PCP

Lecture 26
And Hardness of Approximation
Promise Problems
Promise Problems

- Decision problems, but with “don’t cares”
Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set, disjoint
Promise Problems

- Decision problems, but with “don’t cares”
- Specified by a Yes set and a No set, disjoint
Promise Problems

- Decision problems, but with “don’t cares”
- Specified by a Yes set and a No set, disjoint
Promise Problems

- Decision problems, but with “don’t cares”

- Specified by a Yes set and a No set, disjoint
Promise Problems

- Decision problems, but with “don’t cares”
- Specified by a Yes set and a No set, disjoint
- A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
Promise Problems

Decision problems, but with “don’t cares”

Specified by a Yes set and a No set, disjoint

A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets

For inputs outside the two, don’t care
Promise Problems

- Decision problems, but with “don’t cares”
- Specified by a Yes set and a No set, disjoint
 - A TM is said to decide a promise problem if it correctly answers Yes or No for inputs from these sets
 - For inputs outside the two, don’t care
 - We’re “promised” that such inputs are not given
Gap Problems
Gap Problems

Non-boolean functions (e.g. optimization problems)
Gap Problems

- Non-boolean functions (e.g. optimization problems)
Gap Problems

Non-boolean functions (e.g. optimization problems)
Gap Problems

- Non-boolean functions (e.g. optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value
Gap Problems

- Non-boolean functions (e.g. optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value
Gap Problems

- Non-boolean functions (e.g. optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value
Gap Problems

- Non-boolean functions (e.g., optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value

- Can use an approximation algorithm for the function to solve the gap problem
Gap Problems

- Non-boolean functions (e.g. optimization problems)
- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value
- Can use an approximation algorithm for the function to solve the gap problem
Gap Problems

- Non-boolean functions (e.g. optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value

- Can use an approximation algorithm for the function to solve the gap problem
Gap Problems

- Non-boolean functions (e.g. optimization problems)

- Gap problems: Promise problem in which Yes and No sets are separated by a gap in the function value

- Can use an approximation algorithm for the function to solve the gap problem

- The more the gap the more loose the approximation can be
Certificates for a Gap problem
Certificates for a Gap problem

- A proof that the instance is a Yes instance
Certificates for a Gap problem

- A proof that the instance is a Yes instance
- A probabilistically checkable proof (PCP): specified using the proof checking strategy
Certificates for a Gap problem

- A proof that the instance is a Yes instance
- A probabilistically checkable proof (PCP): specified using the proof checking strategy
- Completeness: If \(x \in \text{Yes} \), some proof accepted (with prob. 1)
Certificates for a Gap problem

- A proof that the instance is a Yes instance
- A probabilistically checkable proof (PCP): specified using the proof checking strategy
 - Completeness: If $x \in \text{Yes}$, some proof accepted (with prob. 1)
 - Soundness: If $x \in \text{No}$, all proofs rejected with prob. $> 1/2$
Certificates for a Gap problem

- A proof that the instance is a Yes instance
- A probabilistically checkable proof (PCP): specified using the proof checking strategy
 - Completeness: If $x \in \text{Yes}$, some proof accepted (with prob. 1)
 - Soundness: If $x \in \text{No}$, all proofs rejected with prob. $> 1/2$

Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits
Certificates for a Gap problem

- A proof that the instance is a Yes instance
- A probabilistically checkable proof (PCP): specified using the proof checking strategy
 - Completeness: If $x \in \text{Yes}$, some proof accepted (with prob. 1)
 - Soundness: If $x \in \text{No}$, all proofs rejected with prob. $> 1/2$
- Parameters of interest: (r,q) where verifier tosses at most r coins and reads at most q bits
- Proof can be limited to be at most $q2^r$ bits long
PCP and CSP
PCP and CSP

Constraint Satisfaction Problem (CSP)
PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables
PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables
PCP and CSP

- **Constraint Satisfaction Problem (CSP)**
 - Instance specified by a set of “constraints” on R variables
 - **Yes instance**: there exists an assignment of values to the variables such that all constraints are satisfied

Constraints: Arbitrary poly-time programs
PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied

No instance: for all assignments, less than half the constraints are satisfied
PCP and CSP

.Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied

No instance: for all assignments, less than half the constraints are satisfied

(optimization problem: Max-CSPSat)
PCP and CSP

Constraint Satisfaction Problem (CSP)

Instance specified by a set of “constraints” on R variables

Yes instance: there exists an assignment of values to the variables such that all constraints are satisfied

