Interactive Proofs

Lecture 19
And Beyond
So far
So far

- $\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}]$
So far

- $\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}]$
- PSPACE enough to calculate max $\text{Pr}[\text{yes}]$
So far

- $\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}]$
- PSPACE enough to calculate max $\Pr[\text{yes}]$
- AM[poly] protocol for TQBF using arithmetization
So far

- IP = PSPACE = AM[poly]
- PSPACE enough to calculate max Pr[yes]
- AM[poly] protocol for TQBF using arithmetization
- In fact $\text{IP}[k] \subseteq \text{AM}[k+2]$ for all $k(n)$
So far

- IP = PSPACE = AM[poly]
- PSPACE enough to calculate max Pr[yes]
- AM[poly] protocol for TQBF using arithmetization

In fact $IP[k] \subseteq AM[k+2]$ for all $k(n)$
- Using a public-coin set lower-bound proof
So far

- \(\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}] \)
 - PSPACE enough to calculate max \(\text{Pr}[\text{yes}] \)
 - AM[\text{poly}] protocol for TQBF using \text{arithmetization}

- In fact \(\text{IP}[k] \subseteq \text{AM}[k+2] \) for all \(k(n) \)
 - Using a public-coin set lower-bound proof

- \(\text{AM}[k] = \text{AM} \) for constant \(k \geq 2 \)
So far

- $\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}]$
- PSPACE enough to calculate max Pr[yes]
- AM[poly] protocol for TQBF using arithmetization

- In fact $\text{IP}[k] \subseteq \text{AM}[k+2]$ for all $k(n)$
- Using a public-coin set lower-bound proof

- $\text{AM}[k] = \text{AM}$ for constant $k \geq 2$
 - Using $\text{MA} \subseteq \text{AM}$ and alternate characterization in terms of pairs of complementary ATTMs
So far

- $\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}]$
 - PSPACE enough to calculate max $\Pr[\text{yes}]$
 - $\text{AM}[\text{poly}]$ protocol for TQBF using arithmetization
- In fact $\text{IP}[k] \subseteq \text{AM}[k+2]$ for all $k(n)$
 - Using a public-coin set lower-bound proof
- $\text{AM}[k] = \text{AM}$ for constant $k \geq 2$
 - Using $\text{MA} \subseteq \text{AM}$ and alternate characterization in terms of pairs of complementary ATTMs
- Perfect completeness: One-sided-error-$\text{AM} = \text{AM}$
So far

- \(\text{IP} = \text{PSPACE} = \text{AM}[\text{poly}] \)
 - PSPACE enough to calculate max \(\Pr[\text{yes}] \)
 - \(\text{AM}[\text{poly}] \) protocol for TQBF using arithmetization

- In fact \(\text{IP}[k] \subseteq \text{AM}[k+2] \) for all \(k(n) \)
 - Using a public-coin set lower-bound proof

- \(\text{AM}[k] = \text{AM} \) for constant \(k \geq 2 \)
 - Using \(\text{MA} \subseteq \text{AM} \) and alternate characterization in terms of pairs of complementary ATTMs

- Perfect completeness: One-sided-error-AM = AM
 - Similar to \(\text{BPP} \subseteq \Sigma_2^P \) (yields \(\text{MAM} \) protocol; \(\text{MAM}=\text{AM} \))
\(\text{AM} \subseteq \Pi_2^p \)
AM \subseteq \Pi^p_2

Consider any L with an AM protocol
AM \subseteq \Pi_2^P

- Consider any L with an AM protocol
- By perfect completeness:
\[\text{AM} \subseteq \Pi_2^p \]

Consider any \(L \) with an AM protocol

By perfect completeness:

\[x \in L \Rightarrow \forall y_{\text{Arthur}} \exists z_{\text{Merlin}} \quad R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 1 \]
AM \subseteq \Sigma_2^P

- Consider any L with an AM protocol
- By perfect completeness:
 \[x \in L \Rightarrow \forall y_{\text{Arthur}} \exists z_{\text{Merlin}} \ R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 1 \]
- And by (any positive) soundness:
Consider any L with an AM protocol.

