Non-Uniform Computation

Lecture 10
Non-Uniform Computational Models: Circuits
Non-Uniform Computation
Non-Uniform Computation

- Uniform: Same program for all (the infinitely many) inputs
Non-Uniform Computation

- **Uniform**: Same program for all (the infinitely many) inputs
- **Non-uniform**: A different “program” for each input size
Non-Uniform Computation

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different “program” for each input size
 - Then complexity of building the program and executing the program
Non-Uniform Computation

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different “program” for each input size
 - Then complexity of building the program and executing the program
 - Sometimes will focus on the latter alone
Non-Uniform Computation

- Uniform: Same program for all (the infinitely many) inputs
- Non-uniform: A different “program” for each input size
- Then complexity of building the program and executing the program
- Sometimes will focus on the latter alone
- Not entirely realistic if the program family is uncomputable or very complex to compute
Non-uniform advice
Non-uniform advice

- Program: TM M and advice strings \{A_n\}
Non-uniform advice

- Program: TM M and advice strings $\{A_n\}$
- M given $A_{|x|}$ along with x
Non-uniform advice

- Program: TM M and advice strings $\{A_n\}$
- M given $A_{|x|}$ along with x
- A_n can be the program for inputs of size n
Non-uniform advice

- Program: TM M and advice strings $\{A_n\}$
- M given $A_{|x|}$ along with x
- A_n can be the program for inputs of size n
- $|A_n|=2^n$ is sufficient
Non-uniform advice

- Program: TM M and advice strings $\{A_n\}$
 - M given $A_{|x|}$ along with x
 - A_n can be the program for inputs of size n
 - $|A_n| = 2^n$ is sufficient
- But $\{A_n\}$ can be uncomputable (even if just one bit long)
Non-uniform advice

- Program: TM M and advice strings \(\{A_n\} \)
 - M given \(A_{|x|} \) along with x
 - \(A_n \) can be the program for inputs of size n
 - \(|A_n| = 2^n \) is sufficient
 - But \(\{A_n\} \) can be uncomputable (even if just one bit long)
 - e.g. advice to decide undecidable unary languages
P/poly and P/log
P/poly and P/log

\# DTIME(T)/a
P/poly and P/log

\[\text{DTIME}(T)/a \]

Languages decided by a TM in time \(T(n) \) using non-uniform advice of length \(a(n) \)
P/poly and P/log

\[\text{DTIME}(T)/a \]

- Languages decided by a TM in time \(T(n) \) using non-uniform advice of length \(a(n) \)

\[\text{P/poly} = \bigcup_{c,d,k \geq 0} \text{DTIME}(kn^c)/kn^d \]
P/poly and P/log

\[\text{DTIME}(T)/a \]

 Languages decided by a TM in time \(T(n) \) using non-uniform advice of length \(a(n) \)

\[\text{P/poly} = \bigcup_{c,d,k>0} \text{DTIME}(kn^c)/kn^d \]

\[\text{P/log} = \bigcup_{c,k>0} \text{DTIME}(kn^c)/k \log n \]
NP vs. P/log, P/poly
NP vs. P/log, P/poly

- P/log (or even DTIME(1)/1) has undecidable languages
NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

- e.g. unary undecidable languages
NP vs. P/log, P/poly

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
- So P/log cannot be contained in any of the uniform complexity classes
NP vs. P/log, P/poly

- P/log (or even DTIME(1)/1) has undecidable languages
 - e.g. unary undecidable languages
- So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P
NP vs. P/log, P/poly

- P/log (or even DTIME(1)/1) has undecidable languages
- e.g. unary undecidable languages
- So P/log cannot be contained in any of the uniform complexity classes
- P/log contains P
- Does P/log or P/poly contain NP?
$NP \subseteq P/\log \Rightarrow NP = P$
NP ⊆ P/log \Rightarrow NP=P

Recall finding witness for an NP language is Turing reducible to deciding the language
Search using Decision
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!

Say need to find w s.t. (x,w) ∈ L'}
Search using Decision

- Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

- Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!

- Say need to find w s.t. \((x,w) \in L'\)

- Consider \(L_1\) in NP: \((x,y) \in L_1 \text{ iff } \exists z \text{ s.t. } (x,yz) \in L'\) (i.e., can y be a prefix of a certificate for x).
Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!

Say need to find w s.t. $(x,w) \in L'$

- Consider L_1 in NP: $(x,y) \in L_1$ iff $\exists z$ s.t. $(x,yz) \in L'$. (i.e., can y be a prefix of a certificate for x).

- Query L_1-oracle with $(x,0)$ and $(x,1)$. One of the two must be positive: say $(x,0) \in L_1$; then first bit of w be 0.
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!

