Computational Complexity

Lecture 4
in which Diagonalization takes on itself,
and we enter Space Complexity
(But first Ladner's Theorem)
Ladner’s Theorem
Ladner’s Theorem
Ladner’s Theorem

If $P \neq NP$, then are all non-P NP languages equally hard? (Are all NP-complete?)
If $P \neq NP$, then are all non-P NP languages equally hard? (Are all NP-complete?)

No!
Ladner’s Theorem

If P≠NP, then are all non-P NP languages equally hard? (Are all NP-complete?)

No!

Can show an NP language which is neither in P, nor NP complete (unless P = NP)
Ladner’s Theorem: Proof
Ladner's Theorem: Proof

\[\text{SAT}_H = \{ (x, \text{pad}) \mid x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \} \]
Ladner’s Theorem: Proof

- $\text{SAT}_H = \{ (x, \text{pad}) | x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \}$

- $H(|x|)$ will be computable in poly($|x|$) time. SAT_H in NP.
Ladner’s Theorem: Proof

\[\text{SAT}_H = \{ (x, \text{pad}) \mid x \in \text{SAT} \text{ and } |	ext{pad}| = |x|^{H(|x|)} \} \]

- \(H(|x|) \) will be computable in poly(|x|) time. \(\text{SAT}_H \) in NP.
- If \(\text{SAT}_H \) in P and \(H(|x|) \) bounded by const. then SAT in P!
Ladner’s Theorem: Proof

- \(\text{SAT}_H = \{ (x, \text{pad}) \mid x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \} \)

- \(H(|x|) \) will be computable in poly(|x|) time. \(\text{SAT}_H \) in NP.

- If \(\text{SAT}_H \) in \(P \) and \(H(|x|) \) bounded by const. then \(\text{SAT} \) in \(P \)!

- \(|\text{pad}| < |x|^{i^*}\) implies \(\text{SAT} \leq_p \text{SAT}_H \)
Ladner's Theorem: Proof

SAT_H = \{ (x,\text{pad}) \mid x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \}

H(|x|) will be computable in poly(|x|) time. SAT_H in NP.

If SAT_H in P and H(|x|) bounded by const. then SAT in P!

|\text{pad}| < |x|^{i*} implies SAT \leq_p SAT_H

If SAT_H is NPC (⇒ SAT_H not in P) and H(|x|) goes to infinity, then SAT in P!
Ladner’s Theorem: Proof

- $\text{SAT}_H = \{ (x, \text{pad}) \mid x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \}$

- $H(|x|)$ will be computable in $\text{poly}(|x|)$ time. SAT_H is in NP.

- If SAT_H is in P and $H(|x|)$ bounded by const. then SAT is in P!

- $|\text{pad}| < |x|^{i^*}$ implies SAT $\leq_P \text{SAT}_H$

- If SAT_H is NPC ($\Rightarrow \text{SAT}_H$ not in P) and $H(|x|)$ goes to infinity, then SAT is in P!

- Suppose $f(x) = (x', \text{pad})$, $|(x', \text{pad})| \leq c|x|^c$. If $|x'| > |x|/2$, then $|\text{pad}| = |x'|^{H(|x'|)} > c|x|^c$ (for long enough x). So $|x'|$ is at most $|x|/2$. Repeat to solve SAT...
Ladner’s Theorem: Proof

- SAT_H = \{ (x,\text{pad}) \mid x \in \text{SAT} \text{ and } |\text{pad}| = |x|^{H(|x|)} \}

- H(|x|) will be computable in poly(|x|) time. SAT_H in NP.

- If SAT_H in P and H(|x|) bounded by const. then SAT in P!

- |\text{pad}| < |x|^{i^*} implies SAT \leq_p SAT_H

- If SAT_H is NPC (⇒ SAT_H not in P) and H(|x|) goes to infinity, then SAT in P!