No instance: for all assignments, less than half the constraints are satisfied

(optimization problem: Max-CSPSat)

A (gap) problem has a PCP iff can be reduced to CSP

Constraints: Arbitrary poly-time programs
PCP and CSP
PCP and CSP

A (gap) problem has a PCP iff can be reduced to CSP
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP

- Variables are the bits of the proofs: assignment is a proof

- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
- Verifier accepts w/ prob. = 1 \iff All constraints satisfied
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof
 - Verifier accepts w/ prob. = 1 \iff All constraints satisfied
 - Verifier accepts w/ prob. $< 1/2$ \iff Less than half satisfied
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP
- Variables are the bits of the proofs: assignment is a proof
- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof

- Verifier accepts w/ prob. = 1 \iff \text{All constraints satisfied}
- Verifier accepts w/ prob. < 1/2 \iff \text{Less than half satisfied}
- qCSP with m constraints: each constraint involves q variables
PCP and CSP

- A (gap) problem has a PCP iff can be reduced to CSP

- Variables are the bits of the proofs: assignment is a proof

- Constraints are the verifier program with different random tapes: constraint is satisfied by the assignment if the verifier accepts the proof

 - Verifier accepts w/ prob. = 1 \iff All constraints satisfied
 - Verifier accepts w/ prob. $< 1/2$ \iff Less than half satisfied

- qCSP with m constraints: each constraint involves q variables

- PCP(log m,q): q-query (non-adaptive) verifier, tosses at most log m coins
Decision Problem to Gap Problem

L instances

G instances
Reducing a decision problem (language) L to a gap problem G
Decision Problem to Gap Problem

- Reducing a decision problem (language) L to a gap problem G

 “Separating” Yes and No

L instances
G instances
Decision Problem to Gap Problem

Reducing a decision problem (language) L to a gap problem G

“Separating” Yes and No

If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard
Decision Problem to Gap Problem

- Reducing a decision problem (language) L to a gap problem G

- "Separating" Yes and No

- If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard
Decision Problem to Gap Problem

- Reducing a decision problem (language) L to a gap problem G
- "Separating" Yes and No
- If L is hard, and can do the reduction efficiently, then approximating the function underlying G should be hard
PCP Theorem
PCP Theorem

- Can reduce any NP language to qCSP
PCP Theorem

- Can reduce any NP language to qCSP

A gap problem, with gap=1/2
PCP Theorem

- Can reduce any NP language to qCSP
- With $m = \text{poly}(n)$ constraints and $q = O(1)$
PCP Theorem

- Can reduce any NP language to qCSP
 - With $m = \text{poly}(n)$ constraints and $q = O(1)$
 - Since qCSP has a PCP (with $r = \log m$, and $q=q$), any NP language has a PCP

A gap problem, with gap=1/2
PCP Theorem

- Can reduce any NP language to qCSP
 - With $m = \text{poly}(n)$ constraints and $q = O(1)$
 - Since qCSP has a PCP (with $r = \log m$, and $q = q$), any NP language has a PCP
 - $\text{NP} \subseteq \text{PCP}(\log n, 1)$
PCP Theorem

- Can reduce any NP language to qCSP
 - With $m = \text{poly}(n)$ constraints and $q = O(1)$
- Since qCSP has a PCP (with $r=\log m$, and $q=q$), any NP language has a PCP
- $\text{NP} \subseteq \text{PCP} (\log n, 1)$
PCP Theorem

- Can reduce any NP language to qCSP
 - With $m = \text{poly}(n)$ constraints and $q = O(1)$

Since qCSP has a PCP (with $r=\log m$, and $q=q$), any NP language has a PCP

- $\text{NP} \subseteq \text{PCP}(\log n, 1)$

Note: $\text{PCP}(\log n, *) \subseteq \text{NP}$

A gap problem, with gap=1/2

PCP(r,q): Class of languages with r-coin, q-query PCP verifiers
PCP Theorem

- Can reduce any NP language to qCSP
 - With $m = \text{poly}(n)$ constraints and $q = O(1)$
- Since qCSP has a PCP (with $r=\log m$, and $q=q$), any NP language has a PCP
 - $\text{NP} \subseteq \text{PCP}(\log n, 1)$
- Note: $\text{PCP}(\log n, *) \subseteq \text{NP}$
- So, $\text{NP} = \text{PCP}(\log n, 1)$
Hardness of Approximation
Hardness of Approximation

By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
Hardness of Approximation

- By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2
- How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?
Hardness of Approximation

By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?

