Computational Complexity

Lecture 8
More of the Polynomial Hierarchy
Oracle-based Definition
Recall PH

\[\{ x \mid \exists u_1 \forall u_2 \exists u_3 \ F(x,u_1,u_2,u_3) \} \]

\[\{ x \mid \forall u_1 \exists u_2 \forall u_3 \ F(x,u_1,u_2,u_3) \} \]

\[\{ x \mid \exists u_1 \forall u_2 \ F(x,u_1,u_2) \} \]

\[\{ x \mid \forall u_1 \exists u_2 \ F(x,u_1,u_2) \} \]

\[\{ x \mid \exists u_1 \ F(x,u_1) \} \]

\[\{ x \mid \forall u_1 \ F(x,u_1) \} \]

\[\{ x \mid F(x) \} \]
Oracle Machines
Oracle Machines

Recall Oracle Machine
Oracle Machines

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
Oracle Machines

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle
Oracle Machines

- Recall Oracle Machine
 - Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
 - Can run an oracle machine with any oracle
 - Oracle fully specified by the input-output behavior
Oracle Machines

Recall Oracle Machine

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle
- Oracle fully specified by the input-output behavior
- Language oracle: answer is a single bit
Oracle Machines

Recall Oracle Machine

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle
- Oracle fully specified by the input-output behavior
- Language oracle: answer is a single bit
- This is what we consider
Oracle Machines (ctd.)
Oracle Machines (ctd.)

- Non-deterministic oracle machine
Oracle Machines (ctd.)

- Non-deterministic oracle machine
 - Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
Oracle Machines (ctd.)

- Non-deterministic oracle machine
- Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
- Said to accept if any thread reaches accept state
Oracle Machines (ctd.)

- Non-deterministic oracle machine
 - Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of non-deterministic choices)
Oracle Machines (ctd.)

- Non-deterministic oracle machine
 - Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate \(w \) (the list of non-deterministic choices)
 - Said to accept \(x \) if \(\exists w \) such that \((x,w) \) takes it to accepting state
Oracle Machines (ctd.)

- **Non-deterministic oracle machine**
 - Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
 - Said to accept if any thread reaches accept state
 - Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of non-deterministic choices)
 - Said to accept x if there exists w such that (x,w) takes it to accepting state
NP^A

NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
NP^A

NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time

Certificate version: NP^A has languages of the form
NP^A

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time

- Certificate version: NP^A has languages of the form
 \[B = \{ x \mid \exists w \ M^A(x,w) = 1 \} \]
NP^A

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form $B = \{x \mid \exists w \ M^A(x,w) = 1\}$
- where M deterministic oracle machine
\textbf{NP}^A

- \textbf{NP}^A: class of languages accepted by oracle NTMs with oracle for \(A \) in poly time

- Certificate version: \(\text{NP}^A \) has languages of the form

\[B = \{ x \mid \exists w \ M^A(x, w) = 1 \} \]

- where \(M \) deterministic oracle machine

- \(M^A \) runs in poly(|x|) time and |w|=poly(|x|)
NP^A

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time

- Certificate version: NP^A has languages of the form

 $B = \{x \mid \exists w \ M^A(x,w) = 1\}$

 where M deterministic oracle machine

 M^A runs in $\text{poly}(|x|)$ time and $|w|=\text{poly}(|x|)$

- $\text{co-}(\text{NP}^A) = (\text{co-NP})^A$
\(\text{NP}^A \)

\(\text{NP}^A \): class of languages accepted by oracle NTMs with oracle for A in poly time

Certificate version: \(\text{NP}^A \) has languages of the form

\[B = \{x \mid \exists w \ M^A(x,w) = 1\} \]

where \(M \) deterministic oracle machine

\(M^A \) runs in poly(|x|) time and |w|=poly(|x|)

\(\text{co-(NP}^A\) = (co-NP)^A

languages of the form \(\{x \mid \forall w \ M^A(x,w) = 1\} \)
NPA
If A in P, $NPA = NP$
$\text{If } A \text{ in } P, \text{ } \mathbf{NP}^A = \mathbf{NP}$

- Can “implement” the oracle as a subroutine
\(\text{NP}^A \)

- If \(A \) in \(P \), \(\text{NP}^A = \text{NP} \)
- Can “implement” the oracle as a subroutine
- If \(A \) in \(\text{NP} \)?
If A in P, $NPA = NP$

Can "implement" the oracle as a subroutine

If A in NP?