- Suppose f(x) = (x',\text{pad}), |(x',\text{pad})| \leq c|x|^c. If |x'| > |x|/2, then |\text{pad}| = |x'|^{H(|x'|)} > c|x|^c (for long enough x). So |x'| is at most |x|/2. Repeat to solve SAT

- To define H s.t. H(n) bounded by const. iff SAT_H in P
Proof (ctd.)
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i \cdot t^i$)
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i\cdot t^i$)
- $M_i|T_i$ be M_i restricted to T_i
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i.t^i$)
- $M_i|T_i$ be M_i restricted to T_i
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i.t^i$)
- $M_i|T_i$ be M_i restricted to T_i
- Put \square at (i,t) if $M_i|T_i$ agrees with SAT$_H$ on all z, $|z|=t$; else put \times
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i\cdot t^i$)
- $M_i|T_i$ be M_i restricted to T_i
- Put ☑ at (i,t) if $M_i|T_i$ agrees with SAT_H on all z, $|z|=t$; else put ☒
- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z|<\log n$

| $|z|$ | | | | | | | | |
|-----|---|---|---|---|---|---|---|---|
| $M_i|T_i$ | | | | | | | | |
| ☑ | ☒ | ☒ | ☐ | ☒ | ☒ | ☒ | ☒ | ☑ |
| ☒ | ☑ | ☑ | ☑ | ☑ | ☑ | ☐ | ☑ | ☑ |
| ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☒ | ☒ |
| ☑ | ☑ | ☒ | ☑ | ☐ | ☑ | ☒ | ☑ | ☑ |
| ☑ | ☑ | ☒ | ☒ | ☐ | ☐ | ☐ | ☑ | ☒ |
| ☒ | ☒ | ☒ | ☒ | ☒ | ☐ | ☑ | ☐ | ☐ |
| ☑ | ☑ | ☒ | ☑ | ☐ | ☐ | ☑ | ☑ | ☑ |
| ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ |

Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i.t^i$)

- $M_i|T_i$ be M_i restricted to T_i

- Put \checkmark at (i,t) if $M_i|T_i$ agrees with SAT_H on all z, $|z|=t$; else put \times

- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z|<\log n$

| $|z|$ | $M_i|T_i$ | $\log n$ |
|------|--------|--------|
| | \checkmark | \times |
| | \times | \times |
| | \checkmark | \checkmark |
| | \checkmark | \times |
| | \checkmark | \times |
| | \times | \times |
| | \checkmark | \checkmark |
| | \times | \times |
| | \times | \times |
| | \times | \times |

Note: The table is a visual representation of the proof steps, with \checkmark indicating agreement and \times indicating disagreement with SAT_H. The values in the table correspond to the conditions and agreements across different values of $|z|$ and n. The $H(n)$ function is defined to find the least i that satisfies the conditions.
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i\cdot t^i$)
- $M_i|T_i$ be M_i restricted to T_i
- Put ☑ at (i,t) if $M_i|T_i$ agrees with SAT$_H$ on all z, $|z|=t$; else put ☒
- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z|<\log n$
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t) = i \cdot t^i$)

- $M_i|T_i$ be M_i restricted to T_i

- Put \checkmark at (i, t) if $M_i|T_i$ agrees with SAT_H on all z, $|z| = t$; else put \times

- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z| < \log n$

- H is poly-time computable
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i.t^i$)
- $M_i|T_i$ be M_i restricted to T_i
- Put \checkmark at (i,t) if $M_i|T_i$ agrees with SAT_H on all z, $|z|=t$; else put \times
- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z|<\log n$
- H is poly-time computable
- SAT_H in P iff $H(n) < i^*$
Proof (ctd.)

- M_i be i^{th} TM. T_i be i^{th} polynomial (i.e., $T_i(t)=i.t^i$)
- $M_i|T_i$ be M_i restricted to T_i
- Put \checkmark at (i,t) if $M_i|T_i$ agrees with SAT_H on all z, $|z|=t$; else put \times
- $H(n)$ be least $i < \log \log n$ s.t. $M_i|T_i$ correct for all $|z|<\log n$
- H is poly-time computable
- SAT_H in P iff $H(n) < i^*$
- Both equivalent to having a row of all \checkmark
Meta-Questions
Meta-Questions
Meta-Questions

“Real” Questions
Meta-Questions

“Real” Questions

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in $\text{DTIME}(n^2)$?

Is my problem
NP-complete?

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

Results non-specialists would care about

“Meta” Questions
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

What can we do with an
oracle for SAT?
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem NP-complete?

Results non-specialists would care about

“Meta” Questions

What can we do with an oracle for SAT?

Will this proof technique work?
Meta-Questions

“Real” Questions

SAT in DTIME(n^2)?

Is my problem

NP-complete?

Results non-specialists

would care about

“Meta” Questions

What can we do with an

oracle for SAT?

Will this proof technique

work?

