
~

1

I
I

1

j

I

i
1
I

./

Algebraic methods in
•semantics

Edited by'

MAURICE NIVAT
Pro!enor o!I'1!ornuJllon Science, Unl~rslty of ParlJ Y11

JOHN C. REYNOLDS
Pro/,uor 0/ Computtr and ''lformtJllon Scltnce
Syracuse Unlutrsi,y, Ntw York

"''-'''''''.......... ,,,C'....

"..," ,

-~.,", .. "H

,...-.._.., .. ,,-.,1

.~---­....,...

CAMBRIDGE UNIVERSITY PRESS

Calnbridge

Londolt New York New Rochelle

MelbourlJe Sydney

14
Initiality, induction, and

contputabilityt

JOS~ MESEGUER. JOSEPII A. GOGUEN

I Introduction .60

1 Abstract data 'ypes and pro&rammlol methodoloa1 4&60

2.1 What is data abstraction? 461
2.2 Abstract machines 461
2.3	 What good is algebra? 462

J ,Many-Iorted algebr. .64

3.1	 Quotients 467

4 Abstract dati types -.70

4.1 Dala types without equations 471
4.2 Data types with equations 475
4.3 Equutional deduction 417

4.3.1	 An unsound deduction 417
4.3.2	 The rules of deduction 418
4.3.3	 Soundncss, complcteness, and initiality theorems 479

4.4	 Equivalentl of iniliality 482

5 Abstract marhlnn 485

6 InillaUty and computability 490

6.1 Recursivc sets and recursive functions 491
6.2 Recursive algebras 495
6.3 Computable algebras 500
6.4 The power of specification techniques: initial algcbra semantica SOl
6.S Rewrite rules S01
6.6 The power of specification techniques: final algebra semantics .s 16
6.1 Equality enrichments, computability and inductionleu induction 524
6.8 Concludina remarks on abstract data type computability 532

6.8.1	 The chassies 532
6.8.2	 Further wor~ by Dergstra, Tucker ~t 01. 53)
6.8.3	 Computability of partial abslract dota typea with equationally defined

domnins Sl3
Appendix: Proors of soundness and completcness 53J
Referfl'Cn 536

t	 Rc~carch sUJlportcd in pilrt by Office or Naval RC5Cnrch Contractl NOOOI4·80­
O?()t,'ancl NOOOI4·M7·,·O'". nnet National Sci~ncc Fnuncla.'nn' (irrtnt

461

1 Introduction

This paper surveys, unifies, and extends a number of results on induction
and computability in the context of an algebraic approach to the
semantics of programming. The close relationship between computability,
induction, and initiality is emphasized.

Highlights of this paper include: a software engineering motivation for
the initial algebra approach to data abstraction; a review of many-sorted
general algebra, including rules for equational deduction that arc sound
and complete; simple 'inductive' characterizations of initiality (including
generalized Peano axioms); constructions for both initial and final (Le"
minimal) algebra realizations of abstract software modules; Hnd a detailed
introduction to computable algebras and their relationship to initiality.
finality. and rewrite rules, showing in particuhlr how Gullel nUlnbcrings
arise from initiality, and how equationally defined equality relates to both
theorem proving by 'inductionless induction' and cOlnputability. Pfhe
latter permits us to give a purely algebraic characterization of coruput­
able algebras: an algebra is computable iff it is a reduct of an initial nlodel
of a finite equational equaiity ·presentation.

2 Abstract data types and programming methodology

Data abstraction enjoys considerable popularity. It is widely
recognized as an important technique for structuring programs, perhaps
even more useful than structuring programs by flow of control as in
traditional now charts or more modern data now dingralns. Data
abstraction has been advocated, for cXillnplc, by Jackson [48] (though hc

1";1;ality, i"duct ;0/1. and co"rputabUil y

does not use the phrase 'data abstraction'), and is discussed more formally
by Gutiag [38], Liskov & Zilles [62], Goguen, Thatcher. Wagner &
Wright [37] and many others. The basic idea seems to have first surfaced
in the 'class' concept of the Simula programming language of Dahl,
Myhrhaug & Nygaard [21]. Similar constructs appear in many later lan­
guages with names like 'form', 'module', 'cluster', 'object·, 'capsule',
'donlain', 'package'. 'type', 'bundle'. and even 'category'. (The names of the
languages involved are left as an exercise to the interested reader.) This
paper favors the more generic term nlodule.

2.1 ~VlJat is data abstraction?

The methodological use of ADTs in programming is to suggest
(or better, to require) grouping together in one module all the basic
functions that manipulate one (or more) sort of data, and then ·hiding' the
representation, in the sense that only the functions defined in that module
can actually see the representation. Thus, any agent wishing to manipulate
this data can only do so by calling the functions provided by the module.
l~his techniquc is called data ellcapsulation, and such a module is often
called a data abstractioll; the advantage is to localize the effects ofchanging
representation in .an especially clear and sirnple way. It is often claimed
(and we also ~clicvc) that this approach facilitates reading, writing.
specifying, designing, modifying, maintaining, and reasoning about
progranlS. t

2.2 Al,strClct "Iaclri/lcs

Much confusion can be avoided by distinguishing sharply
betwecn (concrete or abstract) data types that are just algebras, and
(concrete or abstract) IIlac/litleS that in addition may have internal ~~ales.t

A typical data type'is thal of the ;,i;egers; there' are certain values, namely
integers, and certain operotions upon them. While it is possible and
fruitful to investigate abstract machines with the techniques of abstract
data types, quite different concepts and techniques are also important.
such us reachability. observability, and minimality. Abstract data types are

t This distinction is lon,ctinlcs indicatcd with the words 'immutablc' and
'nllilabic'. indicnting lhut duta items (such as the integer J) are idcal and
'.irnelcss'. while lhc behavior of a machine can vary with time; see [33] for a
formal treatment.