Reduce Max-qCSPSat to these problems
Hardness of Approximation

By PCP theorem, Max-qCSPSat is hard to approximate within a factor of 1/2

How about Max-3SAT? Max-CLIQUE? Other NP-hard functions?

Reduce Max-qCSPSat to these problems

Such that approximation for them imply approximation for Max-qCSPSat
Gap-preserving
Reductions
Gap-preserving Reductions

From gap problem G_1 to G_2

If G_1 is hard to solve and reduction is efficient, then G_2 is hard to solve
Gap-preserving Reductions

- From gap problem G_1 to G_2

 - If G_1 is hard to solve and reduction is efficient, then G_2 is hard to solve

 - Then function underlying G_2 is hard to approximate (within a factor of its gap)
Gap-preserving Reductions

- From gap problem G_1 to G_2
 - If G_1 is hard to solve and reduction is efficient, then G_2 is hard to solve
 - Then function underlying G_2 is hard to approximate (within a factor of its gap)
 - The bigger the gap in G_2 the larger the approximation factor shown hard
Max-qCSP to Max-3SAT
Max-qCSP to Max-3SAT

Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
Max-\(q\)CSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with \(q\) vars (\(q\)-clauses)
- At most \(2^q\) \(q\)-clauses
Max-qCSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most \(2^q\) q-clauses
- Collect all clauses from all constraints
Max-qCSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints
- So far gap is preserved up to a factor of $1/2^q$
Max-qCSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)

 - At most 2^q q-clauses

- Collect all clauses from all constraints

- So far gap is preserved up to a factor of $1/2^q$

- Now turn each q-clause into a collection of 3-clauses
Max-qCSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most 2^q q-clauses
- Collect all clauses from all constraints
- So far gap is preserved up to a factor of $1/2^q$
- Now turn each q-clause into a collection of 3-clauses
 - Adding at most q auxiliary vars to get at most q 3-clauses
Max-qCSP to Max-3SAT

- Write each constraint as an exponential sized CNF (AND-OR) formula, of clauses with q vars (q-clauses)
 - At most \(2^q\) q-clauses
- Collect all clauses from all constraints
- So far gap is preserved up to a factor of \(1/2^q\)
- Now turn each q-clause into a collection of 3-clauses
 - Adding at most q auxiliary var.s to get at most q 3-clauses
- Gap preserved up to a factor of \(1/(q2^q)\)
Max-3SAT to Max-CLIQUE
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE: Clauses → Graph
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE:
Clauses \rightarrow Graph

$(x \lor \neg y \lor \neg z)$

$(w \lor y)$

$(w \lor x \lor \neg z)$
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE: Clauses → Graph

vertices: each clause's sat assignments (for its variables)

\((x \lor \neg y \lor \neg z)\)

\((w \lor y)\)

\((w \lor x \lor \neg z)\)
Max-3SAT to Max-CLIQUE

- Recall 3SAT to CLIQUE:
 - Clauses \rightarrow Graph
 - Vertices: each clause’s sat assignments (for its variables)

Clauses:
- $(x \lor -y \lor -z)$
- $(w \lor y)$
- $(w \lor x \lor -z)$
Recall 3SAT to CLIQUE:
Clauses \rightarrow Graph
vertices: each clause’s sat assignments (for its variables)

\[
(x \lor \neg y \lor \neg z) \\
(w \lor y) \\
(w \lor x \lor \neg z)
\]
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE:
Clauses \rightarrow Graph

vertices: each clause's sat assignments (for its variables)

$(x \lor \neg y \lor \neg z)$

$(w \lor y)$

$(w \lor x \lor \neg z)$
Recall 3SAT to CLIQUE:
Clauses → Graph
vertices: each clause's sat assignments (for its variables)

\((x \lor \neg y \lor \neg z) \)
\((w \lor y) \)
\((w \lor x \lor \neg z) \)
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE: Clauses \rightarrow Graph

vertices: each clause’s sat assignments (for its variables)

\[(x \lor \neg y \lor \neg z)\]

\[(w \lor y)\]

\[(w \lor x \lor \neg z)\]
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE:
Clauses \rightarrow Graph

- vertices: each clause’s sat assignments (for its variables)
- edges between consistent assignments

$$(x \lor \neg y \lor \neg z)$$

$$(w \lor y)$$

$$(w \lor x \lor \neg z)$$
Recall 3SAT to CLIQUE: Clauses → Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments

\[(x \lor \neg y \lor \neg z)\]
\[(w \lor y)\]
\[(w \lor x \lor \neg z)\]
Recall 3SAT to CLIQUE:
- Clauses → Graph
 - Vertices: each clause's sat assignments (for its variables)
 - Edges between consistent assignments