Tools & Techniques,

intermediate results
Meta-Questions

“Real” Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

Results non-specialists would care about

“Meta” Questions

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

Under-the-hood stuff
Oracles
Oracles

What if we had an oracle for language A
Oracles

What if we had an oracle for language A

Class P^A: $L \in P^A$ if
Oracles

What if we had an oracle for language A

Class P^A: $L \in P^A$ if

L decided by a TM M^A, in poly time
Oracles

What if we had an oracle for language A?

Class P^A: $L \in P^A$ if

L decided by a TM M^A, in poly time

Turing reduction: $L \leq_T A$
What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time
 - Turing reduction: $L \leq_T A$

- **Class NP^A:** $L \in NP^A$ if
Oracles

What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time
 - Turing reduction: $L \leq_T A$

- **Class NP^A:** $L \in NP^A$ if
 - L decided by an NTM M^A, in poly time
Oracles

What if we had an oracle for language A

Class P^A: $L \in P^A$ if

- L decided by a TM M^A, in poly time

- Turing reduction: $L \leq_T A$

Class NP^A: $L \in NP^A$ if

- L decided by an NTM M^A, in poly time

Equivalently, $L = \{x| \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x,w) \in L' \}$,

where L' is in P^A
Oracles

What if we had an oracle for language A

- **Class P^A:** $L \in P^A$ if
 - L decided by a TM M^A, in poly time
 - Turing reduction: $L \leq_T A$

- **Class NP^A:** $L \in NP^A$ if
 - L decided by an NTM M^A, in poly time
 - Equivalently, $L = \{x| \exists w, |w| < \text{poly}(|x|) \text{ s.t. } (x,w) \in L' \}$, where L' is in P^A
Proofs that Relativize
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along

- e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A
Proofs that Relativize

Often entire theorems/proofs carry over, with the oracle tagging along

- e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A

- Said to “relativize”
P vs. NP with oracles
P vs. NP with oracles

How does P vs. NP fare relative to different oracles?
P vs. NP with oracles

- How does P vs. NP fare relative to different oracles?
- Does their relation (equality or not) relativize?
P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

Does their relation (equality or not) relativize?

No! Different in different worlds!
P vs. NP with oracles

- How does P vs. NP fare relative to different oracles?
- Does their relation (equality or not) relativize?
- No! Different in different worlds!
- There exist languages A, B such that $P^A = NP^A$, but $P^B \neq NP^B$!
A s.t. $P^A = NP^A$
A s.t. $P^A = NP^A$

If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$
- A EXP-hard \Rightarrow $EXP \subseteq P^A \subseteq NP^A$
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$

- A EXP-hard \Rightarrow $EXP \subseteq P^A \subseteq NP^A$

- A in EXP \Rightarrow $NP^A \subseteq EXP^A = EXP$ (note: $NP \subseteq EXP$, by trying all possible witnesses)
A s.t. $P^A = NP^A$

- If A is EXP-complete (w.r.t \leq_{Cook} or \leq_P), $P^A = NP^A = EXP$
- A EXP-hard \Rightarrow $EXP \subseteq P^A \subseteq NP^A$
- A in EXP \Rightarrow $NP^A \subseteq EXP^A = EXP$ (note: $NP \subseteq EXP$, by trying all possible witnesses)
- A simple EXP-complete language:
A s.t. \(P^A = NP^A \)

- If \(A \) is EXP-complete (w.r.t \(\leq_{\text{Cook}} \) or \(\leq_P \)), \(P^A = NP^A = EXP \)
- A EXP-hard \(\Rightarrow \) \(EXP \subseteq P^A \subseteq NP^A \)
- A in EXP \(\Rightarrow \) \(NP^A \subseteq EXP^A = EXP \) (note: \(NP \subseteq EXP \), by trying all possible witnesses)
- A simple EXP-complete language:
 - \(EXPTM = \{ (M,x,1^n) \mid \text{TM represented by } M \text{ accepts } x \text{ within time } 2^n \} \)
B s.t. \(P^B \neq N^P^B \)
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$
$B \text{ s.t. } P^B \neq NP^B$

Building B and L, s.t. $L \in NP^B \setminus P^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
\(\text{Building } B \text{ and } L, \text{ s.t. } L \in \text{NP}^B \setminus \text{P}^B \)

\(L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B \} \)
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$
\(B \) s.t. \(P^B \neq NP^B \)