Say need to find w s.t. (x,w) ∈ L′

consider L₁ in NP: (x,y) ∈ L₁ iff ∃z s.t. (x,yz) ∈ L′. (i.e., can y be a prefix of a certificate for x).

Query L₁-oracle with (x,0) and (x,1). One of the two must be positive: say (x,0) ∈ L₁; then first bit of w be 0.

For next bit query oracle with (x,00) and (x,01)
Search using Decision

Suppose given “oracles” for deciding all NP languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), then search is easy too!

Say need to find w s.t. \((x,w) \in L'\)

- consider \(L_1\) in NP: \((x,y) \in L_1\) iff \(\exists z\) s.t. \((x,yz) \in L'\).
 (i.e., can \(y\) be a prefix of a certificate for \(x\)).

- Query \(L_1\)-oracle with \((x,0)\) and \((x,1)\). One of the two must be positive: say \((x,0) \in L_1\); then first bit of \(w\) be 0.

- For next bit query oracle with \((x,00)\) and \((x,01)\)

Use \(L_2\) so that \((x,z,pad)\) in \(L_2\) iff \((x,z)\) in \(L_1\). Can query \(L_2\) with same size instances.
\[\text{NP} \subseteq \text{P/log} \Rightarrow \text{NP} = \text{P} \]

Recall finding witness for an NP language is Turing reducible to deciding the language.
NP $\subseteq P/\log \Rightarrow NP=\mathbb{P}$

- Recall finding witness for an NP language is Turing reducible to deciding the language.

- If NP $\subseteq P/\log$, then for each L in NP, there is a poly-time TM with log advice which can find witness (via self-reduction).
NP \subseteq P/\log \Rightarrow NP=P

- Recall finding witness for an NP language is Turing reducible to deciding the language

- If NP \subseteq P/\log, then for each L in NP, there is a poly-time TM with log advice which can find witness (via self-reduction)

- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness
NP ⊆ P/log ⇒ NP=P

- Recall finding witness for an NP language is Turing reducible to deciding the language.

- If NP ⊆ P/log, then for each L in NP, there is a poly-time TM with log advice which can find witness (via self-reduction).

- Guess advice (poly many), and for each guessed advice, run the TM and see if it finds witness.

- If no advice worked (one of them was correct), then input not in language.
\(\text{NP} \subseteq \text{P/poly} \Rightarrow \text{PH} = \Sigma_2^P \)
NP \subseteq \text{P/poly} \implies \text{PH} = \Sigma_2^P

\begin{itemize}
\item Will show \(\Pi_2^P = \Sigma_2^P \)
\end{itemize}
\[\text{NP} \subseteq \text{P/poly} \implies \text{PH} = \Sigma_2^P \]

- Will show \(\Pi_2^P = \Sigma_2^P \)

- Consider \(L = \{ x | \forall w_1 \ (x, w_1) \in L' \} \in \Pi_2^P \) where

 \(L' = \{(x, w_1)| \exists w_2 \ F(x, w_1, w_2) \} \in \text{NP} \)
NP \subseteq \text{P/poly} \implies \text{PH}=\Sigma^p_2

\begin{itemize}
 \item Will show $\Pi^p_2 = \Sigma^p_2$
 \item Consider $L = \{x \mid \forall w_1 (x,w_1) \in L' \} \in \Pi^p_2$ where
 \begin{align*}
 L' &= \{(x,w_1) \mid \exists w_2 \ F(x,w_1,w_2)\} \in \text{NP}
 \end{align*}
 \item If NP \subseteq P/poly then consider M with advice \{A_n\} which finds witness for L': i.e. if $(x,w_1) \in L'$, then $M(x,w_1; A_n)$ outputs a witness w_2 s.t. $F(x,w_1,w_2)$
\end{itemize}
\[\text{NP } \subseteq \text{ P/poly } \Rightarrow \text{ PH}=\Sigma_2^P \]

- Will show \(\Pi_2^P = \Sigma_2^P \)
- Consider \(L = \{ x | \forall w_1 (x, w_1) \in L' \} \in \Pi_2^P \) where \(L' = \{ (x, w_1) | \exists w_2 \ F(x, w_1, w_2) \} \in \text{NP} \)

- If \(\text{NP } \subseteq \text{ P/poly} \) then consider \(M \) with advice \(\{ A_n \} \) which finds witness for \(L' \); i.e. if \((x, w_1) \in L' \), then \(M(x, w_1; A_n) \) outputs a witness \(w_2 \) s.t. \(F(x, w_1, w_2) \)

- \(L = \{ x | \exists z \ \forall w_1 \ F(x, w_1, M(x, w_1; z)) \} \)
Boolean Circuits
Boolean Circuits

