts it

- Time: longest execution thread
Non-deterministic Computation

- Not "realistic" as a computation model, but has realistic interpretations (coming up)

- An NTM is said to accept an input if any of the threads of execution accepts it

- Time: longest execution thread

- $L \in \text{NTIME}(T)$: an NTM decides L in time at most T
NTIME(T): alt view
NTIME(T): alt view

L is in NTIME(T) iff it can be defined in the following way:
NTIME(T): alt view

L is in NTIME(T) iff it can be defined in the following way:

$L = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \}$
L is in NTIME(T) iff it can be defined in the following way:

\[L = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \} \]

Where \(L' \) is in DTIME(T(|x|)) (with an extra read-once input tape for \(w \))
L is in \(\text{NTIME}(T)\) iff it can be defined in the following way:

\[
L = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \}
\]

Where \(L'\) is in \(\text{DTIME}(T(|x|))\) (with an extra read-once input tape for \(w\))
L is in NTIME(T) iff it can be defined in the following way:

$L = \{ x \mid \exists w \text{ s.t. } (x, w) \in L' \}$

Where L' is in DTIME($T(|x|)$) (with an extra read-once input tape for w)

i.e., in time T, deterministic TM for L' can verify a certificate of membership for L
L is in $\text{NTIME}(T)$ iff it can be defined in the following way:

$L = \{ x \mid \exists w \text{ s.t. } (x,w) \in L' \}$

Where L' is in $\text{DTIME}(T(|x|))$ (with an extra read-once input tape for w)

i.e., in time T, deterministic TM for L' can verify a certificate of membership for L

Finding a certificate (or even finding if there exists a certificate) may take longer
$L \in \text{NTIME}(T)$: Equivalent views
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
- input: x
L ∈ NTIME(T):
Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
L \in \text{NTIME}(T): Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- x \in L \iff \text{some thread of M accepts}
\(L \in \text{NTIME}(T) \): Equivalent views

- Non-deterministic \(M \)
- \text{input: } x
- makes non-det choices
- \(x \in L \) iff some thread of \(M \) accepts
- in at most \(T(|x|) \) steps
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $T(|x|)$ steps

- Deterministic M'
\(L \in \text{NTIME}(T) \): Equivalent views

- Non-deterministic \(M \)
 - input: \(x \)
 - makes non-det choices
 - \(x \in L \) iff some thread of \(M \) accepts
 - in at most \(T(|x|) \) steps

- Deterministic \(M' \)
 - input: \(x \) and cert. \(w \)
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $T(|x|)$ steps

- Deterministic M'
 - input: x and cert. w
 - reads bits from the cert.
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $T(|x|)$ steps

- Deterministic M'
 - input: x and cert. w
 - reads bits from the cert.
 - $x \in L$ iff for some cert. w, M' accepts
\(L \in \text{NTIME}(T): \) Equivalent views

- **Non-deterministic** M
 - Input: \(x \)
 - Makes non-det choices
 - \(x \in L \) iff some thread of M accepts
 - In at most \(T(|x|) \) steps

- **Deterministic** M’
 - Input: \(x \) and cert. \(w \)
 - Reads bits from the cert.
 - \(x \in L \) iff for some cert. \(w, M' \) accepts
 - In at most \(T(|x|) \) steps
$L \in \text{NTIME}(T)$: Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $T(|x|)$ steps

- Deterministic M'
 - input: x and cert. w
 - reads bits from the cert.
 - $x \in L$ iff for some cert. w, M' accepts
 - in at most $T(|x|)$ steps
\[NP = \bigcup_{a,b,c > 0} \text{NTIME}(a \cdot n^c + b) \]
\[\text{NP} = \bigcup_{a, b, c > 0} \text{NTIME}(a \cdot n^c + b) \]

L is in NP if there's an NTM that \textit{decides} L in polynomial time (some fixed polynomial)
NP

NP = \bigcup_{a,b,c > 0} \text{NTIME}(a.n^c+b)

L is in NP if there's an NTM that decides L in polynomial time (some fixed polynomial)

L is in NP if there's a TM that verifies certificates for membership in L, in polynomial time
NP

\[\text{NP} = \bigcup_{a,b,c > 0} \text{NTIME}(a.n^c + b) \]
- L is in NP if there's an NTM that decides L in polynomial time (some fixed polynomial)

- L is in NP if there's a TM that verifies certificates for membership in L, in polynomial time

- Recall: polynomial in size of x, not of (x,w)
NP

NP = \bigcup_{a,b,c > 0} \text{NTIME}(a.n^c + b)

L is in NP if there's an NTM that decides L in polynomial time (some fixed polynomial)

L is in NP if there's a TM that verifies certificates for membership in L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

