Problem 1

(10 pts.) Show that \(\text{SPACE}(n) \neq \text{NP} \).

Problem 2

Recall that \(E = \text{DTIME}(2^{O(n)}) \) is the class of problems solvable by deterministic turing machine in time \(2^{O(n)} \), where \(n \) is the length of the input. We say that a language \(A \) has a many-to-one polynomial time reduction to a language \(B \), written \(A \leq_{m^p} B \) if there is a polynomial time computable function \(f(\cdot) \) such that for every instance \(x \) we have \(x \in A \iff f(x) \in B \).

• (10 pts.) Show that \(\text{NP} \) is closed under polynomial many-to-one reductions, that is \(A \leq_{m^p} B \) and \(B \in \text{NP} \) implies \(A \in \text{NP} \).

• (10 pts.) Show that if \(E \) were closed under many-to-one reductions, we would have a contradiction to the time hierarchy theorem. Conclude that \(\text{NP} \neq E \).

Problem 3

Let \(S = \{S_1, \ldots, S_m\} \) be a collection of subsets of a finite set \(U \). The Vapnik-Chervonenkis (VC) dimension of \(S \), denoted \(VC(S) \), is the size of the largest set \(X \subseteq U \) such that for every \(X' \subseteq X \), there is an \(i \) for which \(S_i \cap X = X' \). A Boolean circuit succinctly represents the collection \(S \), if \(S_i \) consists of exactly those elements \(x \in U \) for which \(C(i, x) = 1 \).

Let \(\text{VC-DIMENSION} = \{\langle C, k \rangle : C \text{ represents a collection } S \text{ s.t. } VC(S) \geq k \} \).

• (20 pts.) Show that \(\text{VC-DIMENSION} \in \Sigma_3 \).

• (10 pts.) Prove that for every \(i \), if \(\Sigma_i = \Pi_i \) then the polynomial hierarchy collapses to the \(i \)-th level.
Problem 4

Recall that \(EXP = DTIME(2^{n^{O(1)}}) \).

- (15 pts.) Prove that if \(P = NP \) then \(\Sigma_k = P \) for all \(k \).
- (15 pts.) Prove that if \(P = NP \) then there is a problem in \(EXP \) that requires circuits of size \(2^{\Omega(n)} \).

Problem 5

(20 pts.) Prove that if \(NP \subseteq BPP \) then \(NP = RP \).