Oracle for A is an oracle for A^c too! $NPA = NPA^c$
NP^A

- If A in P, $NP^A = NP$
 - Can “implement” the oracle as a subroutine
- If A in NP?
 - Oracle for A is an oracle for A^c too! $NP^A = NP^{A^c}$
 - $NP \cup co-NP \subseteq NP^{SAT}$
If A in P, $NP^A = NP$

Can “implement” the oracle as a subroutine

If A in NP?

Oracle for A is an oracle for A^c too! $NP^A = NP^{A^c}$

$NP \cup \text{co-NP} \subseteq NP^{SAT}$

Can we better characterize NP^{SAT}?
NP and relatives
\[\text{NP}^{\text{NP}} \text{ and relatives} \]

\[\text{NP}^{\text{SAT}} = \bigcup_{A \in \text{NP}} \text{NP}^A \]
NP^NP and relatives

$\text{NP}^{\text{SAT}} = \bigcup_{A \in \text{NP}} \text{NP}^A$

Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
NP^NP and relatives

\[\text{NP}^\text{SAT} = \bigcup_{A \in \text{NP}} \text{NP}^A \]

- Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)
- NP^SAT also called NP^{NP}
$\mathbf{NP}^{\mathbf{NP}}$ and relatives

- $\mathbf{NP}^{\mathbf{SAT}} = \bigcup_{A \in \mathbf{NP}} \mathbf{NP}^A$

- Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

- $\mathbf{NP}^{\mathbf{SAT}}$ also called $\mathbf{NP}^{\mathbf{NP}}$

- $\mathbf{NP}^{\Sigma_k} = \bigcup_{A \in \Sigma_k} \mathbf{NP}^A = \mathbf{NP}^{\Sigma_k\mathbf{SAT}}$
NP^{NP} and relatives

- **NP^{SAT} = \bigcup_{A \in NP} NP^A**
 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

- **NP^{SAT} also called NP^{NP}**

- **NP^{Σ_k} = \bigcup_{A \in Σ_k} NP^A = NP^{Σ_kSAT}**

- Will show **NP^{Σ_k} = Σ_{k+1}^P** (alt. definition for Σ_{k+1}^P)
NP^{NP} and relatives

- $\text{NP}^{\text{SAT}} = \bigcup_{A \in \text{NP}} \text{NP}^A$

 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

- NP^{SAT} also called NP^{NP}

- $\text{NP}^{\Sigma_k} = \bigcup_{A \in \Sigma_k} \text{NP}^A = \text{NP}^{\Sigma_k \text{SAT}}$

 - Will show $\text{NP}^{\Sigma_k} = \Sigma_{k+1}^P$ (alt. definition for Σ_{k+1}^P)

- In particular, $\text{NP}^{\text{NP}} = \Sigma_2^P$
$\mathbf{NP}^{\mathbf{NP}}$ and relatives

1. $\mathbf{NP}^{\mathbf{SAT}} = \bigcup_{A \in \mathbf{NP}} \mathbf{NP}^A$

 - Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

2. $\mathbf{NP}^{\mathbf{SAT}}$ also called $\mathbf{NP}^{\mathbf{NP}}$

3. $\mathbf{NP}^{\Sigma_k} = \bigcup_{A \in \Sigma_k} \mathbf{NP}^A = \mathbf{NP}^{\Sigma_k \mathbf{SAT}}$

