Problem 1

(10 pts.) Prove that for every AM[2] protocol for a language L, if the prover and the verifier repeat the protocol k times in parallel (verifier runs k independent random strings for each message) and the verifier accepts if all k copies accept, then the probability that the verifier accepts $x \notin L$ is at most $(1/3)^k$. Note that you cannot assume that the prover is acting independently in each execution. (Use definition 8.6 for IP from Arora Barak).

Problem 2

(10 pts.) Define a language L to be downward-self-reducible if there is a polynomial time algorithm R that for any n and $x \in \{0,1\}^n$, $R^{L_n-1}(x) = L(x)$ where by L_k we denote an oracle that solves L on inputs of size at most k. Prove that if L is downward-self-reducible then $L \in \text{PSPACE}$.

Problem 3

Recall that the trace of a matrix A, denoted $tr(A)$ is the sum of the entries along its diagonal.

- (5 pts.) Prove that if an $n \times n$ matrix A has eigenvalues $\lambda_1, \ldots, \lambda_n$, then $tr(A) = \sum_{i=1}^{n} \lambda_i$.

- (5 pts.) Prove that if A is a random walk matrix of an n-vertex graph G and $k \geq 1$, then $tr(A^k)$ is equal to n times the probability that if we select a vertex i uniformly at random and take a k step random walk from i, then we end up back in i.

- (5 pts.) Prove that for every d-regular graph G, $k \in \mathbb{N}$ and vertex i of G, the probability that a path of length k from i ends up back in i is at least as large as the corresponding probability in T_d, where T_d is the complete $(d-1)$-ary tree
of depth \(k \) rooted at \(i \). (that is, every internal vertex has degree \(d \), one parent and \(d - 1 \) children.)

- (5 pts.) Prove that for even \(k \), the probability that a path of length \(k \) from the root of \(T_d \) ends up back at \(v \) is at least \(2^{k - k \log(d - 1)/2 + o(k)} \).

Problem 4

(20 pts.) Show that it is impossible to make constant-degree expander Cayley graphs from abelian groups.

Problem 5

- (10 pts.) Prove that \(PCP(0, \log n) = P \). Prove that \(PCP(0, \text{poly}(n)) = NP \).
- (10 pts.) Show the following equivalent characterization of \(NP \):
 \(NP = \{ L : \text{there is a logspace machine } M \text{ s.t. } x \in L \text{ iff } \exists y : \text{M accepts } (x, y) \} \).
 Where \(M \) has two-way access to \(y \), meaning that \(M \) can move its head back and forth on the certificate.
- (20 pts.) Let \(L-PCP(r(n)) \) be the class of languages whose membership proofs can be probabilistically checked by a logspace machine that uses \(O(r(n)) \) random bits but makes only one pass over the proof. (It has two-way access to \(x \) but one-way access to \(y \)). The completeness and soundness parameters are 1 and \(1/2 \) respectively. Without assuming the PCP theorem, show that \(NP = L-PCP(\log n) \).

Problem 6

(10 pts.) Consider the following problem: Given a system of linear equations in \(n \) with coefficients that are rational numbers, determine the largest subset of equations that are simultaneously satisfiable over the rationals. Show that there is a constant \(\rho < 1 \) such that approximating the size of this subset is \(NP \)-hard.