463 462 J. Meseguer. J. A. Goguen

useful for understanding the type systems of programming languages,
especially when they permit user-defined types as in ALGOL 68 [87]. and
for deciding the correctness of data representations. Abstract machines nre
useful for understanding the specification and implementation of software
modules, in roughly the sense of Parnlls [74], and us used in the IIDM
methodology [61] and in CLU [63]. The fact that many camlnon
examples can be viewed from either perspective contributes to the
potential confusion.

There is, for instance, the rather pointless controversy about whether final
or initial algebra semantics is 'best'. For abstract machines, it is behaviour
that matters. Machines that represent and manipulate their internal states
dilTerently (i.e., are nonisomorphie as data types) can still have the same
behavior [26]. A software module can usually be realized in many different
ways; among these. the final one uses as little storage as possible for
internal states. while the ilJitial one has no sharing at all for storage of
states [33]. Because the space efficiency of the final realiu1tion can greatly
reduce its time efficiency, there are many cases where the pragrnatically
correct choice of data representation is neither initial nor final, but rather
something between. A good example is the list structure of_LtSP, which is
often implemented by giving ~ unique cell to ~ach atom, but not to each
list structure. QLISP can be seen as an experiment with the 'hashcons'
final realization of list structure; it was found to run too slowly for nlany
applications. Abstract Prolog machines also now tend to replicate
information rather than to share it, and are therefore closer to an initial
realization than to a final realization [90]. In summary, initial realizations
are appropriate in case all behavior is visible behavior; final rcaliz.ltions
may be appropriate in case there arc hidden internal states, but often the
most practical realizations. although neither initial nor final, are rather
close to being initial.

2.3 Wllat good is algebra?

The basic argument for an algebraic approach is both simple and
compelling. A software module has exactly the saine structure us an
alge.bra: the various sorts of data involved (including states, if any) forln

..	 sets, and the operations of intefest are funclions among these sets (Section
3 precisely defines this sense of algebra). This argument is reinforced by the
powerful, general and appropriate tools that modern algebra provides. It
is also reinforced by the rel1}.~rkable fact (to be discussed later in this
paPer, together with other important characterizations) that any CO".plIl­

lllitiality. induction. and con,plltability

able algebra can be specified as an initial algebra for a jillite number of
equations (ufter adding perhaps a finite number of auxiliary functions);
this shows the general applicability of finitary algebraic specifications in
computer science.

Three dilTerent algebraic approaches to ADTs emerged i~ 1975: Zillcs
[91] gave an abstract of somc results to appear in his Ph.D. thesis; Guttag
[38] completed his dissertation; and ADJ (Goguen, Thatcher, Wagner &
Wright [37]) sketched their initial algebra approach. Zilles [92] suggested
a new kind of alg~.bra, called 'data algebra', based on the notation of Cohn
[20]; Zilles' use of free algebras essentially corresponds to ADJ'. use of
initiulity. OutlaS's work introduced the important ideas of 'consistency'
and 'sufficient completeness'later formalized by others, and opened up the
study of modules with states, i.e., abstract machines. ADJ. using initiality
and the algebraic notation of Goguen [29], were able to formalize the
ADT concepts entirely rigorously within standard many-sorted general
algebra. Strangely enough, Zilles' work, though motivated by CLU
'clusters', actually treated ADTs rather than abstract machines. Each of
these three' approaches has subsequently been follow'ed up by its"
originators, as well as by many o4hors, and toooy there is a vast literature
on the subject. Parnas [74], Milner [71] and Hoare [41] were important
early theoretical innuences in this development. All three approaches
recognize that a concrete data type is a many-sorted algebra.t The
algebraic approach to abstract data types (any of the three versions) goes
beyond this in lIUlt one gives sOlne equations that the functions ought to
salisry, and then restricts attention to models where they do. The initial
algebra approach produces a 'standard' model that is defined uniquely up
to renaluing data itenls, nUlllely 'the' initial algebra for the given signature
and equations. What is magic about this is that a set of equations that the
operations are supposed to satisfy actually defilles the data; there is no
need to talk about how the data is represented.

There arc many different ways to precisely define data abstraction (see
Section 4); a fairly simple one (from Burstall & Goguen [18]) is as follows:
assume that we are given a concrete data type and that we can tell whether
or not two concrete data items in it represent the same abstract data item;
call the two concrete data items equivalent in that case. (Thus, an abstract
data item is an equivalence class of concrete data items; for example, 1.01,
and ()() I arc three different concrete data items representing the same
abstract <.lata item. namely the abstract integer ·onc'.) Given a signature of
symbols for operations and constants, and a set of equations using the

It	 It is nol clear where Ihis insighl originaled. The earliest work we know is
Goguen [21].

