CS 579: Computational Complexity. Lecture 3

NL=coNL, Polynomial Hierarchy

Alexandra Kolla
Today

- Randomized log-space
- Alternate characterization of NL
- NL=coNL
- Definition of Polynomial Hierarchy
- Alternate characterization
- Some facts, and when does it collapse
Randomized log-space

• Introduce randomized space-bounded TM (for simplicity only for decision problems).
 ◦ Read-only input tape
 ◦ Read/write work tape
 ◦ Read-only random tape with one-way access (the head can only move from left to right)

• For every fixed input and fixed content of random tape, TM is completely deterministic and either accepts or rejects.
Randomized log-space

- For machine M, input x, random tape content r, denote \(M(r, x) \) the outcome of the computation.

- Decision problem L belongs to the class RL if there is a probabilistic TM M that uses \(O(\log n) \) space on inputs of length n and such that
 - For every \(x \in L \), \(\Pr_r[M(r, x) \text{ accepts}] \geq \frac{1}{2} \)
 - For every \(x \notin L \), \(\Pr_r[M(r, x) \text{ accepts}] = 0 \)
Randomized log-space

- Any constant bigger than zero and smaller than one would work.
- Follows that $L \subseteq RL \subseteq NL$

- Even though we now know that $L=SL$, it is interesting to see the “old” proof of $SL \subseteq RL$.
- **Theorem.** The problem ST-UCONN is in RL.
An alternate characterization of NL

- We saw alternate definition of NP that used certificates instead of non-determinism.
- Can we do the same for NL?
- Certificates might be poly length.
- Need to assume that they are provided to a log-space machine on a read-only tape.
An alternate characterization of NL

Definition. A language L is in NL if there exists a deterministic TM M (verifier) with an additional read-once tape, and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0,1\}^*$

$$x \in L \iff \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u)=1$$

By $M(x,u)$ we denote the output of M where x is placed on the input tape and u on the special read-once tape, and M uses only $O(\log(|x|))$ space on its work tapes for every input x.
An alternate characterization of NL

- What if we remove the read-once restriction and allow the TM’s to move back and forth on the certificate?
- This changes the class from NL to NP (ex).
Analogously to coNP, we define coNL to be the class of languages that are complements of NL languages.

Complement of STCONN is in coNL, denote it by $\overline{\text{STCONN}}$: Given directed graph G and special vertices s,t decide whether t is NOT reachable from s.

In fact, it is coNL-complete.
NL=coNL

- Will show that there is an NL TM which solves $STCONN$.

- Generally, for every “well behaved” $s(n)$, $\text{NSPACE}(s(n))=\text{coNSPACE}(s(n))$. (ex)
The polynomial hierarchy

- Difference between NP and coNP is questions of the form “does there exist” (simple, efficient proofs) and “for all” (don’t seem to have simple and efficient proofs).
- Formally, decision problem A is in NP iff there is poly-time procedure $V(.,.)$ and polynomial bound $p(.)$ such that
 \[x \in A \iff \exists y: |y| \leq p(|x|) \land V(x, y) = 1 \]
- Decision problem A is inco NP iff there is poly-time procedure $V(.,.)$ and polynomial bound $p(.)$ such that
 \[x \in A \iff \forall y: |y| \leq p(|x|) \land V(x, y) = 1 \]
Stacking quantifiers

- Suppose you had a decision problem A which asked
 \[x \in A \iff \exists z \text{ s.t. } |z| \leq p(|x|) \forall y \text{ s.t. } |y| \leq p(|x|), V(x, z, y) \]

Example: given Boolean formula f, over variables \(x_1, x_2, \ldots, x_n \) is there formula \(f' \) which is equivalent to f and is of size at most k?

- Member of the second level of the polynomial hierarchy \(\Sigma_2 \)
The polynomial hierarchy

• Starts with familiar classes at level 1:
 $\Sigma_1 = NP$ and $\Pi_1 = \text{coNP}$.

• For all i, it includes two classes Σ_i and Π_i
 $A \in \Sigma_i \iff \exists y_1 \forall y_2 \ldots Q y_i V_A(x, y_1, \ldots, y_i)$
 $B \in \Pi_i \iff \forall y_1 \exists y_2 \ldots Q' y_i V_B(x, y_1, \ldots, y_i)$

For clarity, I omitted the $p(.)$ conditions but they are still there.
The polynomial hierarchy

- Easy to see that: $\Pi_k = \text{CO}\Sigma_k$.

- For all $i < k$, $\Pi_i \subseteq \Sigma_k$, $\Sigma_i \subseteq \Sigma_k$, $\Sigma_i \subseteq \Pi_k$, $\Pi_i \subseteq \Pi_k$ (ex)
An alternate characterization

- PH characterized in terms of “oracle machines”
- Oracle has certain power and can be consulted as many times as desired. Every consultation costs only one computational step at a time.
- Syntactically, let A be some decision problem and \mathcal{M} a class of TM. Then \mathcal{M}^A is the class of machines obtained from \mathcal{M} by allowing instances of A to be solved in one step.
An alternate characterization

- If C is a complexity class, then $\mathcal{M}^C = \bigcup_{A \in C} \mathcal{M}^A$.

- If L is complete for C and the machines in \mathcal{M} are powerful enough to compute poly-time computations, then $\mathcal{M}^C = \mathcal{M}^L$.
An alternate characterization

- Theorem. $\Sigma_2 = NP^{3SAT}$
An alternate characterization

- **Theorem.** For every \(i > 1 \), \(\sum_i = NP^{\sum_{i-1}} \) (ex)
Additional properties

Here are some facts about PH that we will not prove:

- Σ_i and Π_i have complete problems for all i.
- A Σ_i-complete problem is not in Π_j, $j<i$, unless $\Sigma_i = \Pi_j$.
- A Σ_i-complete problem is not in Σ_j, $j<i$, unless $\Sigma_i = \Sigma_j$.
- Suppose $\Sigma_i = \Pi_i$ for some i. Then $\Sigma_j = \Pi_j = \Sigma_i = \Pi_i$ for all $j \geq i$.
- Suppose that $\Pi_i = \Pi_{i+1}$ for some i. Then $\Sigma_j = \Pi_j = \Pi_i$ for all $j \geq i$.
Additional properties

Theorem. (Special case of (3) above)
Suppose \(\text{NP}=\text{coNP} \). Then for every \(i \geq 2 \), \(\sum_i = \text{NP} \).