- Example clauses:
 - \((x \lor \neg y \lor \neg z)\)
 - \((w \lor y)\)
 - \((w \lor x \lor \neg z)\)
Recall 3SAT to CLIQUE:
Clauses \(\rightarrow \) Graph

- vertices: each clause’s sat assignments (for its variables)
- edges between consistent assignments

\[(x \lor \neg y \lor \neg z) \]

\[(w \lor y) \]

\[(w \lor x \lor \neg z) \]
Recall 3SAT to CLIQUE: Clauses → Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments
Recall 3SAT to CLIQUE:
Clauses → Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments

Clauses:
- \((x \lor \neg y \lor \neg z)\)
- \((w \lor y)\)
- \((w \lor x \lor \neg z)\)
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE: Clauses → Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments
- k-clique iff k clauses satisfiable

\[(x \lor \neg y \lor \neg z)\]

\[(w \lor y)\]

\[(w \lor x \lor \neg z)\]
Max-3SAT to Max-CLIQUE

Recall 3SAT to CLIQUE: Clauses \rightarrow Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments
- k-clique iff k clauses satisfiable

$(x \lor \neg y \lor \neg z)$

$(w \lor y)$

$(w \lor x \lor \neg z)$
Max-3SAT to Max-CLIQUE

- Recall 3SAT to CLIQUE: Clauses → Graph
 - vertices: each clause’s sat assignments (for its variables)
 - edges between consistent assignments
 - k-clique iff k clauses satisfiable
Recall 3SAT to CLIQUE:
Clauses \rightarrow Graph

- vertices: each clause's sat assignments (for its variables)
- edges between consistent assignments
- k-clique iff k clauses satisfiable
- Gap preserved

$$\neg y \lor \neg z \lor x$$

$$w \lor y$$

$$w \lor x \lor \neg z$$

3-Clique 1^*1^*

$$1^*1^*$$

$$0^*1^*$$

$$1^*0^*$$

$$0^*0^*$$

$$1^*1^*$$

$$0^*1^*$$

$$1^*0^*$$

$$1^*1^*$$

$$0^*0^*$$

$$1^*1^*$$

$$0^*1^*$$

$$1^*0^*$$

$$1^*1^*$$

$$0^*0^*$$

$$1^*1^*$$

$$0^*1^*$$

$$1^*0^*$$

$$1^*1^*$$

$$0^*0^*$$

$$1^*1^*$$

$$0^*1^*$$

$$1^*0^*$$

$$1^*1^*$$

$$0^*0^*$$

sat assignment 1110
Proving the PCP Theorem
Proving the PCP Theorem

- Very involved: see textbook
Proving the PCP Theorem

- Very involved: see textbook
- A flavor:
Proving the PCP Theorem

- Very involved: see textbook

- A flavor:
 - Recall: to give a PCP system for 3SAT
Proving the PCP Theorem

- Very involved: see textbook
- A flavor:
 - Recall: to give a PCP system for 3SAT
 - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
Proving the PCP Theorem

Very involved: see textbook

A flavor:

Recall: to give a PCP system for 3SAT

i.e. need to check if all clauses satisfied by the assignment implicit in the proof

Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied
Proving the PCP Theorem

- Very involved: see textbook

- A flavor:
 - Recall: to give a PCP system for 3SAT
 - i.e. need to check if all clauses satisfied by the assignment implicit in the proof
 - Checking a random clause is no good (though it takes only 3 queries) as almost all clauses might be satisfied
 - Need to check if any 1 in an implicit bit vector: checking a random position is no good
Proving the PCP Theorem
Proving the PCP Theorem

Need to check if any 1 in an implicit bit vector: checking a random position is no good
Proving the PCP Theorem

Need to check if any 1 in an implicit bit vector: checking a random position is no good

Require a “robust” encoding to be given
Proving the PCP Theorem

- Need to check if any 1 in an implicit bit vector: checking a random position is no good
 - Require a “robust” encoding to be given
 - If even one 1, it becomes easy to detect
Proving the PCP Theorem

Need to check if any 1 in an implicit bit vector: checking a random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

E.g. Walsh-Hadamard code: consider n-bit vector x as a function $f_x(y) = \langle x, y \rangle$. Encoding is the truth-table
Proving the PCP Theorem