Or, L = \{x \mid \exists w, \ |w| = \text{O(poly(|x|))} \text{ s.t. } (x,w) \in L' \}, and L' in P
NP

NP = \bigcup_{a,b,c \geq 0} \text{NTIME}(a.n^c + b)

L is in NP if there's an NTM that decides L in polynomial time (some fixed polynomial)

L is in NP if there's a TM that verifies certificates for membership in L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

Or, L = \{x | \exists w, \ |w| = O(poly(|x|)) \ \text{s.t.} \ (x,w) \in L' \}, and L' in P

Note: Completeness and soundness
Some Problems in NP
Some Problems in NP

Graph properties: has a clique of size $n/2$, has a "Hamiltonian cycle", graph has an "Eulerian tour", two graphs are isomorphic
Some Problems in NP

- Graph properties: has a clique of size n/2, has a "Hamiltonian cycle", graph has an "Eulerian tour", two graphs are isomorphic
- Numerical properties: is a composite number, is a prime number (not obvious)
Some Problems in NP

- Graph properties: has a clique of size $n/2$, has a “Hamiltonian cycle”, graph has an “Eulerian tour”, two graphs are isomorphic

- Numerical properties: is a composite number, is a prime number (not obvious)

- Constraint satisfaction: equation has solution, Linear Program (LP) is feasible, Integer LP is feasible, has a short Traveling Salesperson tour
Some Problems in NP

- Graph properties: has a clique of size $n/2$, has a "Hamiltonian cycle", graph has an "Eulerian tour", two graphs are isomorphic

- Numerical properties: is a composite number, is a prime number (not obvious)

- Constraint satisfaction: equation has solution, Linear Program (LP) is feasible, Integer LP is feasible, has a short Traveling Salesperson tour

- All problems in P (empty certificate)
Search using Decision
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then search is easy too!
Search using Decision

- Suppose *given “oracles” for deciding* all NP languages, can we easily *find certificates*?

 - Yes! So, if decision easy (decision-oracles realizable), then search is easy too!

 - Say, given x, need to find w s.t. $(x,w) \in L'$ (if such w exists)
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then search is easy too!

Say, given x, need to find w s.t. $(x,w) \in L'$ (if such w exists)

Consider L_1 in NP: $(x,y) \in L_1$ iff $\exists z$ s.t. $(x,yz) \in L'$. (i.e., can y be a prefix of a certificate for x).
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then search is easy too!

Say, given x, need to find w s.t. $(x,w) \in L'$ (if such w exists)

consider L_1 in NP: $(x,y) \in L_1$ iff $\exists z$ s.t. $(x,yz) \in L'$. (i.e., can y be a prefix of a certificate for x).

Query L_1-oracle with $(x,0)$ and $(x,1)$. If $\exists w$, one of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then search is easy too!

Say, given x, need to find w s.t. \((x,w) \in L'\) (if such w exists)

Consider \(L_1\) in NP: \((x,y) \in L_1\) iff \(\exists z\) s.t. \((x,yz) \in L'\). (i.e., can y be a prefix of a certificate for x).

Query \(L_1\)-oracle with \((x,0)\) and \((x,1)\). If \(\exists w\), one of the two must be positive: say \((x,0) \in L_1\); then first bit of w be 0.

For next bit query \(L_1\)-oracle with \((x,00)\) and \((x,01)\)
What if \(NP = P \)
What if \(NP = P \)

“Can find as efficiently as can verify” (broadly speaking)
What if $NP = P$

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written in full). So we can generate them too efficiently?! Prove/discover theorems mechanically!
What if NP = P

"Can find as efficiently as can verify" (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written in full). So we can generate them too efficiently?! Prove/discover theorems mechanically!

Cryptography: If someone's private key (well, key generation info) given, can verify that it corresponds to a public key. So we can find the private key efficiently?! No public-key crypto!
What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written in full). So we can generate them too efficiently?! Prove/discover theorems mechanically!

Cryptography: If someone’s private key (well, key generation info) given, can verify that it corresponds to a public key. So we can find the private key efficiently?! No public-key crypto!