. ,

464 J. Meseguer, J. A. Goguen

symbols from it, call a data representation standard if and only if it has the
following two properties:

1.	 No junk: Every data item can be constructed using only the
constants and operations in ~he signature. (A dala itcln that
cannot be so constructed is 'junk'.)

2.	 No cOIl/usion: Two data items are equivalcnt if and only if they
can be proved equal using the equations. (Two dilta iteills that nrc
equivalent but cannot be proved so from the given equations arc
said to be 'c,?nfuseq'.) ,

Section 4 shows that these two conditions define an ulgebrn ulI;t/uely up to

renaming of its data items. It also shows that 'no junk' is -eqllivalent" to
structural induction over the signature, and that the two conditions
together are equivalent to the 'unique homomorphism' condition usuully
called 'initiality'. Thus, a model is initial if and only if it has the nlinilnal
number of data items (none that cannot be constructed from those that are
given) and satisfies the minimal number of ground equations (none that do
not follow from those that are given).

3 Many-sorted algebra

So-called 'general' (or 'universal') algebra wus established by
BirkhofT [15] in order to subsume many basic aspects of particular
algebraic systems into a single framework. This work involved only one
sort of datu. proving the existence of initial algebras us well &&s giving nlany
other basic results. It was later generalized to Inany sorts by Iliggins [39],
by DirkhofT & Lipson [16], and by Ocnabou [2] following the Inore

, · abstract approach of Luwvere [59].
A simpler notation for many-sorted algebra that is now often used in

computer science was introduced by Goguen [29]. It uses indexed (or
sorted) sets, defined as follows:)et S be a set (of sorts), then an S-;lIt/eXCt/
(or S-sorled) set A is just a family of component sets A. for each index s in
S. If A and B are both S-indexed sets, then n IJuIPl'illlJ o!S-;IIJexetl.-;el.-; (also
callcd an S-sorted function) f. A -. H is an S-indcxcd farllily of functions

(/.: A. -+ B.l s in S).

We now apply this to many-sorted general algebra: An S-sortcd si'llJlllure

1: is an S· x S-sorted family (l:wts' \y in S·. s in S); 0 in 1:..,.• is u function
symbol of arity wand sort s; the ctrity of a function syillbol expresses what
sorts of data it expects to see as inputs and in whal order; and the sorl of a
function symbol expresses the sort of data it returns. A constant sYlllhol of

lllit;ality, induction, and COIJ,p14labilily	 465

sort s has arity the empty string A; i.e., it is a member of EA••• Signatures
fornl&tlize the notion of a (strongly typed) collection of functions available
to the user or an abstraction. For example, we might have S == {stack, nal,
boot) I:.,uk••ClCk = {POP},1:.l'•••ck = {EMPTY}.1:..ackck = {PUSH} and
so on, for a stack-of-nnturals abstraction.

Then a 'r-algeIJra A consists of an S-indexed family (A.ls in S) of
Ctlrr;er sets. and for each function sylnbol a in 1:w•• an actual function
«(0'): A W

-+ A. where A· == A,I x··· X AM when w == st .. .S" (when w - A.­
then AW is a one-point set). Notice that ex is an S· 'x S-indexed family

a w••: 1:..,.• -. [A ~ -+ A.]

of illlerpre'cllioll mappings for the function symbols in 1:, each Cl...

interpreting 0 in ~W.' os a function to A, from AW (Here [A -. B] denotes•

the set of all functions from A to D.) It is usual to write (1 for (%«(1) if the
algebra in question is clear from context, and it is often convenient to write
u ... if it is not.

According to current practice in abstract algebra, one should define not
just SOlllC structure of interest, but also functions that preserve that
structure. We do this as follows: a L-"OIJ10nJorpllisln from a]:-algebra A to
another B is nn S-indexed function f. A -+ B that 'preserves the function
symbols in 1:' in the sense that

f(a(al, ... ,oll» c:: o(f(al}, ... , I(a,,»,
or Inore precisely, that

};(cx(a)(al • ••.• t"'» = /l(o)(h.(al), ... , /,,.(011»,
where fl is the interpretation mapping for B, where w = s1••• sn. for ai in
A" nnd a in 1:....,. For constants, i.e., for w = A, the condition becomes

h(a(o» = (1(a).

These equations Clrc culled the lIoll.ollu)rIJ"is", conditiolJ.
We can now define the central concept of this paper.

Dejill;tion J. A ~-algebra A is ;lIitial in a class 'I of 1:-algebras!fand onlY.if
A belongs to (C and for cae1l l:-ulgeb'ra 'c in (~ thc're is one and only]:­
honloillorphisill frolll A to C. 0

One comlnon case is that (I is the class of all1:-algebras; another is that f8
is the class of all L-algebrus that satisfy sOlne set E of equations; then lG is
called the lJclr;elj' of E. In general. the class (I will not be mentioned when it
is clear front context.

Perhaps the most basic fact about initial ulgebras is that any two are
'abstractly the saine', in that they differ only in the representations given to

466 J. Mesegller. J. A. Gogllel.

their elements. This is formalized using the following concept: A 1:­
isonlorplJism is a 1:-homomorphismfsuch that each component function,h
is bijective. Then isomorphic I:-algebras are 'abstractly the saine'; this is
the essence of the word abstract in both the phrases 'abstract algebra' and
'abstract data typc'. Indeed, one of the main ideas of abstruct nlgebrn is to
study algebras (such as groups and vector spaces) independently of how
their elements happen to be represented. The following states this basic
property of initial algebras; it can be proved using the properties given in
Proposition 3 below.