 - Will show $\mathbf{NP}^{\Sigma_k} = \Sigma_{k+1}^P$ (alt. definition for Σ_{k+1}^P)

 - In particular, $\mathbf{NP}^{\mathbf{NP}} = \Sigma_2^P$
$\Sigma_{k+1} = \mathsf{NP}^{\Sigma_k}$
$\Sigma_{k+1} = \text{NP}^{\Sigma_k}$

Consider $L \in \Sigma_{k+1}^P$.
\[\Sigma_{k+1} = \mathsf{NP}^{\Sigma_k} \]

Consider \(L \in \Sigma_{k+1}^p \)

\(L = \{ x \mid \exists w \ (x,w) \in L' \} \), where \(L' \) in \(\Pi_k^p \)
\[\Sigma_{k+1} = \text{NP}^{\Sigma_k} \]

Consider \(L \in \Sigma_{k+1}^P \)

\(L = \{ x | \exists w (x, w) \in L' \} \), where \(L' \) in \(\Pi_k^P \)

So \(L \) in \(\text{NP}^{L'} \) where \(L' \) in \(\Pi_k^P \)
$\Sigma_{k+1} = NP^{\Sigma_k}$

Consider $L \in \Sigma_{k+1}^P$

$L = \{ x | \exists w \ (x,w) \in L' \}, \text{ where } L' \in \Pi_k^P$

So $L \in NP^{L'}$ where $L' \in \Pi_k^P$

But $NP^{L'} \subseteq NP^{\Pi_k} = NP^{\Sigma_k}$
\[\Sigma_{k+1} = \text{NP}^{\Sigma_k} \]

- Consider \(L \in \Sigma_{k+1}^P \)
 - \(L = \{ x | \exists w \ (x,w) \in L' \} \), where \(L' \) in \(\Pi_k^P \)
 - So \(L \) in \(\text{NP}^{L'} \) where \(L' \) in \(\Pi_k^P \)
 - But \(\text{NP}^{L'} \subseteq \text{NP}^{\Pi_k} = \text{NP}^{\Sigma_k} \)
 - So \(\Sigma_{k+1}^P \subseteq \text{NP}^{\Sigma_k} \)
\[\Sigma_{k+1} = NP^{\Sigma_k} \]

Consider \(L \in \Sigma_{k+1}^P \)

\(L = \{ x \mid \exists w \ (x,w) \in L' \}, \) where \(L' \) in \(\Pi_k^P \)

So \(L \) in \(NP^{L'} \) where \(L' \) in \(\Pi_k^P \)

But \(NP^{L'} \subseteq NP^{\Pi_k} = NP^{\Sigma_k} \)

So \(\Sigma_{k+1}^P \subseteq NP^{\Sigma_k} \)

Now to show \(NP^{\Sigma_k} \subseteq \Sigma_{k+1}^P \)
$\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1}$
\[\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(\mathsf{NP}^A \subseteq \Sigma_{k+1}^P \) if \(A \) in \(\Sigma_k^P \)
\[\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

- To show \(\mathsf{NP}^A \subseteq \Sigma_{k+1}^P \) if \(A \) in \(\Sigma_k^P \)

- For \(B \in \mathsf{NP}^A \) poly-time TM \(M \) s.t. \(B = \{ x \mid \exists w \, M^A(x,w)=1 \} \)
\[\text{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(\text{NP}^{A} \subseteq \Sigma_{k+1}^P \) if \(A \) in \(\Sigma_k^P \)

- For \(B \in \text{NP}^{A} \) poly-time TM \(M \) s.t. \(B = \{ x | \exists w \ M^A(x,w)=1 \} \)
- i.e., \(B = \{ x | \exists w \ \exists \text{ans} \ M^{<\text{ans}>}(x,w)=1 \text{ and "ans correct"} \} \)
\[\text{NP}^\Sigma_k \subseteq \Sigma_{k+1} \]

To show \(\text{NP}^A \subseteq \Sigma_{k+1}^P \) if \(A \) in \(\Sigma_k^P \)

