Today

- Proof: UNSAT \subseteq IP
- Proof: $\#3$SAT \subseteq IP
- PH \subseteq IP
- Start discussing PSPACE \subseteq IP
Representing boolean formulas with polynomials

- Formula ϕ with m clauses on variables x_1, \ldots, x_n.
- $N \geq 2^n \cdot 3^m$ prime number.
- Translate ϕ to a polynomial p over the field (mod N) as follows:
 - $x_i \rightarrow x_i$, $\overline{x_i} \rightarrow (1 - x_i)$
 - Clause is translated to the sum of the (at most 3) expressions corresponding to the literals in the clause.
 - p is the product of all the m expressions corresponding to the m clauses.
Representing boolean formulas with polynomials

- Each literal has degree 1, so \(p \) has degree at most \(m \).
- For a zero-one assignment, \(p \) evaluates to zero if this assignment does not satisfy \(\phi \), and to a non-zero number otherwise.
- This number can be at most \(3^m \).
- \(\phi \) is unsatisfiable if and only if

\[
\sum_{x_1 \in \{0,1\}} \ldots \sum_{x_n \in \{0,1\}} p(x_1, \ldots, x_n) \equiv 0 \pmod{N}
\]
\(\phi \downarrow \)

\[P \]

\[N, \text{ a proof that } N \text{ is prime} \]

\[q_1(x) = \sum_{x_2, \ldots, x_n \in \{0,1\}} p(x, x_2, \ldots, x_n) \]

\[r_1 \]

\[q_2(x) = \sum_{x_3, \ldots, x_n \in \{0,1\}} p(r_1, x, x_3, \ldots, x_n) \]

\[r_2 \]

\[\vdots \]

\[q_i(x) = \sum_{x_{i+1}, \ldots, x_n \in \{0,1\}} p(r_1, \ldots, r_{i-1}, x, x_{i+1}, \ldots, x_n) \]

\[r_i \]

\[\vdots \]

\[q_n(x) = p(r_1, \ldots, r_{n-1}, x) \]

\[\phi \downarrow \]

\[V \]

check primality proof

check \(q_1(0) + q_1(1) = 0 \)

pick random \(r_1 \in \{0, \ldots, N - 1\} \)

check \(q_2(0) + q_2(1) = q_1(r_1) \)

pick random \(r_2 \in \{0, \ldots, N - 1\} \)

\[\vdots \]

check \(q_i(0) + q_i(1) = q_{i-1}(r_{i-1}) \)

pick random \(r_i \in \{0, \ldots, N - 1\} \)

check \(q_n(0) + q_n(1) = q_{n-1}(r_{n-1}) \)

pick random \(r_n \in \{0, \ldots, N - 1\} \)

check \(q_n(r_n) = p(r_1, \ldots, r_n) \)
A proof system for \#SAT

- Formula ϕ with m clauses on variables x_1, \ldots, x_n, suppose it has k satisfying assignments.
- We want an IP s.t. if P gives k as an answer then V will accept w.p. 1, otherwise V will reject w.h.p.
- Change the way to translate ϕ to a polynomial p over the field (mod N) as follows:
 - $z_1 \lor z_2 \lor z_3 \rightarrow 1 - (1 - z_1)(1 - z_2)(1 - z_3)$
 - p is the product of all the m expressions corresponding to the m clauses.
A proof system for \#SAT

- For a zero-one assignment the clause evaluates to 1 if the assignment satisfies that clause and 0 if not.
- So zero-one assignments that satisfy formula will make $p=1$ and the rest $p=0$.
- Degree of p is now $3m$, instead of m, but now
 \[
 \sum_{x_1 \in \{0,1\}} \ldots \sum_{x_n \in \{0,1\}} p(x_1, \ldots, x_n) = \# \text{ sat. assignments}.
 \]
- Enough to take $N > 2^n$.
A proof system for #SAT

- First round prover sends k.
- Then follows the previous protocol.
- After first message, verifier checks if $q_1(0) + q_1(1) = k$.
- Rest is the same as before.