Problem 1: 2-Universal Hash Function Family.

The first couple of problems deal with 2-Universal Hash Function Families.

Define a hash function family as a function \(H \) of the form \(H : X \times X \rightarrow R \), where \(H \) is the set of “hash functions” in the family, \(X \) is the input space and \(R \) the output space of the hash functions. \(H, X, R \) are all finite sets. When the family is understood, \(H(h,x) = y \) is often abbreviated as \(h(x) = y \). Given an input \(x \in X \) we will be interested in hashing it using a random \(h \in H \).

Call a hash function family pairwise independent if for all \(x_1 \neq x_2 \in X \) and \(y_1, y_2 \in R \), \(\Pr_{h \in H} [h(x_1) = y_1 \land h(x_2) = y_2] = \Pr_{h \in H} [h(x_1) = y_1] \Pr_{h \in H} [h(x_2) = y_2] \). Call a hash function family \(2 \)-universal if for all \(x_1 \neq x_2 \in X \) and \(y_1, y_2 \in R \), \(\Pr_{h \in H} [h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{|R|^2} \).

Define maximum collision probability of a hash function family as \(\max_{x_1 \neq x_2 \in X} \Pr_{h \in H} [h(x_1) = h(x_2)] \).

1. Show a trivial example of a uniform hash function family (use \(H = R \)) and a trivial example of a pairwise independent hash function family (use \(X = R \)). Show that a hash function family is uniform and pairwise independent if and only if it is \(2 \)-universal. Also show that for such a hash function family, the maximum collision probability is \(\frac{1}{|R|^2} \).

2. If \(\mathcal{H} : H \times X \rightarrow R \), is a uniform hash function family what can you say about the size of \(H \), in terms of \(|R| \)? What if \(\mathcal{H} \) is a \(2 \)-universal hash function family?

3. A function \(f : R \rightarrow R' \) is called regular if for each \(y' \in R' \), \(|\{y : f(y) = y'\}| = |R|/|R'| \). Suppose \(\mathcal{H} : H \times X \rightarrow R \) is a \(2 \)-universal hash function family and \(f : R \rightarrow R' \) is regular. Show that \(\mathcal{H}' : H \times X \rightarrow R' \), where \(\mathcal{H}'(h,x) = f(\mathcal{H}(h,x)) \) is \(2 \)-universal. Note that this can be used to shrink the output space of a hash function without affecting the other parameters.

4. A function \(f : X' \rightarrow X \) is called one-to-one if for each \(x \in X \), \(|\{x' : f(x') = x\}| \leq 1 \). Suppose \(\mathcal{H} : H \times X \rightarrow R \) is a \(2 \)-universal hash function family and \(f : X' \rightarrow X \) is one-to-one. Show that \(\mathcal{H}' : H \times X \rightarrow R' \), where \(\mathcal{H}'(h,x) = \mathcal{H}(h,f(x)) \) is \(2 \)-universal. Note that this can be used to shrink the input space of a hash function without affecting the other parameters.

Problem 2:

This problem shows why \(2 \)-universal hash function families are useful for the (public-coin) set lower-bound protocol. (See Lecture 15.)

For \(S \subseteq X \) and \(h : X \rightarrow R \), define \(h(S) \subseteq R \) as \(h(S) = \{h(x) : x \in S\} \). Define \(\text{shrink}(h,S) = |S| - |h(S)| \). Note that \(\text{shrink}(h,S) \geq 0 \). Let \(\text{collision}(h,S) = |\{x_1,x_2 \in S : x_1 < x_2 \text{ and } h(x_1) = h(x_2)\}| \).

1. Show that \(\text{shrink}(h,S) \leq \text{collision}(h,S) \).

2. Suppose \(\mathcal{H} : H \times X \rightarrow R \) has a maximum collision probability \(p \). Show that \(\mathbb{E}_{h \in H}[\text{collision}(h,S)] \leq p|S|^2 \). Using part (1) conclude that \(\mathbb{E}_{h \in H}[\text{shrink}(h,S)] \leq p|S|^2 \).

3. Suppose \(\mathcal{H} : H \times X \rightarrow R \) is a \(2 \)-universal hash function family, then show that for any \(T \subseteq X \) such that \(|T| = |R|/4 \), \(\mathbb{E}_{h \in H}[\text{shrink}(h,T)] \leq \frac{|R|}{16} \).

4. Use this to argue soundness and completeness of the set lower-bound protocol shown in class. Consider for completeness \(S \subseteq X \) such that \(|S| \geq |R|/4 \) and, for soundness \(S \subseteq X \) such that \(|S| \leq |R|/8 \). (Explain clearly what completeness and soundness mean in this context.)