Proposition 2. Let A be initial in a class f4 of l:-algebras; then an algebra
A' is initial in tG iff A and A' are l:-isomorphic. In fact, there is then a
unique isomorphism from A to A'. 0

The existence of initial algebras is discussed in the next section. We now
turn to some basic properties of homomorphisms.

Proposition 3. Let 1: be an S·-~orted signature, and let A, D, and C be 1:­
algebras.

(1)	 Given l:-homomorphisms f. A --. Band g: D -. C, their COli.PO­
sidon, 9 0 f. A -+ C defined by (g 0 f), = (0, 0 !.), is also a ~­
homomorphism.

(2)	 The S-indexed function 1u defined by (I D). == 1B. is a l:-homomor­
phism B -+ B calJed the ie/entity at D; moreover, I. 0 f = f and
go Is = 0 whenever these compositions are defined. (The nota­
tion ida may also be used occasionally.)

(3) Given): A -+ Band g: B -+ A, if 9 0 f = IA then 9 is surjective and
f is injective.

(4)	 A I:-homomorphism f. A --. B is a :E-isomorphism if and only if
there is another l:-homomorphism 0: B -+ A such that Joy = I.
and fog = I.,.; this 9 is unique if it exists, and is caIJed lhe inverse
of f, denoted f- 1. Moreover, (f- I). = (Is) - I, the indexed fUlnily
of inverse functions (i.e., converse relations) to f, for each s in S.

(5)	 If fog is surjective, then J is surjective.
(6)	 Iff 0 9 is injective. then 9 is injective.

Proof. These are left as exercises in the use of the definitions; the
arguments are genetally sc't-tllcoretic. 0

/11; I ialicy. illduct ;011, and COIlJputability	 467

A L-sub,dgebra B of a l:-algebra A is an S-indexed family of subsets (B.>
= n ~ A that is closed under the operations in L, Le.• such that for any a
in L w•• with ", == 51 ••• sn, a{al, ... , all) is in B. if ai e B., for i = 1, ... , n. A
l:-subalgebra of A is essentially the same thing as an injective 1:­
hornomorphism g: B A, since such a B is isomorphic to its image in A. A
subalgcbra of A is proper if it is not equal to A; this corresponds to an
injective homomorphism that is not an isomorphism.

Propos;t;oll 4. If A is initial in a class fj of l:-algebras. then A has no
proper subalgebras in fe.

Proof. Assume that P is in fI and j: P -. A is an injective 1:-homomorph­
ism. By initiality of A, there is also a homomorphism II: A -. P. Then
j 11: A -+ A is also a l:-homomorphism, and since there is only one such 0

from A to A, namely the identity on A, we have J 0 II == lA. By (3) of
Proposition 3 this implies that J is surjective, therefore .bijective, and thus
not pr,oper. 0

If f: A -. B is a l:-homomorphism and C is a l:-subalgcbra of B. then
r I(C), the inverse ilJ.age of C under f, defined by (f-l(C»,­

" ~ {a in A.lh(a) in e,l, is a l:-subalgebra of A. Notice that if C is proper
~

~ and f is surjective, then I-I(C) is also proper.
l~

~ }

J. / Quotients~
J'
I'
t This subsection says everything you always wanted to know

about quotients; moreover, it proves that it has told you everything in the
sense that the properties given actually cllaracterize quotients.

I The quotient of a set A by an equivalence relation Qon A (identifying
t. some elements of A with others) is formed by considering the Q­
,! equivalence classes (the sets of mutually Q-equivalent elements of A) as the
~~

, elements of a new set A/Q. Now suppose that A is a 1:-algebra. Unless
applying an operation in 1: to equivalent elements of A yields elements that,
nre again equivalent, A's l:-alge~ra struclure cannot be inherited by A/Q.
This motivates the following discussion.

Once again th~ nOlation of indexed sets nlakes it easy to go from the
one-sorted case Jo the many-sorted case. Let A be an S-indexcd set. Then

t
:1 nn (S-indexcd, or S-sorted) equivalence relation on, A is jusJ an S-indcxcd..
~

fam'ily {Q.is·eS}, where Q, is an equivalence relation on A, (i.e.,

469 468 J.	 Meseguer, J. A. Goguen

Q. ~ A. x A. is a reflexive, transitive and symnletric relation). If, in
addition, A is a 1:-algebra, where 1: is an S-sorted signature, then we call Q
a 'E.-congruellce relatioll provided that the following Sllbstitutivity co/ulitioll
holds: .

for each a E I:w•• with lY = sl ... SII, and each ai, a'; E A•• if aiQ••a'i, then
a(al, ... , a,,)Q.a(a'l, .0.. ' a',,).

For example, suppose that S'= {na., bool}, A... = w (the natural nurnbcrs)
and A = {T, F}; suppose- also that LA.hoI == {T, F}, LA .••• = to}, 1: .
== (inc}.l:.......hoI = {odd}, and l:w.• = 0 otherwi~e. Finally, suppo~c thut
these operation symbols have their usual interpretations in A, with odd(II)
= T if n is odd and odd(n) = F if n is even. Now define an S-sortcd relation
Q8 on A by: nQ8...n' iff n - n' is divisible by 8; and bQ8.....I" iff b = b'. Then
the reader may verify that this is indeed a l:-congruence on A. Another I ­
congruence on A, Q2, is given by 'IQ2...'I' iff '1 - 'I' is divisible by 2, with
Q2... = Q8....