- For \(B \in \text{NP}^A \) poly-time TM \(M \) s.t. \(B = \{ x \mid \exists w \ M^A(x,w)=1 \} \)
- i.e., \(B = \{ x \mid \exists w \ \exists \text{ans} \ M^{\text{ans}}(x,w)=1 \text{ and “ans correct”} \} \)

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and “ans correct”}\} \) in \(\Sigma_{k+1}^P \)
\[\text{To show } \text{NP}^\Sigma_k \subseteq \Sigma_{k+1} \]

\[\text{To show } \text{NP}^A \subseteq \Sigma_{k+1}^P \text{ if } A \text{ in } \Sigma_k^P \]

\[\text{For } B \in \text{NP}^A \text{ poly-time TM } M \text{ s.t. } B = \{ x | \exists w \ M^A(x,w)=1 \} \]

\[\text{i.e., } B = \{ x | \exists w \ \exists \text{ans } M^{<\text{ans}>}(x,w)=1 \text{ and "ans correct"} \} \]

\[\text{To show } C = \{ (x,w,\text{ans}) | M^{<\text{ans}>}(x,w)=1 \text{ and "ans correct"} \} \text{ in } \Sigma_{k+1}^P \]

\[\text{Then } B \text{ also in } \Sigma_{k+1}^P \]
$\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1}$
$\text{NP}^{\Sigma_k} \subseteq \Sigma_{k+1}$

To show $C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"}\}$ in Σ_{k+1}^P
\[\text{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"} \} \) in \(\Sigma_{k+1}^p \)

Suppose \(M \) makes only one query \(z=Z(x,w) \). \(\text{ans} \) is a single bit saying if \(z \) in \(A \) or not.
\[\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"} \} \) in \(\Sigma_{k+1}^P \)

Suppose \(M \) makes only one query \(z=Z(x,w) \). \(\text{ans} \) is a single bit saying if \(z \) in \(A \) or not

“ans correct”: \((\text{ans}=1 \land z \in A)\) or \((\text{ans}=0 \land z \notin A)\)
\[\text{NP}^\Sigma_k \subseteq \Sigma_{k+1} \]

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"} \} \) in \(\Sigma_{k+1}^p \)

Suppose \(M \) makes only one query \(z=Z(x,w) \). \(\text{ans} \) is a single bit saying if \(z \) in \(A \) or not.

"ans correct": (\(\text{ans}=1 \land z \in A \)) or (\(\text{ans}=0 \land z \notin A \))

\(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \land [(\text{ans}=1 \land \exists u_1 \forall u_2 \ldots Q_k u_k \ F(z,u_1,\ldots)=1)] \) or (\(\text{ans}=0 \land \forall v_1 \exists v_2 \ldots Q'_k v_k \ F(z,v_1,\ldots)=0) \} \} \)
$\mathsf{NP}^{\Sigma_k} \subseteq \Sigma_{k+1}$

To show $C = \{(x,w,\text{ans}) \mid \mathcal{M}^{\text{ans}}(x,w)=1 \text{ and "ans correct"}\}$ in Σ_{k+1}^P

Suppose \mathcal{M} makes only one query $z = Z(x,w)$. ans is a single bit saying if z in A or not

“ans correct”: $(\text{ans}=1 \land z \in A)$ or $(\text{ans}=0 \land z \notin A)$

$C = \{(x,w,\text{ans}) \mid \mathcal{M}^{\text{ans}}(x,w)=1 \land [(\text{ans}=1 \land \exists u_1 \forall u_2 \ldots Q_k u_k F(z,u_1,\ldots)=1) \lor (\text{ans}=0 \land \forall v_1 \exists v_2 \ldots Q’_k v_k F(z,v_1,\ldots)=0)] \}$

