Complexity Homework 4
Released: March 10, 2009
Due: March 31, 2009

Problem 1:
This is a quick refresher for basic probability concepts. A probability distribution over a (finite) set S is a
function 7 : S — [0, 1] such that ) _s7(z) = 1. A (real-valued) random variable X is a function X : § — R
along with a probability distribution 7. We define Pro[X(s) = 2] = }_,.y(5)—, 7(s) (often shortened to
Pr[X = z], when 7 is understood). We define expectation Ey, [X(s)] = > g X(s) - 7(s) (often shortened
to E[X], when 7 is understood).

(a) (Linearity of expectation.) Given two random variables X, X2, define a new random variable X as
X(s) = aXi(s)+bXa(s) (for some real numbers a and b). Show that E[X (s)] = aE[X1(s)]+ bE[X2(s)].

(b) (Markov’s inequality.) Given a non-negative random variable X, show that Pr[X > {u] < 1/t, where
p = E[X].

(c) Given a random variable X, suppose we define a new random variable Zx as Zx(s) = X(s) — p where
p = E[X]. Calculate E[Zx].

(d) (Variance and Chebyshev’s inequality.) Given a random variable X, define a new random variable Zx
as Zx(s) = (X(s) — u)? where 4 = E[X]. Then the variance of X is defined as Var(X) = E[Zx] and
the standard deviation as o(X) = y/Var(X). Use Markov’s inequality to bound Pr[| X — pu| > to(X)].
(This is called Chebyshev’s inequality.)

(e) Two random variables X and Y are said to be independent if for all real numbers z,y, Pr[X =
zandY = y] = Pr[X = z]Pr[Y = y]. Show that if X and Y are independent, Var(X +Y) =
Var(X) + Var(Y). Further, if {X;}!_, are ¢ random variables which are pairwise independent (that is,
X; and X are independent for all ¢ # j), show that Var(}_, X;) = > . Var(X;).

(f) Suppose {X;}! | are ¢ pairwise independent random variables which take binary (0-1) values such that
Pr[X; = 1] = p for all . Use Chebyshev’s inequality to prove that

Zﬁzl Xi =0 i .
§2¢
Problem 2:

t
Let M be a probabilistic TM. Define the gap of M for a language L to be minger Pr[M(z) = yes] —
maxggr, Pr[M(z) = yes]. and its error for L to be max, Pr[M(z) # L(z)]. Bound the gap and error in
terms of each other.

Pr —p| >0

Problem 3:
Define Expected-Time-PP to be the class of languages decided by probabilistic Turing machines (via accep-
tance probability > %) whose ezpected running-time is polynomial (as opposed to PP, where the running
time is worst-case polynomial). Show that EXP C Expected-Time-PP. What can you say about inclusion
in Expected-Time-PP for classes larger than EXP? What if the expected running time is restricted to be
constant instead of polynomial?

Problem 4:
In this problem we shall prove impossibility of deterministic extraction from Santha-Vazirani sources. We
work with probability distributions over S = {0,1}", the set of n-bit strings.

For z € {0,1}", let x; denote the i-th bit of 2 and x; denote the other n — 1 bits of z. Call a distribution 7
8-balanced at position i if for all y € {0,1}"~1, Prlz; = 0|z; = y] and Prlz; = 1|z; = y] differ by at most 0.

(a) Verify that 7 is 6-balanced at position i if and only if for every y € {0, 1},

1-6 < (Y1 Y10y . yn—1) < 146
146 = wlyr- - vi1lyi-oyn-1) ~ 1 =0
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Call a distribution d-balanced if it is Jd-balanced at all positions ¢ = 1,...,n. Note that if the output
distribution of a randomness source is d-balanced it is a Santha-Vazirani source (but not vice-versa).

Consider an arbitrary boolean function f : {0,1}" — {0,1}. Let 7T(]; be the probability that f(z) = 0 when
z is drawn according to the distribution 7. That is, 7'((]; = 2 f(x)—0 T(z). Similarly let 7r{ =D i f(x)=1 T(@).

(b)

Show that for every f : {0,1}"™ — {0,1}, and every § € [0, 1], there exists a d-balanced distribution 7
over {0, 1}" such that ]wg — W{\ > 0.

(Hint: Consider separately the functions f for which \Z/lg —Z/llfl > § and those for which ]Z/{({ —U{’ < 4,
where U is the uniform distribution over n-bit strings.)