A very general way that congruences arise is given by the following.

Proposition 5. Letl: be an S-sorted signature, let A and B be l:-algebras,
and let I.: A -+ B be a l:-homomorphisrn. Then defining aQ".,a' iff 1I,(a) =
h,(a'), for each S E S and a, a' E A" yields a I:-congrucnce on A. denoted Q,.
and called the kernel of ,•.

Proof. Substilutivity follows from the homomorphism condition for
h: I',l(ai) c= h,,(a';) implies a(IJ. 1(a I), ... , '",,(all» = 0(11. I (a' I), ... , ",,,(a'II»
and therefore ",(a(a 1, ... , all» = h,(o(a' J, ... , a'II». 0

We now introduce the quotient algebra construction. Given a 1:-algcbra A
and a l:-congruence Q on A, define A/Q to have carriers (A/Q), = A,/Q. for
S E S. Now letting [a] denote. the Q-equivalence class of a in A, define the
effect of a e l:w" on A/Q by a([al], .. 0, [an]) = [o(al, ... , all)].

Substitutivity guarantees "that this is well-defined: if -raj] == [a' I] for
1- I •...• n, then [a(al, ... , an)] == [a(a'I, ... , a'n)]. Therefore A/Q is a 1:­
algebra.

For example, using S = {nat, bool} with 1: and A as above, A/Q8 is the
natural numbers modulo 8, and A/Q2 is the natural nurnbcrs modulo 2,
each with an oddness predicate.

Given a l:-algebra A with a l:-congruence Q on it, there is a natural
quotient l:-homomorphism q: A -+ A/Q defined to send a E A, to [a] in
(A/Q)•. Substitutivity gives the homomorphism property or q. Notice that
q is surjective.

"

I.,
W
1	 Proof. We first show that (I) implies (2): since q is surjective and u is an

isomorphisrn, / is also surjective. 1 We next show that (2) implies (3a): first suppose that QI ~ Q". Then we
can define a function u: A' -+ n such that the diagram of Figure 1
commutes by lI(a') = '.(a), where f(a) = a'; such an a exists since f is
surjective. This is well-defined, because f(al) = f(a2) -= a', implies I,(al)
== 1,(a2). so that· 1I(/(ClI» == U(f(CI2». Conversely, if there is a function u
such that Figllre I cOlnmules, then we have that f(al) r= f(a2) implies
lI(f(a I» = u(f(tl2» inlplics lI(a I) = lJ(a2), i.e., QI ~ Q".

Assulning (2), we now show (3b), i.e., that u satisfying (3a) is unique, and
is a l:-holnomorphism. First uniq ueness. If ,I': A' -+ n with u' 0 f == la, then
lI(f(a» = 'Ir(a) = U'(f(Cl» for each f(a) in A'. 0 •• ...

1 Fig. 14.1. Universal property of the quotient

.i h

A ~ B

1 II ...······~·~
A'

t	 The general nolion or S-indelcd sets lells us that this means (Q/). ~ (Q,). ror
each J in S.

JII it iality. illduction. alld co/nputability

We are now ready to say everything (about the quotient construction).
The following says, intuitively, that a quotient, a surjective homomorph­
ism, and a function satisfying two certain properties (called ·universal'). are
three different ways of looking at the same situation. 0

Proposition 6. Let f: A -+ A' be a 1:-homomorphism. Then the following
are equivalent properties' of f:

(I) There is an isomorphism· u: A/QI -+' A' such i'hat u 0 q .~../. for

~ q: A -+ A/Q, the natural quotient function (sending a to [a]).
(2) f is surjective.
(3) If II: A -+ B is a I:-homomorphism, then

a.	 There exists a function u: A' -. B such that u 0 f == II (i.e., the
diagram of Figure 14.1 commutes) iff QI S; Q,.t

b. If such a function Il exists, then it is unique, and is a 1:­
J homomorphism.

470 J. Meseguer, J. A. Goglle11

Next we show the homomorphism property for u. For constants this is
clear (since hand f are homomorphisms) froln commutativity of the
diagram. Suppose that (J is in 1:...., with w = sl ... SIl; then what we have to
show is that u«(J(a I', ... , an'» = O'(u(a I'), ... , u(al1'» for ai' E A;,. Now, let
u(ai') be given by lI(a;), where ai is such thatf(ai) = ai'. Further, let a' =
O'(al', ••• , an') and let a = O'(al, ... , all). Then I(a) = O'(/(tll), ... ,/(all»
because f is a homomorphism, so lea) == O'(al', ... , all') =z a'. Therefore,
u(a') - heal. Then what we have to show is that II(a) .. 0(/I(a1), ... , Ia(on»;
but this follows because II is a homomorphism.