Building \(B \) and \(L \), s.t. \(L \) in \(NP^B \backslash P^B \)

\[L = \{1^n| \exists w, |w|=n \text{ and } w \in B \} \]
$B \text{ s.t. } P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

- $L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
Building B and L, s.t. L in NP^B \not\in P^B

- L={1^n| \exists w, |w|=n and w \in \mathbb{B}}
- L in NP^B. To do: L not in P^B
- For each i, ensure M_i^B in 2^{n-1} time gets L(1^n) wrong (for some new n)
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

- $L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
- For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
B s.t. \(P^B \neq NP^B \)

Building B and L, s.t. L in \(NP^B \setminus P^B \)

- \(L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B \} \)
- \(L \) in \(NP^B \). To do: \(L \) not in \(P^B \)
 - For each \(i \), ensure \(M_i^B \) in \(2^{n-1} \) time gets \(L(1^n) \) wrong (for some new \(n \))
 - Pick \(n \) s.t. \(B \) not yet set beyond \(1^{n-1} \). Run \(M_i \) on \(1^n \) for \(2^{n-1} \) steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

L=${1^n} | \exists w, |w|=n \text{ and } w \in B$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets L(1^n) wrong (for some new n)

Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
Building B and L, s.t. L in $\text{NP}^B \setminus \text{P}^B$

$L = \{1^n \mid \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
Building B and L, s.t. L in $\text{NP}^B \setminus \text{P}^B$

$L = \{1^n \mid \exists w, |w| = n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

$L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

L in NP^B. To do: L not in P^B

For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
B s.t. $P^B \neq NP^B$

Building B and L, s.t. L in $NP^B \setminus P^B$

- $L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
Building B and L, s.t. L in $\mathbf{NP}^B \setminus \mathbf{P}^B$

- $L = \{1^n | \exists w, |w| = n \text{ and } w \in B\}$
- L in \mathbf{NP}^B. To do: L not in \mathbf{P}^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)
 - Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.
 - When M_i queries B on $x > 1^{n-1}$, set $B(X) = 0$
Building B and L, s.t. $L \in \text{NP}^B \setminus \text{P}^B$

- $L = \{1^n | \exists w, |w|=n \text{ and } w \in B\}$

- L in NP^B. To do: L not in P^B
 - For each i, ensure M_i^B in 2^{n-1} time gets $L(1^n)$ wrong (for some new n)

- Pick n s.t. B not yet set beyond 1^{n-1}. Run M_i on 1^n for 2^{n-1} steps.

- When M_i queries B on $x > 1^{n-1}$, set $B(X)=0$

- After M_i finished set B up to $x=1^n$ s.t. $L(1^n) \neq M_i^B(1^n)$
Meta-Result of the Day
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- “Diagonalization proofs” relativize
- Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
Meta-Result of the Day

- P vs. NP cannot be resolved using a relativizing proof
- "Diagonalization proofs" relativize
 - Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding
- Do not further depend on internals of computation
P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding

Do not further depend on internals of computation

e.g. of non-relativizing proof: that of Cook-Levin theorem
Space Complexity
Space Complexity
Space Complexity

Natural complexity question
Space Complexity

- Natural complexity question
- How much memory is needed
Space Complexity

- Natural complexity question
- How much memory is needed
- More pressing than time:
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can't generate memory on the fly
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can’t generate memory on the fly
 - Or maybe less pressing:
Space Complexity

- Natural complexity question
 - How much memory is needed
 - More pressing than time:
 - Can’t generate memory on the fly
 - Or maybe less pressing:
 - Turns out, often a little memory can go a long way (if we can spare the time)
DSPACE and NSPACE
 Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
DSPACE and NSPACE

- Measure of *working* memory (work-tape) used by a TM/NTM: input kept in a read-only tape

- Model allows $o(n)$ memory usage
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows \(o(n) \) memory usage
- DSPACE\((n) \) may already be inefficient in terms of time
DSPACE and NSPACE

- Measure of **working** memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows $o(n)$ memory usage
- $\text{DSPACE}(n)$ may already be inefficient in terms of time
- We shall stick to $\Omega(\log n)$
DSPACE and NSPACE

- Measure of **working** memory (work-tape) used by a TM/NTM: input kept in a read-only tape

- Model allows $o(n)$ memory usage

- DSPACE(n) may already be inefficient in terms of time

- We shall stick to $\Omega(\log n)$

- Less than log is too little space to remember locations in the input
DSPACE and NSPACE