- Need to check if any 1 in an implicit bit vector: checking a random position is no good

- Require a “robust” encoding to be given

- If even one 1, it becomes easy to detect

 - e.g. Walsh-Hadamard code: consider n-bit vector \(x \) as a function \(f_x(y) = \langle x, y \rangle \). Encoding is the truth-table

 - If one or more 1, then half 1s and half 0s. Else all 0s.
Proving the PCP Theorem

Need to check if any 1 in an implicit bit vector: checking a random position is no good

Require a “robust” encoding to be given

If even one 1, it becomes easy to detect

e.g. Walsh-Hadamard code: consider n-bit vector \(x \) as a function \(f_x(y) = \langle x, y \rangle \). Encoding is the truth-table

If one or more 1, then half 1s and half 0s. Else all 0s.

Need to check that the encoded vector is the evaluation of the clauses on an assignment, and that encoding is valid
Linearity Test
Linearity Test

Is a function table provided close to being linear?
Linearity Test

- Is a function table provided close to being linear?
- Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.
Linearity Test

Is a function table provided close to being linear?

Test: query \(f(x), f(y), f(x+y) \) for random \(x, y \). Check linearity.

Analysis:
Linearity Test

Is a function table provided close to being linear?

Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

Linear boolean function over boolean vectors
Linearity Test

- Is a function table provided close to being linear?
- Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

- Linear boolean function over boolean vectors
- Dot product with another boolean vector
Linearity Test

Is a function table provided close to being linear?

Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

- Linear boolean function over boolean vectors
- Dot product with another boolean vector
- A function in the “Fourier basis” (for real-valued functions)
Linearity Test

- Is a function table provided close to being linear?
- Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

- Linear boolean function over boolean vectors
- Dot product with another boolean vector
- A function in the “Fourier basis” (for real-valued functions)
Linearity Test

Is a function table provided close to being linear?

Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

- Linear boolean function over boolean vectors
- Dot product with another boolean vector
- A function in the “Fourier basis” (for real-valued functions)
- Enough to check: is any Fourier coefficient dominant?
Linearity Test

- Is a function table provided close to being linear?
- Test: query $f(x)$, $f(y)$, $f(x+y)$ for random x, y. Check linearity.

Analysis:

- Linear boolean function over boolean vectors
- Dot product with another boolean vector
- A function in the “Fourier basis” (for real-valued functions)

Enough to check: is any Fourier coefficient dominant?

Can show that if $\Pr[f(x+y)=f(x)+f(y)] > 1/2 + \epsilon$, then a Fourier coefficient is larger than 2ϵ
New proof
New proof

- Recent development [Dinur’06]
New proof

- Recent development [Dinur’06]
- A “combinatorial” (as opposed to algebraic) proof of the PCP theorem
New proof

- Recent development [Dinur’06]
- A “combinatorial” (as opposed to algebraic) proof of the PCP theorem
- By “gap amplification”
New proof

- Recent development [Dinur’06]
 - A “combinatorial” (as opposed to algebraic) proof of the PCP theorem
 - By “gap amplification”
 - Starting from a small gap (inherent in 3SAT), and amplifying it
New proof

- Recent development [Dinur’06]
 - A “combinatorial” (as opposed to algebraic) proof of the PCP theorem
 - By “gap amplification”
 - Starting from a small gap (inherent in 3SAT), and amplifying it
 - Operations on a constraint graph
New proof

- Recent development [Dinur’06]
 - A “combinatorial” (as opposed to algebraic) proof of the PCP theorem
 - By “gap amplification”
 - Starting from a small gap (inherent in 3SAT), and amplifying it
 - Operations on a constraint graph
 - Uses “expander graphs”
Summary
Summary

A problem/gap problem has a \((\log m, q)\) PCP iff it is efficiently reducible to the gap problem \(qCSP\) of size \(m\).
A problem/gap problem has a \((\log m, q)\) PCP iff it is efficiently reducible to the gap problem \(q\text{CSP}\) of size \(m\).
Summary

A problem/gap problem has a \((\log m,q)\) PCP iff it is efficiently reducible to the gap problem \(q\text{CSP}\) of size \(m\).
Summary

A problem/gap problem has a \((\log m, q)\) PCP iff it is efficiently reducible to the gap problem \(q\text{-CSP}\) of size \(m\).

PCP Theorem

- 3SAT
- Ploy sized \(q\text{-CSP}\)
- Your optimization problem

Variants of these reductions to get different hardness results for different approximations.