By perfect completeness:

$x \in L \Rightarrow \forall y_{\text{Arthur}} \exists z_{\text{Merlin}} \ R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 1$

And by (any positive) soundness:

$x \notin L \Rightarrow \exists y_{\text{Arthur}} \forall z_{\text{Merlin}} \ R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 0$
$\text{AM} \subseteq \Pi_2^p$

- Consider any L with an AM protocol

- By perfect completeness:
 \[x \in L \Rightarrow \forall y_{\text{Arthur}} \exists z_{\text{Merlin}} \ R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 1 \]

- And by (any positive) soundness:
 \[x \in L \Rightarrow \exists y_{\text{Arthur}} \forall z_{\text{Merlin}} \ R(x, y_{\text{Arthur}}, z_{\text{Merlin}}) = 0 \]

- i.e., $x \in L \iff \forall y \exists z \ R(x, y, z) = 1$
Consider any L with an AM protocol

By perfect completeness:

$x \in L \Rightarrow \forall y_{Arthur} \exists z_{Merlin} \ R(x,y_{Arthur},z_{Merlin}) = 1$

And by (any positive) soundness:

$x \in L \Rightarrow \exists y_{Arthur} \forall z_{Merlin} \ R(x,y_{Arthur},z_{Merlin}) = 0$

i.e., $x \in L \iff \forall y \exists z \ R(x,y,z) = 1$

Similarly, $MA \subseteq \Sigma_2^P$
AM and coNP
AM and coNP

If coNP \subseteq AM, then PH collapses to level 2
AM and coNP

- If coNP ⊆ AM, then PH collapses to level 2

- Will show coNP ⊆ AM ⇒ Σ_2^P ⊆ AM ⊆ Π_2^P
AM and coNP

- If \(\text{coNP} \subseteq \text{AM} \), then \(\text{PH} \) collapses to level 2

- Will show \(\text{coNP} \subseteq \text{AM} \Rightarrow \Sigma_2^P \subseteq \text{AM} \subseteq \Pi_2^P \)

- \(L \in \Sigma_2^P: \{ x | \exists y (x,y) \in L' \} \) where \(L' \in \text{coNP} \)
AM and coNP

- If coNP ⊆ AM, then PH collapses to level 2

- Will show coNP ⊆ AM ⇒ Σ₂^P ⊆ AM ⊆ Π₂^P

- L ∈ Σ₂^P: \{ x | \exists y (x,y) ∈ L' \} where L' ∈ coNP

- MAM protocol for L: Merlin sends y, and then they run an AM protocol for (x,y) ∈ L'
AM and coNP

- If coNP ⊆ AM, then PH collapses to level 2

- Will show coNP ⊆ AM ⇒ Σ₂^P ⊆ AM ⊆ Π₂^P

- L ∈ Σ₂^P: \{ x| ∃ y (x,y) ∈ L'\} where L' ∈ coNP

- MAM protocol for L: Merlin sends y, and then they run an AM protocol for (x,y) ∈ L'

- But MAM = AM
AM and coNP

- If coNP \subseteq AM, then PH collapses to level 2

- Will show coNP \subseteq AM \Rightarrow \Sigma_2^P \subseteq AM \subseteq \Pi_2^P

- \(L \in \Sigma_2^P : \{ x \mid \exists y (x, y) \in L' \} \) where \(L' \in \text{coNP} \)

- MAM protocol for \(L \): Merlin sends \(y \), and then they run an AM protocol for \((x, y) \in L' \)

- But MAM = AM

- Corollary: If GI is NP-complete, PH collapses (recall GNI \in AM)
AM and coNP

- If coNP ⊆ AM, then PH collapses to level 2

- Will show coNP ⊆ AM ⇒ Σ²⁺ ⊆ AM ⊆ Π²⁺

- L ∈ Σ²⁺: { x | ∃ y (x, y) ∈ L′ } where L′ ∈ coNP

- MAM protocol for L: Merlin sends y, and then they run an AM protocol for (x, y) ∈ L′

- But MAM = AM

- Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)
AM and coNP

- If coNP ⊆ AM, then PH collapses to level 2

- Will show coNP ⊆ AM ⇒ Σ₂^P ⊆ AM ⊆ Π₂^P

- L ∈ Σ₂^P: { x | ∃ y (x,y) ∈ L'} where L' ∈ coNP

- MAM protocol for L: Merlin sends y, and then they run an AM protocol for (x,y) ∈ L'

- But MAM = AM

- Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)
Zoo
Program Checking
Program Checking

Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently.
Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently.