- Measure of *working* memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows $o(n)$ memory usage
- $\text{DSPACE}(n)$ may already be inefficient in terms of time
- We shall stick to $\Omega(\log n)$
- Less than log is too little space to remember locations in the input
- $\text{DSPACE}/\text{NSPACE}$ more robust across models
DSPACE and NSPACE

- Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape
- Model allows $o(n)$ memory usage
 - $\text{DSPACE}(n)$ may already be inefficient in terms of time
 - We shall stick to $\Omega(\log n)$
 - Less than log is too little space to remember locations in the input
- $\text{DSPACE}/\text{NSPACE}$ more robust across models
 - Constant factor ($+O(\log n)$) simulation overhead
$L \in \text{NSPACE}(S)$:
Two Equivalent views
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
L ∈ NSPACE(S):
Two Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- $x \in L$ iff some thread of M accepts
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
- input: x
- makes non-det choices
- $x \in L$ iff some thread of M accepts
- in at most $S(|x|)$ space
L ∈ NSPACE(S):
Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - x ∈ L iff some thread of M accepts
 - in at most S(|x|) space

- Deterministic M′
L ∈ NSPACE(S):
Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - x ∈ L iff some thread of M accepts
 - in at most S(|x|) space

- Deterministic M′
 - input: x and read-once w
$L \in \text{NSPACE}(S)$: Two Equivalent views

<table>
<thead>
<tr>
<th>Non-deterministic M</th>
<th>Deterministic M'</th>
</tr>
</thead>
<tbody>
<tr>
<td>input: x</td>
<td>input: x and read-once w</td>
</tr>
<tr>
<td>makes non-det choices</td>
<td>reads bits from w (certificate)</td>
</tr>
<tr>
<td>$x \in L$ iff some thread of M accepts</td>
<td></td>
</tr>
<tr>
<td>in at most $S(</td>
<td>x</td>
</tr>
</tbody>
</table>
\(L \in \text{NSPACE}(S): \) Two Equivalent views

- Non-deterministic \(M \)
 - input: \(x \)
 - makes non-det choices
 - \(x \in L \) iff some thread of \(M \) accepts
 - in at most \(S(|x|) \) space

- Deterministic \(M' \)
 - input: \(x \) and read-once \(w \)
 - reads bits from \(w \) (certificate)
 - \(x \in L \) iff for some cert. \(w \), \(M' \) accepts
\(L \in \text{NSPACE}(S) \): Two Equivalent views

<table>
<thead>
<tr>
<th>Non-deterministic (M)</th>
<th>Deterministic (M')</th>
</tr>
</thead>
<tbody>
<tr>
<td>input: (x)</td>
<td>input: (x) and read-once (w)</td>
</tr>
<tr>
<td>makes non-det choices</td>
<td>reads bits from (w) (certificate)</td>
</tr>
<tr>
<td>(x \in L) iff some thread of (M) accepts</td>
<td>(x \in L) iff for some cert. (w), (M') accepts</td>
</tr>
<tr>
<td>in at most (S(</td>
<td>x</td>
</tr>
</tbody>
</table>
$L \in \text{NSPACE}(S)$: Two Equivalent views

- Non-deterministic M
 - input: x
 - makes non-det choices
 - $x \in L$ iff some thread of M accepts
 - in at most $S(|x|)$ space

- Deterministic M'
 - input: x and read-once w
 - reads bits from w (certificate)
 - $x \in L$ iff for some cert. w, M' accepts
 - in at most $S(|x|)$ space
L and NL
L and NL

$L = \text{DSPACE}(O(\log n))$
L and NL

\[L = \text{DSPACE}(O(\log n)) \]

\[L = \bigcup_{a, b > 0} \text{DSPACE}(a \log n + b) \]
L and NL

\[L = \text{DSPACE}(O(\log n)) \]

\[L = \bigcup_{a,b > 0} \text{DSPACE}(a \log n + b) \]

\[\text{NL} = \text{NSPACE}(O(\log n)) \]
L and NL

\[L = \text{DSPACE}(O(\log n)) \]

\[L = \bigcup_{a,b > 0} \text{DSPACE}(a \log n + b) \]

\[NL = \text{NSPACE}(O(\log n)) \]

\[NL = \bigcup_{a,b > 0} \text{NSPACE}(a \log n + b) \]
L and NL

$L = \text{DSPACE}(O(\log n))$

$L = \bigcup_{a,b > 0} \text{DSPACE}(a \log n + b)$

$NL = \text{NSPACE}(O(\log n))$

$NL = \bigcup_{a,b > 0} \text{NSPACE}(a \log n + b)$

"L and NL are to space what P and NP are to time"
Space Hierarchy
Space Hierarchy