Solve all sorts of optimization problems efficiently!
EXP and NEXP
EXP and NEXP

- EXP is $\text{DTIME}(2^{\text{poly}(n)})$:
EXP and NEXP

- EXP is $\text{DTIME}(2^{\text{poly}(n)})$:
 - $\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c+b})$
EXP and NEXP

- EXP is $\text{DTIME}(2^{\text{poly}(n)})$:
 - $\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c + b})$
- NEXP is $\text{NTIME}(2^{\text{poly}(n)})$:
EXP and NEXP

EXP is $\text{DTIME}(2^{\text{poly}(n)})$:

$\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c + b})$

NEXP is $\text{NTIME}(2^{\text{poly}(n)})$:

$\text{NEXP} = \bigcup_{a,b,c > 0} \text{NTIME}(2^{an^c + b})$
EXP and NEXP

EXP is $\text{DTIME}(2^{\text{poly}(n)})$:

$$\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c+b})$$

NEXP is $\text{NTIME}(2^{\text{poly}(n)})$:

$$\text{NEXP} = \bigcup_{a,b,c > 0} \text{NTIME}(2^{an^c+b})$$

NEXP = all L of the form:
EXP and NEXP

EXP is \(\text{DTIME}(2^{\text{poly}(n)}) \):

\[
\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c+b})
\]

NEXP is \(\text{NTIME}(2^{\text{poly}(n)}) \):

\[
\text{NEXP} = \bigcup_{a,b,c > 0} \text{NTIME}(2^{an^c+b})
\]

NEXP = all \(L \) of the form:

\[
L = \{ x \mid \exists w, |w| = O(2^{\text{poly}(|x|)}) \text{ s.t. } (x,w) \in L' \}, \text{ and } L' \text{ in EXP?}
\]
EXP and NEXP

- EXP is \(\text{DTIME}(2^{\text{poly}(n)}) \):
 - \(\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c+b}) \)

- NEXP is \(\text{NTIME}(2^{\text{poly}(n)}) \):
 - \(\text{NEXP} = \bigcup_{a,b,c > 0} \text{NTIME}(2^{an^c+b}) \)
 - \(\text{NEXP} = \text{all } L \text{ of the form:} \)
 - \(L = \{ x \mid \exists w, |w| = O(2^{\text{poly}(|x|)}) \text{ s.t. } (x,w) \in L' \}, \text{ and } L' \text{ in EXP?} \)
 - \(\text{No! } L' \text{ in } \text{DTIME}(2^{\text{poly}(|x|)}) \)
EXP and NEXP

- **EXP** is $\text{DTIME}(2^{\text{poly}(n)})$:
 - $\text{EXP} = \bigcup_{a,b,c > 0} \text{DTIME}(2^{an^c + b})$

- **NEXP** is $\text{NTIME}(2^{\text{poly}(n)})$:
 - $\text{NEXP} = \bigcup_{a,b,c > 0} \text{NTIME}(2^{an^c + b})$
 - $\text{NEXP} = \text{all } L \text{ of the form:}$
 - $L = \{ x \mid \exists w, \|w\| = O(2^{\text{poly}(\|x\|)}) \text{ s.t. } (x,w) \in L' \}$, and L' in EXP?
 - **No!** L' in $\text{DTIME}(2^{\text{poly}(\|x\|)})$
 - i.e., L' in P
co-Class
co-Class

$\text{co-}X = \{ L \mid L^c \text{ is in } X \}$ (where $L^c = \{ x \mid x \notin L \}$)
co-Class

co-\(X = \{ L \mid L^c \text{ is in } X \} \) (where \(L^c = \{ x \mid x \notin L \} \))

co-DTIME(T) = DTIME(T)
co-Class

co-X = \{ L \mid L^c \text{ is in } X \} \text{ (where } L^c = \{ x \mid x \notin L \} \text{)}

co-DTIME(T) = DTIME(T)

L^c \text{ in } DTIME(T) \text{ iff } L \text{ in } DTIME(T)
co-Class

co-X = \{ L \mid L^c \text{ is in } X \} \text{ (where } L^c = \{ x \mid x \notin L \})

co-DTIME(T) = DTIME(T)

\text{L}^c \text{ in } DTIME(T) \text{ iff } L \text{ in } DTIME(T)

M_{L^c} \leftrightarrow M_L: \text{flip accept/reject states}
co-Class

- \(\text{co-}X = \{ L \mid L^c \text{ is in } X \} \) (where \(L^c = \{ x \mid x \notin L \} \))
- \(\text{co-DTIME}(T) = \text{DTIME}(T) \)
- \(L^c \text{ in } \text{DTIME}(T) \iff L \text{ in } \text{DTIME}(T) \)
- \(M_{L^c} \leftrightarrow M_L: \text{flip accept/reject states} \)
- \(\text{co-NTIME}(T): \text{all } L \text{ s.t. } L^c \text{ is in } \text{NTIME}(T) \)
co-Class

\[\text{co-}X = \{ L \mid L^c \text{ is in } X \} \] (where \(L^c = \{ x \mid x \notin L \} \))

\[\text{co-DTIME}(T) = \text{DTIME}(T) \]

\[L^c \text{ in DTIME}(T) \text{ iff } L \text{ in DTIME}(T) \]

\[M_{L^c} \leftrightarrow M_L: \text{flip accept/reject states} \]

\[\text{co-NTIME}(T): \text{all } L \text{ s.t. } L^c \text{ is in NTIME}(T) \]

\[M_{L^c} \leftrightarrow M_L? \]
co-Class

- **co-X** = \{ L | L^c \text{ is in } X \} (where \(L^c = \{ x | x \notin L \} \))