$C = \{(x,w,\text{ans}) \mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 \ldots Q_k u_k Q’_k v_k \mathcal{M}^{\text{ans}}(x,w)=1 \land [(\text{ans}=1 \land F(z,u_1,\ldots)=1) \lor (\text{ans}=0 \land F(z,v_1,\ldots)=0)] \}$
\[\text{NP}^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"} \} \) in \(\Sigma_{k+1}^P \)

Suppose \(M \) makes only one query \(z=Z(x,w) \). \(\text{ans} \) is a single bit saying if \(z \) in \(A \) or not

"ans correct": \((\text{ans}=1 \land z \in A) \text{ or } (\text{ans}=0 \land z \notin A) \)

\[C=\{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \land [(\text{ans}=1 \land \exists u_1 \forall u_2 \ldots Q_k u_k F(z,u_1,...)=1) \]
\[\text{or } (\text{ans}=0 \land \forall v_1 \exists v_2 \ldots Q'_k v_k F(z,v_1,...)=0)] \} \]

\[C=\{(x,w,\text{ans}) \mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 \ldots Q_k u_k Q'_k v_k \quad M^{\text{ans}}(x,w)=1 \land \\
\[(\text{ans}=1 \land F(z,u_1,...)=1) \text{ or } (\text{ans}=0 \land F(z,v_1,...)=0)] \} \]
\[NP^{\Sigma_k} \subseteq \Sigma_{k+1} \]

To show \(C = \{(x,w,\text{ans}) \mid M^{\text{ans}}(x,w)=1 \text{ and "ans correct"}\} \) in \(\Sigma_{k+1}^P \)

Suppose \(M \) makes only one query \(z=Z(x,w) \). \(\text{ans} \) is a single bit saying if \(z \) in \(A \) or not

"ans correct": \((\text{ans}=1 \land z \in A) \) or \((\text{ans}=0 \land z \notin A) \)

\[C=\{(x,w,\text{ans})\mid M^{\text{ans}}(x,w)=1 \land [(\text{ans}=1 \land \exists u_1 \forall u_2 \ldots Q_k u_k F(z,u_1,\ldots)=1) \]

or \((\text{ans}=0 \land \forall v_1 \exists v_2 \ldots Q'_k v_k F(z,v_1,\ldots)=0)] \}

\[C=\{(x,w,\text{ans})\mid \exists u_1 \forall u_2 v_1 \exists u_3 v_2 \ldots Q_k u_k Q'_k v_k \quad M^{\text{ans}}(x,w)=1 \land \\
[(\text{ans}=1 \land F(z,u_1,\ldots)=1) \text{ or } (\text{ans}=0 \land F(z,v_1,\ldots)=0)] \}

Changes for 2 queries: \(z=Z(x,w) \rightarrow (z^{(1)},z^{(2)}) = Z(x,w,\text{ans}), \)
\(u_i \rightarrow u_i^{(1)},u_i^{(2)}, \quad v_i \rightarrow v_i^{(1)},v_i^{(2)}, \) and use conjunction of two checks (for \(j=1 \) and \(j=2 \)) of the form \[(\text{ans}^{(j)}=1 \land F(z^{(j)},u_1^{(j)},\ldots)=1) \text{ or } (\text{ans}^{(j)}=0 \land F(z^{(j)},v_1^{(j)},\ldots)=0) \]
Oracle Version
Oracle Version

\[\Sigma_{k+1}^P = NP^{\Sigma_k} \text{ (with } \Sigma_0^P = P) \]
Oracle Version

\[\Sigma_{k+1}^P = \mathsf{NP}^{\Sigma_k} \text{ (with } \Sigma_0^P = \mathsf{P}) \]

\[\Pi_{k+1}^P = \mathsf{co-NP}^{\Pi_k} \text{ (with } \Pi_0^P = \mathsf{P}) \]
Oracle Version

\[\Sigma_{k+1}^P = \text{NP}^{\Sigma_k} \text{ (with } \Sigma_0^P = P) \]

\[\Pi_{k+1}^P = \text{co-NP}^{\Pi_k} \text{ (with } \Pi_0^P = P) \]

\[\Pi_{k+1}^P = \text{co-}(\text{NP}^{\Sigma_k}) = \text{co-NP}^{\Sigma_k} = \text{co-NP}^{\Pi_k} \]
Δ_{k^p}
Δ_k^p