- UTM space-overhead is only a constant factor
Space Hierarchy

- UTM space-overhead is only a constant factor

- Tight hierarchy: if \(T(n) = o(T'(n)) \) (no log slack) then
 \[\text{DSPACE}(T(n)) \subsetneq \text{DSPACE}(T'(n)) \]
Space Hierarchy

- UTM space-overhead is only a constant factor

- **Tight hierarchy**: if $T(n) = o(T'(n))$ (no log slack) then $\text{DSPACE}(T(n)) \subset \text{DSPACE}(T'(n))$

- Same for NSPACE
Space Hierarchy

- UTM space-overhead is only a constant factor

- **Tight hierarchy**: if $T(n) = o(T'(n))$ (no log slack) then $\text{DSPACE}(T(n)) \subsetneq \text{DSPACE}(T'(n))$

- Same for NSPACE

- Again, tighter than for NTIME (where in fact, we needed $T(n+1) = o(T'(n))$)
Space Hierarchy

- UTM space-overhead is only a constant factor
- **Tight hierarchy:** if \(T(n) = o(T'(n)) \) (no log slack) then \(\mathsf{DSPACE}(T(n)) \subsetneq \mathsf{DSPACE}(T'(n)) \)

- Same for \(\mathsf{NSPACE} \)
 - Again, tighter than for \(\mathsf{NTIME} \) (where in fact, we needed \(T(n+1) = o(T'(n)) \))
 - No “delayed flip,” because, as we will see later, \(\mathsf{NSPACE}(O(S)) = \mathsf{co-NSPACE}(O(S)) \)!
SPACE and TIME
SPACE and TIME

In time $T(n)$, can use at most $T(n)$ space
SPACE and TIME

- In time $T(n)$, can use at most $T(n)$ space
- $\text{DTIME}(T) \subseteq \text{DSpace}(T)$
SPACE and TIME

- In time $T(n)$, can use at most $T(n)$ space
- $\text{DTIME}(T) \subseteq \text{DSpace}(T)$
- In fact, $\text{NTIME}(T) \subseteq \text{DSpace}(O(T))$ (simulate with all T-long certificates)
SPACE and TIME

- In time $T(n)$, can use at most $T(n)$ space

- $\text{DTIME}(T) \subseteq \text{DSPACE}(T)$

- In fact, $\text{NTIME}(T) \subseteq \text{DSPACE}(O(T))$ (simulate with all T-long certificates)

- With space $S(n)$, only $2^{O(S(n))}$ configurations (for $S(n) = \Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)
SPACE and TIME

In time $T(n)$, can use at most $T(n)$ space

$\text{DTIME}(T) \subseteq \text{DSPACE}(T)$

In fact, $\text{NTIME}(T) \subseteq \text{DSPACE}(O(T))$ (simulate with all T-long certificates)

With space $S(n)$, only $2^{O(S(n))}$ configurations (for $S(n) = \Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

$\text{DSPACE}(S) \subseteq \text{DTIME}(2^{O(S)})$
SPACE and TIME

In time $T(n)$, can use at most $T(n)$ space

$\text{DTIME}(T) \subseteq \text{DSPACE}(T)$

In fact, $\text{NTIME}(T) \subseteq \text{DSPACE}(O(T))$ (simulate with all T-long certificates)

With space $S(n)$, only $2^{O(S(n))}$ configurations (for $S(n) = \Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

$\text{DSPACE}(S) \subseteq \text{DTIME}(2^{O(S)})$

In fact, $\text{NSPACE}(S) \subseteq \text{DTIME}(2^{O(S)})$
NSPACE(S) ⊆ DTIME(2^{O(S)})
$\text{NSPACE}(s) \subseteq \text{DTIME}(2^{O(s)})$
$\text{NSPACE}(S) \subseteq \text{DTIME}(2^{O(S)})$

Configuration graph as a DAG is of size $2^{O(S)}$.