- **co-DTIME(T) = DTIME(T)**

 - \(L^c \) in DTIME(T) iff \(L \) in DTIME(T)

- **M_{L^c} \leftrightarrow M_L**: flip accept/reject states

- **co-NTIME(T)**: all \(L \) s.t. \(L^c \) is in NTIME(T)

- **M_{L^c} \leftrightarrow M_L?**

 - flip accept/reject states and flip “there exists” and “for all” in the acceptance criterion (NTM \(\leftrightarrow \) “co-NTM”)
co-Class

\[\text{co-}X = \{ L \mid L^c \text{ is in } X \} \quad (\text{where } L^c = \{ x \mid x \notin L \}) \]

\[\text{co-}\text{DTIME}(T) = \text{DTIME}(T) \]

\[L^c \text{ in } \text{DTIME}(T) \text{ iff } L \text{ in } \text{DTIME}(T) \]

\[M_{L^c} \leftrightarrow M_L: \text{flip accept/reject states} \]

\[\text{co-NTIME}(T): \text{ all } L \text{ s.t. } L^c \text{ is in } \text{NTIME}(T) \]

\[M_{L^c} \leftrightarrow M_L? \]

\[\text{flip accept/reject states and flip “there exists” and “for all” in the acceptance criterion (NTM} \leftrightarrow \text{“co-NTM”}) \]

\[L^c = \{ x \mid \nexists w \text{ s.t. } (x,w) \in L' \} = \{ x \mid \forall w \ (x,w) \in L'^c \} \]
co-Class

- co-X = \{ L \mid L^c \text{ is in } X \} (where \(L^c = \{ x \mid x \not\in L \} \))
- co-DTIME(T) = DTIME(T)
 - \(L^c \) in DTIME(T) iff L in DTIME(T)
 - \(M_{L^c} \leftrightarrow M_L \): flip accept/reject states
- co-NTIME(T): all L s.t. \(L^c \) is in NTIME(T)
 - \(M_{L^c} \leftrightarrow M_L \)?
 - flip accept/reject states and flip “there exists” and “for all” in the acceptance criterion (NTM \(\leftrightarrow \) “co-NTM”)
P, NP and co-NP
P, NP and co-NP

Different possibilities

If $P=NP$, then $P=NP=coNP$.
P, NP and co-NP

- Different possibilities
- If $P=NP$, then
 - $coNP = coP = P = NP$
P, NP and co-NP

- Different possibilities

- If P=NP, then
 - coNP = coP = P = NP

- Also, EXP = NEXP [Exercise]
P, NP and co-NP

Different possibilities

If P=NP, then

- coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

- padding to scale up both classes
P, NP and co-NP

- Different possibilities

- If $P=NP$, then
 - $\text{coNP} = \text{coP} = P = NP$

- Also, $\text{EXP} = \text{NEXP}$ [Exercise]

- *padding* to scale up both classes

- $x \rightarrow (x, \text{pad})$, so that $\text{Exp}(|x|) = \text{Poly}(|x, \text{pad}|)$
Different possibilities

If P=NP, then

- coNP = coP = P = NP
- Also, EXP = NEXP [Exercise]

padding to scale up both classes

x → (x,pad), so that Exp(|x|) = Poly(|x,pad|)

If P=NP, then the complexity landscape would get greatly simplified than believed (more later)
Today
Today

D TIME
Today

- DTIME
- P, EXP
Today

- DTIME
- P, EXP
- NTIME
Today

- DTIME
- P, EXP
- NTIME

Two views: non-determinism and certificate
Today

- DTIME
- P, EXP
- NTIME
- Two views: non-determinism and certificate
- NP, NEXP
Today

- DTIME
- P, EXP
- NTIME
 - Two views: non-determinism and certificate
- NP, NEXP
- co-NTIME
Today

- **DTIME**
 - \(P, \text{ EXP} \)

- **NTIME**
 - Two views: non-determinism and certificate

- **NP, NEXP**

- **co-NTIME**
 - Two views: co-NTM and "no counter-example"
Next Class Lecture
Next Class Lecture

- NP completeness
Next Class Lecture

- NP completeness
 - As hard as it gets inside NP
Next Class Lecture

- NP completeness
 - As hard as it gets inside NP
 - a la reductions (of course)