Problem 3:

Show that \(\mathbb{P} \subseteq \mathbb{P} \). (Hint: Associate a count with the output of a function, such that the count when written in binary is identical to the original output.)
Problem 4:
In this problem you will show that $\sharp P \subseteq FP^{PP}$.

An implicit representation of a binary string α of length 2^m is a polynomial sized (in m) circuit A^α such that $A^\alpha(i) = \alpha_i$, the i-th bit of α.

1. Consider a binary string α of length 2^m. Your task is to count the number of 1s in the string, in polynomial time (in m). Show how to do this if you are given an oracle T_α, which when given a threshold τ tells you whether the string has more than $\tau |\alpha|$ 1s.

2. Suppose you are given an oracle H_α which can only answer with respect to the threshold $\tau = \frac{1}{2}$, but allows you to give an implicit description of another string β of length 2^m and answers whether the string $\alpha \beta$ has more than $\frac{1}{2} |\alpha \beta|$ 1s in it. (That is $H_\alpha(A^\beta) = 1$ iff the string $\alpha \beta$ has more than $\frac{1}{2} |\alpha \beta|$ 1s.) Show how to implement the oracle T_α using access to the oracle H_α.

3. Consider the language L, such that $L(A^\alpha, A^\beta) = H_\alpha(\beta)$. Show that L is in PP.

4. Conclude that given oracle access to the PP language L, any function in $\sharp P$ can be computed in polynomial time. i.e., $\sharp P \subseteq FP^L$.

Problem 5 (Extra Credit):
Recall the definition of alternating threshold Turing Machines from class (Lecture 17). Given $M_+ = \text{ATTM}[k, (\exists \geq r, \exists), R]$ (i.e. an ATTM with k alternations between thresholds $\exists \geq r$ and \exists, and a relation R at the leaves; the degrees of the different $\exists \geq r$ ans \exists configuration nodes are left out of the notation for clarity), with $r > \frac{1}{2}$, define it’s complementary ATTM $M_- = \text{ATTM}[k, (\exists \geq r, \forall), \overline{R}]$. Such a pair (M_+, M_-) is said to decide a language L if $x \in L \iff M_+(x) = 1, M_-(x) = 0$ and $x \notin L \iff M_+(x) = 0, M_-(x) = 1$.

Also recall the definition of an $\text{AM}[k]$ protocol defined by a verification procedure for Arthur, A (and the lengths of the k messages, alternating between random strings from Arthur and messages from Merlin, starting with one from Arthur). an AM protocol A is said to decide a language L with error probability at most ϵ if $x \in L \iff \max_M \Pr[A \text{accepts } x \text{ after interacting with } M] \geq 1 - \epsilon$ and $x \notin L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \leq \epsilon$.

1. Given an $\text{AM}[k]$ protocol A, define a pair of complementary ATTMs (M_+, M_-) as $M_+ = \text{ATTM}[k, (\exists \geq 3, \exists), R]$ and $M_- = \text{ATTM}[k, (\exists \geq 3, \forall), \overline{R}]$, (with degrees of the configuration nodes being the message lengths of the protocol to the power of 2) with $R = A$ and $r = \frac{3}{4}$. Show that if A is an AM protocol that decides a language L with error probability at most $2^{-(k+3)}$, then (M_+, M_-) decides L.

Hint: First try $k = 2$. Consider the protocol’s tree, and define the maximum-average acceptance probability for each node (as shown in class). For $x \in L$, using completeness guarantee, what can you say about the fraction of first messages that lead to a node with acceptance probability greater than $1 - 4\epsilon$? For $x \notin L$ use soundness guarantee.

2. Given a pair of complementary ATTMs $(M_+, M_-) = (\text{ATTM}[k, (\exists \geq 3, \exists), R], \text{ATTM}[k, (\exists \geq 3, \forall), \overline{R}])$, (with degrees of the configuration nodes being powers of 2) define an $\text{AM}[k]$ protocol with $A = R$ (and lengths of the messages being logarithms (base 2) of the degrees of the ATTM pair). Show that if (M_+, M_-) decides a language L and if $r \geq 1 - \frac{1}{16}$, then A_R is an AM protocol that decides L with error probability at most $1/4$.

Hint: For $x \in L$, using M_+, what can you say about the maximum-acceptance probability of nodes of the constructed protocol’s tree. First try $k = 2$. To extend to general k, consider two levels at a time, and use the “union-bound” inequality $(1 - p)^t \geq 1 - pt$.

CS 579: Computational Complexity
Homework 5
Page 2 of 2