Finally, we show that (3) implies (1): since q: A -+ A/Q, is surjective and
we have proved that (2) implies (3), we know that q satisfics (3), with thc
equation u 0 q = 11 rather than II 0 f = h. Hence, taking Ia = I in (3), we get
a unique l:-homomorphism II: A/Q, -+ A' such that u 0 q = f. We now
need only show that this is an isomorphism. Using (3el) a!.1d"<3b) for f. with
now h = q, we also obtain a··unique I:-homomorphism u': A' -+ A/Q, such
that u' 0 f = q. We now use (3) for q with II = q also: q = 14' 0 f = (II' 0 II) 0 q,
and also IA/Q/ O q = q; therefore (3b) gives u' 0 u = I A/Q,. Similarly, we use
(~) for f with II = f, then the unique homomorphism is surely IA'; but also,
(u 0 u') 0 f = U 0 q = f, so therefore U 0 II' = 1A'. Thus u is an isomorphism.

o

For example, let S, 1:, and A be as in the examples above, let Q be Q8 and
let B = A/Q2 with f the natural quotient l:-homomorphisrn A -+ A/Q8.
Then u sends (n modulo 8) to (11 modulo 2) and preserves oddness.

Define the il1lage f(A) of A under f: A -+ B to have carriers I(A),

==f,(A.) and operations a(!..(al), ... ,/,,,(afl» ==/,(o(al, ... , all» for
is e 1:•.• with w = sl ... Slit and for a e LA.• define aJ(A) == /(0 A)' Then we
can apply Proposition 6 to show that I(A) is l:-isomorphic to A/Q,.

4 Abstract data types

This section applies the concepts of Section 3 to data abstraction.
Separate subsections consider the case where no equations are nceded. and
theil the use of equations in defining ADTs. Other subsections discuss
equational deduction and "give several equivalent characterizations of
initiality, including a generalized Peano characterization,

We set the stage for what follows by dcfining lhe basic concept of an
abstract data type. We have already said that a (lata representatioll is a 1:­
algebra. Now notice that the relation of isonlorphism is an equivalence
relation on the class of all E-algcbras: any algebra is isomorphic to itself; if

I IIit iality, inductioll, and cOl1lputabiUty	 471

A is isomorphic to B, then B is isomorphic to A; and if A is isomorphic to B
and D is isomorphic to C, then A is isomorphic to C. An ison,orphism class
is an equivalence class of E-algebras under the equivalence relation of
isomorphism, that is, it is a maximal class of E-algebras, each of which is
isomorphic to all the others.

Definition 7. An abstract data type is an isomorphism class of l:-algebras,
for some signature 1:, called the signature of the abstract data type. 0

This definition docs not addrcs~ the issue of computability; however, we
will see latcr that algebraic methods can also be used for this.
.Initialitypro~ides a particularly elegant way of denning abstract data

types. Let us say that a class ('I of 1:-algebras is closed ullder ;son.orpllisln if
for each A membet of fit if B is l::isomorphic to 'A, then B is in'li. The
following is a direct corollary of Proposition 2:

Propos;t;o1l 8. Let 'I be a class of l:-algebras that is closed under
isomorphism and has an initial algebra. Then the class of all algebras that
nre initial in fj is an isornorphism class. 0

Thus, to define an abstract data type, all we have to do is give a class fI or
l:-algebras that is closed under isomorphism and has an initial algebra;

J	 then its class of initial algebras will be an abstract data type. Two following
'-'	 subsections consider, respectively, the case where ~ is the class of all ~.

algebras, and the class of alll:-algebras satisfying a set E of l:-cquations.

4.1 Data types witlaout equations
~~
'.'	 Perhaps the most important and familiar abstract data type is the
)~ non-negative integers; let us denote this data type N. It can be very simply ~.
: characterized as a standard algebra (i.c., no junk and no confusion, as in
:J Section 2.3) with signature having only one sort, namely nat, one constant
~ oof sort nat, with one unary function symbol inc: nat -+ nat, and with no
'"'

equations. (Of course inc(,.) represents the 'incrclncnt' Of'I, thal is, n + 1.)

Speaking informally, the 'no confusion' condition says"that each distinct
term inc(inc(... (0) ... » denotes a dilTerent number; and the 'no junk't condition says that all numbers are defined by such terms.

~~ The tinitiality' property characterizes the natural numbers more simply
but more abstractly by saying that there is one and only one homomorph­
ism from N to allY other algebra with the same signature. The natural

472 J. Meseguer, J. A. Goguen	 '1

numbers were first characterized in this way by Lawvere [60]; a proof of
equivalence with the usual Peano axioms can be found. in MncLane &
BirkhofT (64], pages 67-70. This is generalized in Scction 4.4 bclo\v.

Natural numbers can be d~noted in many <JilTerent ways; each different
data representation gives a different algebra, but they are all initial nnd all
isomorphic; in fact, there is a unique isomorphism from anyone to any
other. The isomorphisms simply give the translations alnong these
reprcsen tations.

All this generalizes. For any signature 1:, there &lrc many initial L­
algebras, with the property that therc is one and only onc I:-ho.noillorph­
ism from it to any other I:-algebra; but, any two are 1:-iso.norphic, and

thus are abstractly the same. We'mcntion two farniliar data representa­
tions that give initial algebras. In the first, the carrier of sort s consists of
all the well-formed I:-terms of sort s. For the natural nunlber signature,
these are just the expressions

0, inc(O). inc(inc(O». inc(inc(inc(O»)•....