Conclude that there are no simple (deterministic) extractors which can extract a single e-balanced bit from
all §-balanced Santha-Vazirani sources, with € < 4.

Problem 5:

(a)

(Randomized rounding.) Given a probability distribution p over R and random variable X, with range
[0, 1], define a probability distribution 7 over S = R x {0,1} as follows:

Forr € R:w((r,1)) = p(r) - X(r) and 7((r,0)) = p(r)[1 — X(r)]

Verify that 7 is indeed a valid probability distribution. Now define a binary random variable Z (i.e.,
with range {0,1}), with underlying probability distribution =, as Z(r,0) = 0 and Z(r,1) = 1 for all
r € R. Show that E[Z] = E[X].

(That is, instead of the real variable X, the binary random variable Z can be used without changing
the expectation (though the variance could increase). This is called randomized rounding because Z
can be considered to be sampled as follows: draw a sample from X, and using the value obtained as
the bias, flip a coin, to get a rounded (0-1) value.)

(Deterministic rounding.) Let X be as above. Consider a new random variable Z* defined over R and
with respect to the same probability distribution p, as follows: Z*(r) = 1 if X(r) >  and 0 otherwise.
Using Markov’s inequality, show that 2E[X] — 1 < Pr[Z* = 1] < 2E[X]. Conclude that if E[X] > 7/8
then Pr[Z* = 1] > 3/4 and if E[X] < 1/8 then Pr[Z* = 1] < 1/4.

(Eliminating an auxiliary random source.) In this problem we consider a randomized algorithm A
which draws its randomness from two independent random sources, a “main” source (with an arbitrary
distribution) and an auxiliary perfect random source. Our goal is to change it to an algorithm B which
uses only the main source, by enumerating over all random strings from the auxiliary source (while
drawing only as many bits as A draws from the main source).

Describe B so that if the probability of error of A is at most 1/8 (when run using the two sources),
then the probability of error of B is at most 1/4 (when run using only the main source). Prove that B
has these properties. (Hint: Use part (b). What should the real variable X be?)

Problem 6 (Extra Credit):
In this problem we use basic linear algebra to analyze (weak) extraction from an SV source (see Lecture 15).

(a)

(b)

(Collision probability.) Define a probability distribution 7 over {0,1}¢. We will view 7 as a real vector
of length 27 (i.e. m € R?"), such that (with elements indexed by i € {0,1}%) m; = 7 (). Define collision

probability of 7, col(m) to be the probability that two strings drawn independently according to 7 are
the same. Show that col(m) = ||7||2, where ||v| is defined as /(v,v).

(An orthonormal basis.) Define 2¢ vectors p(*) (for s € {0,1}%) as follows: pg-s) = 2id(—l)<5’j>. Note that

)] = 1, and each element in p(*) is :I:zid7 the sign depending on whether (s, j) is even or odd. Show
that (p(*), p() = 0 for all s # t.

CS 579: Computational Complexity Homework 4 Page 2 of 3



(Hint: s # t means there is at least one position where the vectors s and t differ. Use this to show that
all the vectors can be partitioned into pairs (jo,j1) such that the parities of (s, jo) and (t,jo) are equal,
and those of (s,j1) and (t,j1) are different.)

Hence these 2¢ vectors form an orthonormal basis for the vector space R2*. This basis is called the
Fourier Basis.

(c) (Change of basis.) Recall that given an orthonormal basis any vector v can be written as a linear
combination of the basis vectors, with the coefficients being the inner product of the vector v with basis
vectors. So we can write 7 = Y. _(m, p(*))p(®). Use this to rewrite ||7|?.

(d) Consider the extractor which on input r € {0,1}¢ and seed s € {0,1}¢ outputs the bit (r,s). We
consider feeding the extractor an input drawn according to the distribution w. For each seed value s,
define Gap? = Pr,. [(r,s) = 0] — Pr, [(r, s) = 1]. Show that Gap™ = (m, p(*)).

(e) Deduce that Eg, 1, [(GapT)?] = col(r), where Uy is the uniform distribution over {0, 1}¢.

(f) From this, using the fact that E[X]? < E[X?], conclude that

| Py sty [(r,8) = 0] = Prop sy, [(ry s) = 1]| < |

Note that the left hand side is the bias of the extracted bit, when the input r is drawn according to
the distribution 7 and the seed s is drawn independently from ;. Finally, show that when 7 is an SV
source with bias bounded by a constant less than 1, ||x|| = 279,
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