$\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k}$
$\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k}$

$\Delta_1^p = p$
Δ_k^p

- \Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k}
- \Delta_1^p = p
- \Delta_2^p = p^{NP}
$$\Delta_k^p$$

- $$\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k}$$
- $$\Delta_1^p = p$$
- $$\Delta_2^p = p^{NP}$$

- Note that $$\Delta_2^p = co-\Delta_2^p$$
\[\Delta_k^p \]

- \(\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k} \)
- \(\Delta_1^p = \text{P} \)
- \(\Delta_2^p = \text{P}^{\text{NP}} \)
- Note that \(\Delta_2^p = \text{co-}\Delta_2^p \)
- \(\Delta_{k+1}^p \supseteq \Sigma_k^p \cup \Pi_k^p \)
\[\Delta_k^p \]

\[\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k} \]

\[\Delta_1^p = p \]

\[\Delta_2^p = p^{NP} \]

Note that \[\Delta_2^p = \text{co-} \Delta_2^p \]

\[\Delta_{k+1}^p \supseteq \Sigma_k^p \cup \Pi_k^p \]

\[\Delta_{k+1}^p \subseteq \Sigma_{k+1}^p \cap \Pi_{k+1}^p \] (why?)
\(\Delta_k^p \)

- \(\Delta_{k+1}^p = p^{\Sigma_k} = p^{\Pi_k} \)
- \(\Delta_1^p = p \)
- \(\Delta_2^p = p^{NP} \)
- **Note that** \(\Delta_2^p = \text{co-}\Delta_2^p \)
- \(\Delta_{k+1}^p \supseteq \Sigma_k^p \cup \Pi_k^p \)
- \(\Delta_{k+1}^p \subseteq \Sigma_{k+1}^p \cap \Pi_{k+1}^p \) (why?)
- \(p^{\Sigma_k} \subseteq NP^{\Sigma_k} \cap \text{coNP}^{\Sigma_k} \)
PH
PH
PH
PH

Diagram of the polynomial hierarchy, showing the relationships between Σ_2^P, Π_2^P, Σ_3^P, Π_3^P, NP, and coNP.
PH

\[\Sigma_3^P \rightarrow \Sigma_2^P \rightarrow \Sigma_1^P \rightarrow \Sigma_0^P = \text{P} \]

\[\Pi_3^P \rightarrow \Pi_2^P \rightarrow \Pi_1^P \rightarrow \Pi_0^P = \text{P} \]

\[\Delta_2^P \rightarrow \Delta_1^P \rightarrow \Delta_0^P = \text{P} \]

\[\text{NP} \rightarrow \Sigma_2^P \rightarrow \Sigma_3^P \rightarrow \Pi_3^P \rightarrow \text{coNP} \]

\[\text{coNP} \rightarrow \Sigma_2^P \rightarrow \Sigma_3^P \rightarrow \Pi_3^P \rightarrow \text{NP} \]
PH
PH
Today
Today

Today, more PH
Today

- Today, more PH
- Oracle-based definitions (in particular $\text{NP}^{\text{NP}} = \Sigma^p_2$)
Today

- Today, more PH
 - Oracle-based definitions (in particular $\text{NP}^{\text{NP}} = \Sigma_2^P$)
- Next lecture, more PH
Today

Today, more PH

Oracle-based definitions (in particular $\text{NP}^{\text{NP}} = \Sigma_2^p$)

Next lecture, more PH

Alternating TM-based definitions
Today

- Today, more PH
 - Oracle-based definitions (in particular $NP^{NP} = \Sigma_2^P$)
- Next lecture, more PH
 - Alternating TM-based definitions
 - Time–Space tradeoffs