Such an algebra is called a terll' algebra (or sonlctimes a ,vord tllgebra)
because it consists of all the l:-terms (or words).t

In the second representation, the carrier of sort s consists of "lithe well­
formed l:-trees with root of sort s; these cun be seen ns the parse trees of a
grammar G(l:) associated to ~. For example•. a L-tree for I: the signature
for vcctor spaces is given in Figure 14.2; the corresponding l:-lcrm is

r.

o+ (a. 0). ~,
We now make this precise, beginning with an inductive definition of the ~

sels TE•• of all L-tern.s· of sort s, for a given S-sortcd signature I::
· (I) LA.• S; Tr. .• for each s· in S; and	 'I'

/\	
J

+	 '(1

o 4Je

I
o Fig. 14.2. A l:-lree

t More exactly, Ihese mighl be called r.-groun,1 lerms, 10 dislinguish thcnl from
lerms thai may contain variable synlbols; in computer science. ternlS either with
or without variables are called expre.uiolu.

t For T1 to satisfy the initiality property. ternlS should be un~lnlbiguous; n suf­
ficient condilion for this is to require 1:•.• " I - 0 whenever length (tV) _

length (w') and (w, oS) " (w', ,'). This can alwuy. be ensurcd rcplacinG 1: by
]:', where 1:'•.• - 1:•. ,)((w, oS)}, and we will assunle throughout thnt ternlS nrc
always buill from such a disambiguute\J signature whenever I is ambiguous.

111;1 ;Cllity, ;II(IIICI;Oll. tllltl cOII'fJutabilily	 473

(2)	 0(11, : III) is in TI •• for each a in E. 1 ••• '''.' and each ti in Tr..•, for
i = 1, , '1.

We next show lhat the S-indexed f~llwly Tr. == <Tr..• 1s in S) is a I:-algebra.
by defining the interpretation cx(a) of C1 in I:A,. to be the symbol a in Tr. (it
is in TI by (I »; and defining the interpretation CX(O') of 0' in 1:.... for
II ~ A, to send (11, ... , III) in (Tt)" to the term 0(1 I, ...• til) in Tt .• (it is in
Tr. by (2».

Two differcnt elcnlenls of Tr. never represent the same abstract data
itenl; this 'absolutely no confusion' condition is defined precisely a little
luter. (These algebras are sOlnelimes called 'absolutely free on zero
gencrntors'.) The following very basic result just says that Tr. is an initial 1:­
algebra.

TI.eorell. 9. Tr. is initial in the class of all L-algebras, i.e., for each 1:­
algebra At there is one and only one 1:-homomorphism Tr. -+ A.

Proof. First notice that Tr. is by definition a countable union

T1 = U71"1

"

of S-sorled subsets

71~1 = <L~.• I s E S),

71"+ II == 71:"1 U <{o(tl, ...• til) I C1 E LII........ and ti e (7tJ)" for
i = I.~",n nnd sl •••. ,SIlES·} IseS). The proof is by induction on n.

Uniqueness: Supposc·thatll, II':'T~ -+ A are two homomorphisms."Then
they coincide on 71°) because they preserve the constants:

(i)	 11(0) == 0' == 11'(0'),

and assuming that they coincide on 71"1 they coincide on 71"+ 1), because
the honlolnorphism property and the induction hypothesis give

(ii)	 lJ(u(t I, ... , til» = 0(11(11)• •.. , lI(tn» = 0(/"(11), •• " Ia'(tn»
= 1"(0(11 • ••. , In».

Thus, they coincide on all of Tr. as desired.
Existence.' Agnin by induction, we can define ,. on 71°1 by (i), and on

11"· 1Jby (ii), assuming 11 already defined on 11"1. Thus II is defined on all of
7~ 0

t·

We now introduce additional basic concepts. A data representation A has
(Ibsolulely lUI cOllfusioll if und only if the unique l:-homomorphism
11: 7·r. -+ A is injective (i.e., each 11, is injective), and a data representation A

415 474 J. Meseguer, J. A. Goguen

has ',0 jlll1k iff II: Tr. -+ A is surjective (Le., each Jr, is surjective). A :E-algebra
having no junk is sonletimes called reachable, prilue, or l1,illi,ual. Proposi­
tion 8 says that for a given 1:, the initial :E-algebras are an abstruct data
type; moreover, because an isomorphism is surjective, this AD1· (Le., eHch

,~.

member of it) has no junk, and because an isonl0rphism is injective, it has
absolutely no confusion. In f~ct, these prop<;rties characterize this ADT.

Proposition /0. A 1:-algebra A is isomorphic to Tr. if and only if it has no
junk and absolutely no confusion.

Pr.oof. The unique l:-homomorphism 11: Tr. -+ A is bijcctive if and only if it
is surjective and injective. 0

It may now be worth emphasizing certain points:

1.	 Notice that we have not defilled the abstract data type for a given
signature (i.e., syntax) 1: to be Tr.; rather, we ha ve let 1: plus the
property of initiality define the ADT as an abstract algebra, that
is, as an isomorphism class of algebras. For example, there will be
one data representation that uses l:-trecs, and another that uses
1:-terms. Approaches that work in terms of onc particular model
are sometimes called 'abstract model' approaches. Ilowever, we
do not believe that the word -abstract' is really npproprhltc for
such approaches (the term -constructive' is used by Carl\vright
[19]). Even if one does prefer such an approach, nlCiny-sorled
general algebra is still a powerful Clnd relevant tool, because such
a model actually is a many-sorted algebra! Of course, one CeI"

define an ADT by giving a particular data representation (as a

representative of the isomorphism class); the point is then that the
class (Le., the ADT) does not depend upon the choicc of
representative.