- Directed acyclic graph
Boolean Circuits

- Directed acyclic graph
- Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
Boolean Circuits

- Directed acyclic graph
- Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
- Edges: Boolean valued wires
Boolean Circuits

- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - AND/OR fan-ins can be bounded (say two) or unbounded
Boolean Circuits

- Directed acyclic graph

- Nodes: AND, OR, NOT, CONST gates, inputs, output(s)

- Edges: Boolean valued wires

- AND/OR fan-ins can be bounded (say two) or unbounded

- Acyclic: output well-defined
Boolean Circuits

- Directed acyclic graph
- Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
- Edges: Boolean valued wires
- AND/OR fan-ins can be bounded (say two) or unbounded
- Acyclic: output well-defined
- Note: no memory gates
Boolean Circuits

Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates, inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say two) or unbounded

Acyclic: output well-defined

Note: no memory gates

Size of circuit: number of wires
Boolean Circuits
Boolean Circuits

Recall: a TM's execution on inputs of fixed length can be captured by a Boolean circuit.
Boolean Circuits

Recall: a TM's execution on inputs of fixed length can be captured by a Boolean circuit.

From proof of Cook's theorem.
Recall: a TM’s execution on inputs of fixed length can be captured by a Boolean circuit.

From proof of Cook’s theorem

Size of circuit polynomially related to running time of TM
Boolean Circuits

- Recall: a TM’s execution on inputs of fixed length can be captured by a Boolean circuit.
- From proof of Cook’s theorem.
- Size of circuit polynomially related to running time of TM.
- If poly time TM, then poly sized circuit.
Boolean Circuits

\[(x, A_n)\]

\[A_n, q_0 \rightarrow x\]
Boolean Circuits

Non-uniformity: circuit family \(\{C_n\} \)
Boolean Circuits

Non-uniformity: circuit family \(\{C_n\} \)

Given non-uniform computation \((M,\{A_n\}) \) can define equivalent \(\{C_n\} \)
Boolean Circuits

- Non-uniformity: circuit family \(\{C_n\} \)

- Given non-uniform computation \((M,\{A_n\}) \) can define equivalent \(\{C_n\} \)

- Advice \(A_n \) is hard-wired into circuit \(C_n \)
Boolean Circuits

- Non-uniformity: circuit family \(\{C_n\} \)
 - Given non-uniform computation \((M, \{A_n\})\) can define equivalent \(\{C_n\} \)
 - Advice \(A_n \) is hard-wired into circuit \(C_n \)
 - Doesn’t affect circuit size
Boolean Circuits

- Non-uniformity: circuit family \{C_n\}
 - Given non-uniform computation \((M,\{A_n\})\) can define equivalent \{C_n\}
 - Advice \(A_n\) is hard-wired into circuit \(C_n\)
 - Doesn’t affect circuit size

- Conversely, given \{C_n\}, can use description of \(C_n\) as advice \(A_n\) for a “universal” TM
Boolean Circuits

- Non-uniformity: circuit family $\{C_n\}$

 - Given non-uniform computation $(M,\{A_n\})$ can define equivalent $\{C_n\}$
 - Advice A_n is hard-wired into circuit C_n
 - Doesn’t affect circuit size

 - Conversely, given $\{C_n\}$, can use description of C_n as advice A_n for a “universal” TM
 - $|A_n|$ comparable to size of circuit C_n
SIZE(T)
SIZE(T)

* SIZE(T): languages solved by circuit families of size $T(n)$
SIZE(T)

- SIZE(T): languages solved by circuit families of size $T(n)$
- $P/poly = SIZE(poly)$
SIZE(T)

- SIZE(T): languages solved by circuit families of size $T(n)$
- $P/poly = SIZE(poly)$
 - $SIZE(poly) \subseteq P/poly$: Size T circuit can be described in $O(T \log T)$ bits (advice). Universal TM can evaluate this circuit in poly time
SIZE(T)

- SIZE(T): languages solved by circuit families of size $T(n)$
- P/poly = SIZE(poly)
 - SIZE(poly) ⊆ P/poly: Size T circuit can be described in $O(T \log T)$ bits (advice). Universal TM can evaluate this circuit in poly time
 - P/poly ⊆ SIZE(poly): Transformation from Cook’s theorem, with advice string hardwired into circuit
SIZE bounds
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for T=O(n2^n)
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for $T=O(n2^n)$
- Circuit encodes truth-table
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for T=O(n2^n)
- Circuit encodes truth-table
- Most languages need circuits of size Ω(2^n/n)
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for $T=O(n2^n)$
 - Circuit encodes truth-table
- Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for $T=O(n2^n)$
 - Circuit encodes truth-table
- Most languages need circuits of size $\Omega(2^n/n)$
 - Number of circuits of size T is at most T^{2T}
- If $T = 2^n/4n$, say, $T^{2T} < 2^{(2^n)/2}$
SIZE bounds