$h = 2^{O(S)}$
\text{NSPACE}(S) \subseteq \text{DTIME}(2^{O(S)})

- Configuration graph as a DAG is of size $2^{O(S)}$
- Write down all configurations and edges
NSPACE(S) ⊆ DTIME(2^{O(S)})

- Configuration graph as a DAG is of size $2^{O(S)}$
 - Write down all configurations and edges
 - Can do it less explicitly if space were a concern (but it’s not, here)
NSPACE(S) ⊆ DTIME(2^{O(S)})

Configuration graph as a DAG is of size $2^{O(S)}$

- Write down all configurations and edges
- Can do it less explicitly if space were a concern (but it’s not, here)
- Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.
\textbf{NSPACE}(S) \subseteq \textbf{DTIME}(2^{O(S)})

- Configuration graph as a DAG is of size $2^{O(S)}$.

- Write down all configurations and edges.

- Can do it less explicitly if space were a concern (but it’s not, here).

- Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.

- $\text{poly}(2^{O(S)}) = 2^{O(S)}$.
SPACE and TIME
SPACE and TIME

NTIME(F)

DTIME(F)
SPACE and TIME

\[DTIME(F) \]

\[NTIME(F) \]
SPACE and TIME

\[\text{NTIME}(2^{O(F)}) \] \quad \text{DTIME}(2^{O(F)})

\[\text{NTIME}(F) \] \quad \text{DTIME}(F) \]
SPACE and TIME

\[
\text{NTIME}(2^{O(F)}) \quad \text{DTIME}(2^{O(F)}) \quad \text{NTIME}(F) \quad \text{DTIME}(F)
\]
SPACE and TIME

NTIME(2^{O(F)})

DTIME(2^{O(F)})

NTIME(F)

DTIME(F)
SPACE and TIME

NTIME($2^{O(F)}$) → DTIME($2^{O(F)}$)

NTIME(F) → DTIME(F)

NTIME($2^{O(F)}$) → NTIME(F)

NSPACE(F)

DSPACE(F)
SPACE and TIME

NTIME($2^O(F)$)

DTIME($2^O(F)$)

NTIME(F)

DTIME(F)

NSPACE(F)

DSPACE(F)

NTIME($2^O(F)$)
SPACE and TIME

NTIME\(2^{O(F)}\) → DTIME\(2^{O(F)}\) → NSPACE(F)

NTIME(F) → DTIME(F) → DSPACE(F)

NTIME\(2^{O(F)}\) → DTIME\(2^{O(F)}\) → NSPACE(F)

DSPACE(F) → NSPACE(F)
SPACE and TIME

NTIME\left(2^{O(F)}\right) \rightarrow \text{DTIME}\left(2^{O(F)}\right)

NTIME(F) \rightarrow \text{DTIME}(F)

NTIME(2^{O(F)}) \rightarrow \text{DSPACE}(F)

NSPACE(F)

DSPACE(F)
SPACE and TIME

$\text{NTIME}(2^{O(F)}) \rightarrow \text{DTIME}(2^{O(F)})$

$\text{NTIME}(F) \rightarrow \text{DTIME}(F)$

$\text{NTIME}(F) \rightarrow \text{DSPACE}(F)$

$\text{DSPACE}(F) \rightarrow \text{NSPACE}(F)$

$F = \Omega(n)$

$F = \Omega(\log n)$
Space, Today
Space, Today

DSpace, NSpace
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
Space, Today

- DS\textsc{pace}, NS\textsc{pace}
- Tight hierarchy.
- Connections with D\textsc{time}/N\textsc{time}
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class
Space, Today

- **DSPACE, NSPACE**
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class
- Savitch’s theorem: $\text{NSPACE}(S) \subseteq \text{DSPACE}(S^2)$
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

- Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S^2)
- Hence PSPACE = NPSPACE
Space, Today

- DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class
 - Savitch’s theorem: $\text{NSPACE}(S) \subseteq \text{DSPACE}(S^2)$
 - Hence $\text{PSPACE} = \text{NPSPACE}$
 - PSPACE-completeness and NL-completeness
Space, Today

- DSPACE, NSPACE

- Tight hierarchy.

- Connections with DTIME/NTIME

- Next class

- Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S^2)
 - Hence PSPACE = NPSPACE

- PSPACE-completeness and NL-completeness

- NSPACE = co-NSPACE
Space, Today

- **DSPACE, NSPACE**
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class
 - Savitch's theorem: NSPACE(S) \(\subseteq \) DSPACE\((S^2)\)
 - Hence PSPACE = NPSPACE
 - PSPACE-completeness and NL-completeness
 - NSPACE = co-NSPACE