How do we trust this?
Program Checking

- Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently

- How do we trust this?

- **Vendor:** Trust me, this always works
Program Checking

Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

Vendor: Trust me, this always works

User: In fact I just care if it works correctly on the inputs I want to solve. Maybe for each input I have, your machine could prove correctness using an IP protocol?
Program Checking

Suppose a special computer (using nano-bio-quantum technology!) is being sold for solving Graph Non-Isomorphism (GNI) efficiently.

How do we trust this?

Vendor: Trust me, this always works

User: In fact I just care if it works correctly on the inputs I want to solve. Maybe for each input I have, your machine could prove correctness using an IP protocol?

Vendor: But I don’t have a (nano-bio-quantum) implementation of the prover’s program...
Program Checking
Program Checking

Program checker
Program Checking

Program checker
Program Checking

- Program checker
Program Checking

Program checker
Program Checking

Program checker
Program Checking

Program checker

User
Program Checking

Program checker
Program Checking

Program checker

On each input, either ensures (w.h.p) that P’s output is correct, or finds out that \(P \neq f \), efficiently
Program Checking

program checker

- On each input, either ensures (w.h.p) that _P’s output is correct_, or finds out that _P≠f_, efficiently

Completeness: Vendor need not fear being falsely accused
Program Checking

Program checker

- On each input, either ensures (w.h.p) that P’s output is correct, or finds out that $P \neq f$, efficiently

- **Completeness**: Vendor need not fear being falsely accused

- **Soundness**: User need not fear using a wrong value as $f(x)$
Program Checking

- **Program checker**
 - On each input, either ensures (w.h.p) that P’s output is correct, or finds out that $P \neq f$, efficiently

- **Completeness**: Vendor need not fear being falsely accused

- **Soundness**: User need not fear using a wrong value as $f(x)$

- Will consider boolean f (i.e., a language L)
Program Checking and IP

\[f(x) \text{ or } P \neq f \]
Program Checking and IP

PC for L from IP protocols (for L and L^c)
Program Checking and IP

PC for L from IP protocols (for L and L^c)
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be

\[P \neq f(x) \text{ or } P \neq f \]

Diagram:
- Prover
- Verifier
- User
- \(x \)
- \(f(x) \) or \(P \neq f \)
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
Program Checking and IP

- PC for L from IP protocols (for L and L^c)

- PC must be efficient. Provers may not be

- If provers (for L and L^c) are efficient, given L-oracle, can construct PC!
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
- Retains completeness and soundness
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
- Retains completeness and soundness
- e.g. For PSPACE-complete L (why?)
Program Checking and IP

- PC for L from IP protocols (for L and L^c)
- PC must be efficient. Provers may not be
- If provers (for L and L^c) are efficient given L-oracle, can construct PC!
- Retains completeness and soundness
- e.g. For PSPACE-complete L (why?)
- How about Graph Isomorphism?
Program Checking for GI
Program Checking for GI

If $P(G_0, G_1)$ says $G_0 \equiv G_1$, try to extract the isomorphism
Program Checking for GI

- If \(P(G_0, G_1) \) says \(G_0 \equiv G_1 \), try to extract the isomorphism

- Pick a node \(v \) in \(G_0 \). For each node \(u \) in \(G_1 \) and ask for isomorphism of \((G_0 \setminus v, G_1 \setminus u) \)
Program Checking for GI

- If $P(G_0, G_1)$ says $G_0 \equiv G_1$, try to extract the isomorphism

- Pick a node v in G_0. For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$

- If P says no for all u in G_1, report “P bad”
If $P(G_0, G_1)$ says $G_0 \equiv G_1$, try to extract the isomorphism:

- Pick a node v in G_0. For each node u in G_1 and ask for isomorphism of $(G_0 \setminus v, G_1 \setminus u)$

- If P says no for all u in G_1, report "P bad"

- Else remember $v \mapsto u$, and recurse on $(G_0 \setminus v, G_1 \setminus u)$
Program Checking for GI

- If \(P(G_0, G_1) \) says \(G_0 \equiv G_1 \), try to extract the isomorphism
 - Pick a node \(v \) in \(G_0 \). For each node \(u \) in \(G_1 \) and ask for isomorphism of \((G_0 \setminus v, G_1 \setminus u) \)
 - If \(P \) says no for all \(u \) in \(G_1 \), report “\(P \) bad”
 - Else remember \(v \mapsto u \), and recurse on \((G_0 \setminus v, G_1 \setminus u) \)
 - On finding isomorphism, verify and output \(G_0 \equiv G_1 \)
Program Checking for GI

- If \(P(G_0, G_1) \) says \(G_0 \cong G_1 \), try to extract the isomorphism.
 - Pick a node \(v \) in \(G_0 \). For each node \(u \) in \(G_1 \) and ask for isomorphism of \((G_0 \setminus v, G_1 \setminus u) \).
 - If \(P \) says no for all \(u \) in \(G_1 \), report "\(P \) bad".
 - Else remember \(v \mapsto u \), and recurse on \((G_0 \setminus v, G_1 \setminus u) \).
- On finding isomorphism, verify and output \(G_0 \cong G_1 \).

Note: An IP protocol (i.e., an NP proof) for GI, where prover is in \(P^{GI} \).
Program Checking for GI
Program Checking for GI

If \(P(G_0, G_1) \) says \(G_0 \neq G_1 \), test \(P \) similar to in IP protocol for GNI (coke from can/bottle)
Program Checking for GI

- If $P(G_0, G_1)$ says $G_0 \neq G_1$, test P similar to in IP protocol for GNI (coke from can/bottle)

- Let $H = \pi(G_b)$ where π is a random permutation and $b = 0$ or 1 at random
Program Checking for GI

- If $P(G_0,G_1)$ says $G_0 \neq G_1$, test P similar to in IP protocol for GNI (coke from can/bottle)

- Let $H = \pi(G_b)$ where π is a random permutation and $b = 0$ or 1 at random

- Run $P(G_0,H)$ many times
Program Checking for GI

- If $P(G_0, G_1)$ says $G_0 \not= G_1$, test P similar to in IP protocol for GNI (coke from can/bottle)

- Let $H = \pi(G_b)$ where π is a random permutation and $b = 0$ or 1 at random

- Run $P(G_0, H)$ many times

- If P says $G_0 \equiv H$ exactly whenever $b=0$, output $G_0 \not= G_1$
Program Checking for GI

- If \(P(G_0, G_1) \) says \(G_0 \not\equiv G_1 \), test \(P \) similar to in IP protocol for GNI (coke from can/bottle)
 - Let \(H = \pi(G_b) \) where \(\pi \) is a random permutation and \(b = 0 \) or \(1 \) at random
 - Run \(P(G_0, H) \) many times
 - If \(P \) says \(G_0 \equiv H \) exactly whenever \(b=0 \), output \(G_0 \not\equiv G_1 \)
 - Else output “Bad \(P \)”
Program Checking for GI

- If $P(G_0, G_1)$ says $G_0 \not\equiv G_1$, test P similar to in IP protocol for GNI (coke from can/bottle)

- Let $H = \pi(G_b)$ where π is a random permutation and $b = 0$ or 1 at random

- Run $P(G_0, H)$ many times

- If P says $G_0 \equiv H$ exactly whenever $b=0$, output $G_0 \not\equiv G_1$

- Else output “Bad P”

Note: Prover in the IP protocol for GNI is in P^{GI}
Multi-Prover Interactive Proofs
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately
- Provers can’t talk to each other during the interrogation (but can agree on a strategy a priori)
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately
- Provers can’t talk to each other during the interrogation (but can agree on a strategy a priori)
- Verifier cross-checks answers from the provers
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately

- Provers can’t talk to each other during the interrogation (but can agree on a strategy a priori)

- Verifier cross-checks answers from the provers

- 2 provers as good as k provers
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately
- Provers can’t talk to each other during the interrogation (but can agree on a strategy a priori)
- Verifier cross-checks answers from the provers
- 2 provers as good as k provers
- \(\text{MIP} = \text{NEXP} \)
Multi-Prover Interactive Proofs

- Interrogate multiple provers separately
- Provers can’t talk to each other during the interrogation (but can agree on a strategy a priori)
- Verifier cross-checks answers from the provers
- 2 provers as good as k provers
- MIP = NEXP
- Parallel repetition theorem highly non-trivial!
Probabilistically Checkable Proofs (PCPs)
Probabilistically Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
Probabilistically Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
- Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject
Proverbially Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
- Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject

PCP[r,q]: length of proof 2^r, number of queries q
Probabilistically Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject

- \(\text{PCP}[r,q] \): length of proof \(2^r \), number of queries \(q \)

- Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy
Probabilistically Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject

- \(\text{PCP}[r,q] \): length of proof \(2^r \), number of queries \(q \)

Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy

- Which will be the written proof
Probabilistically Checkable Proofs (PCPs)

- Prover submits a (very long) written proof
 - Verifier reads some positions (probabilistically chosen) from the proof and decides to accept or reject

- $\text{PCP}[r,q]$: length of proof 2^r, number of queries q

- Intuitively, in MIP, the provers cannot change their strategy (because one does not know what the other sees), so must stick to a prior agreed up on strategy
 - Which will be the written proof

- $\text{PCP}[\text{poly},\text{poly}] = \text{MIP} = \text{NEXP}$
PCP Theorem
PCP Theorem

$\text{NP} = \text{PCP}[\log,\text{const}]$
PCP Theorem

- $NP = PCP[\log, \text{const}]$

- PCP is only poly long (just like usual NP certificate)
PCP Theorem

NP = PCP[log, const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!
PCP Theorem

NP = PCP[log, const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!

Extensively useful in proving “hardness of approximation” results for optimization problems
PCP Theorem

- \(\text{NP} = \text{PCP}[\log,\text{const}] \)
 - PCP is only poly long (just like usual NP certificate)
 - But verifier reads only constantly many bits!
 - Extensively useful in proving “hardness of approximation” results for optimization problems
 - Also useful in certain cryptographic protocols
Zero-Knowledge Proofs
Zero-Knowledge Proofs

Interactive Proof for membership in L
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
Zero-Knowledge Proofs

- Interactive Proof for membership in \(L \)
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that \(x \) is in \(L \)
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
Zero-Knowledge Proofs

Interactive Proof for membership in L
Complete and Sound

ZK Property: Verifier “learns nothing” except that x is in L

Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier "learns nothing" except that x is in L
- Verifier's view could have been "simulated"
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

- Interactive Proof for membership in L
- Complete and Sound
- ZK Property: Verifier “learns nothing” except that x is in L
- Verifier’s view could have been “simulated”
- For every adversarial strategy, there exists a simulation strategy
Summary
Summary

Interactive Protocols
Summary

Interactive Protocols

Public coins, ATTM, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
Summary

Interactive Protocols

- Public coins, ATTM, collapse of $AM[k]$, arithmetization, set lower-bound, perfect completeness

- Zoo: MA and AM, between 1st and 2nd levels of PH
Summary

Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts
Summary

Interactive Protocols

- Public coins, ATTM, collapse of AM[k], arithmetization, set lower-bound, perfect completeness

- Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

- MIP, PCP, ZK proofs
Summary

Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization, set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

MIP, PCP, ZK proofs

Understanding power of interaction/non-determinism and randomness
Summary

Interactive Protocols

- Public coins, ATTM, collapse of AM[k], arithmetization, set lower-bound, perfect completeness
- Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

- MIP, PCP, ZK proofs
- Understanding power of interaction/non-determinism and randomness
- Useful in “hardness of approximation”, in cryptography, ...