- All languages (decidable or not) are in SIZE(T) for \(T = O(n2^n) \)
 - Circuit encodes truth-table
- Most languages need circuits of size \(\Omega(2^n/n) \)
 - Number of circuits of size \(T \) is at most \(T^{2T} \)
 - If \(T = 2^n/4n \), say, \(T^{2T} < 2^{(2^n)/2} \)
 - Number of languages = \(2^{2^n} \)
SIZE hierarchy
SIZE hierarchy

\[\text{SIZE}(T') \subsetneq \text{SIZE}(T) \text{ if } T = \Omega(t2^t) \text{ and } T' = O(2^t/t) \]
SIZE hierarchy

- \text{SIZE}(T') \subseteq \text{SIZE}(T) \text{ if } T = \Omega(t2^t) \text{ and } T' = O(2^t/t)

- Consider functions on \(t \) bits (ignoring \(n-t \) bits)
SIZE hierarchy

\(\text{SIZE}(T') \not\subseteq \text{SIZE}(T) \) if \(T = \Omega(t2^t) \) and \(T' = O(2^t/t) \)

- Consider functions on \(t \) bits (ignoring \(n-t \) bits)
- All of them in \(\text{SIZE}(T) \), most not in \(\text{SIZE}(T') \)
Uniform Circuits
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
- Undecidable languages are undecidable for these circuits families
- Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:
Uniform Circuits

- Circuits are interesting for their structure too (not just size)!
- Uniform circuit family: constructed by a TM
 - Undecidable languages are undecidable for these circuits families
 - Can relate their complexity classes to classes defined using TMs
- Logspace-uniform:
 - An $O(\log n)$ space TM can compute the circuit
NC and AC
NC and AC

NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
NC and AC

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
- NC with bounded fan-in and AC with unbounded fan-in
NC and AC

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
- NC with bounded fan-in and AC with unbounded fan-in
- NC\(^i\): decided by bounded fan-in logspace-uniform circuits of poly size and depth \(O(\log^i n)\)
NC and AC

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
- NC with bounded fan-in and AC with unbounded fan-in
- NC^i: decided by bounded fan-in logspace-uniform circuits of poly size and depth $O(\log^i n)$
- $NC = \bigcup_{i>0} NC^i$
NC and AC

- NC and AC: languages decided by poly size and poly-log depth logspace-uniform circuits
 - NC with bounded fan-in and AC with unbounded fan-in
 - NC^i: decided by bounded fan-in logspace-uniform circuits of poly size and depth $O(\log^i n)$
 - $\text{NC} = \bigcup_{i>0} \text{NC}^i$

- Similarly AC^i and $\text{AC} = \bigcup_{i>0} \text{AC}^i$
NC^i and AC^i
\[\text{NC}^i \text{ and AC}^i \]

\[\text{NC}^i \subseteq \text{AC}^i \subseteq \text{NC}^{i+1} \]
NC^i and AC^i

- $NC^i \subseteq AC^i \subseteq NC^{i+1}$
- Clearly $NC^i \subseteq AC^i$
NC^i and AC^i

$\text{NC}^i \subseteq \text{AC}^i \subseteq \text{NC}^{i+1}$

- Clearly $\text{NC}^i \subseteq \text{AC}^i$

- $\text{AC}^i \subseteq \text{NC}^{i+1}$ because polynomial fan-in can be reduced to constant fan-in by using a log depth tree
NC\(^i\) and AC\(^i\)

\(\text{\(NC^i \subseteq AC^i \subseteq NC^{i+1}\)}\)

\(\text{Clearly } NC^i \subseteq AC^i\)

\(\text{AC}^i \subseteq NC^{i+1}\) because polynomial fan-in can be reduced to constant fan-in by using a log depth tree

\(\text{So } NC = AC\)
NC and P
NC and \(P \)

\(\Delta \text{NC} \subseteq P \)
NC and P

\(\text{NC} \subseteq \text{P} \)

- Build the circuit in logspace (so poly time) and evaluate it in time polynomial in the size of the circuit
NC and P

- NC \subseteq P
 - Build the circuit in logspace (so poly time) and evaluate it in time polynomial in the size of the circuit
 - Open problem: Is NC = P?
Motivation for NC
Motivation for NC

Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
Motivation for NC

Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time

Corresponds to NC
Motivation for NC

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time

- Corresponds to NC

- Depth translates to time
Motivation for NC

- Fast parallel computation is (loosely) modeled as having poly many processors and taking poly-log time
- Corresponds to NC
- Depth translates to time
- Total “work” is size of the circuit