2.	 We have defined not just the data items of an ADT, but also a

complete set of constructors for thern; in fact, thc·sc"constru·ctors

define the data items 'abstractly', that is, uniquely up to change of

representation.

3.	 We can speak of ,the' initial algebra for a given signature, because

any two are isomorphic, and because we really want to talk about

the ADT, that is, about the whole class of isomorphic algebras.

4.	 Despite this interest in abstraction, it is often necessary to IIl""e

elements of an ADT. The most convenient way to do this is often

J"it iality, ilJtluct ;011, and co",putability

with terms, i.e., with elenlcnts of the ternl algebra Tr.. If A is a }:­
algebra, if I,: Tr. -+ A is the unique l:-homomorphism, and t is a ~­
term, then "(1) is the element of A nanled by t; this idea was used
above to define -absolutely no confusion' and 'no junk'. It may be
useful to think of t as a simple ('straight line') program, of A as a
machine that can execute each -instruction' in 1:, and of h(t) as the
result of running t on A.

The tcrm 'finite constructability' is used by Cartwright [19] for the
condition of no junk with a finite signature. and he uses the term 'unique
constructability' for our"absolutely no confusion' condition. In addition.
Cnrtwright [19] imposes an 'explicit definabillty' condiClon that wt·\vill see
in Section 6 is unnecessary if the functions involved are computable. Thus,
we have here the strange case of an author who not only uses (something
exactly equivalent to a special case of) the initial algebra approach to
abstract data types without knowing it, but who actually argues in very
strong terms agaillst using an algebraic approach to data types at alii

4.2 Data types lvitll equalions

One Inight think that for every abstract data type A, there is some
finite signature 1: (perhaps contained in the signature of A) such that the
abstract data items in A form a l:-algebra absolutely without confusion.
This would mean that the abstract data items are in one-lo-one
correspondence with L-terms (or 1:-trecs). Unfortunately. this cannot
always be done; SOlllC data abstructions are inherently confused. Such data
ubstractions require the use of equations and of a 'no confusion' condition
thut is nlore general than the 'absolutely no confusion' condition. One
example of such a data abstraction is that of all the finite SETs of integers
with the functions of union, singleton, and epsilon (i.e., 'clement of). The
trouble is that union obeys commutative, associative. and idempotent
laws. · · · ..

There are also, many caset ~Ilere one ~flnts. to add some .',uxiliary
functions to a given data abstraction. for example. an emptiness test to
SET. These auxiliary functions might be defined by some equations in
terms of the previously given functions. This subsection generalizes the
preccding subsection to permit equations. (However. the 'no confusion'
condition is deferred to Section 4.4.)

Fix an S-sorted signature 1:. Now given an S-sorted set X disjoint (rom
L, let us think of the elements of X, (for s in S) as variable syl1lbols ofsort s,
and let us fonn a new S-sortcd signature l:{X) by defining 1:(X).l.• ­

477 . 476 J. Mese(}uer, J. A. Goguen

1:,\.'. u X. and L(X)..,.. for \v ~ A.. We can now fonn the r(X)­

algebra TJ:(x) and moreover;"we can regard it as a 1:-algcbra, denoted

TJ:(X),. by simply 'forgetting'· the vHriablc symbols. t We now define a 1:­

equation to be a triple (X, 11, 12), where X is a finite S-indexcu sct and
 I,

t 1, t2 are in TJ:(X)••• Given a l:-algebra A, let us now define un a.~.~;o,",.elJt
t

~

from X to A to be a mapping f X --. A. Notice thut a 1:-algebra A togcthcr ~

.~

with an assignment from X to A determines a I:(X) structure on A (just .:,
'j
,

use the assignment to extend the interpretation function of A). "hen there
is a unique l:(X)-homomorphism from TJ:(x) to A, i.e., a unique I:­
homomorphism TJ:(X) -. A extendingf; let us denote itf~. We no\v say
that a l:-algebra A satisfies the l:-equation (X, t J, 12) iff for every
assignmentfiX -+ A, we have thatf"(tl) =!~(t2). i

I

Unfortunately, there is a subtle difficulty with the way that equations " •

are defined in most of the literature (e.g., in Goguen, Thatcher & W&lgner J
•[36]). As shown in Section 3.4, to get a deductive system that is sound I,

~}
and complete, it is necessary to explicitly declare the variables that are
used in each equation. Hence our notation (X, t 1, 12); we shall also use
the perhaps more easily read form

(VX) tl = t2.

or to make the variables explicit,

(Vxl: sl)(Vx2: 52) ... (Vxn: 511) t 1 = t2,

where X. = (xi I si = s). We shall even allow the familiar notation II
when the variable d<:clarat~on~ are known or obvious.

= 12

Given a set E of :E-equations, let us say thut a 1:-algebna A Stlli.Vies Eiff
A satisfies each equation in E; in that case, let us' call A a (1:, ~):ulgcbra; \ye
also call (1:, E) an equational preselltation. The variCI y of E is thc class of
all (1:, E)-algebras. The following generalization of Thcorcln 9 says that
there always are initial (1:, E)-algebras; it is proved in Section 4.3.3.

Theorem 1J. For any signature L and set E of I:-equations, there is nn
initial (1:, E)-algebra. 0

From the definition of satisfaction it follows e&lsily thut the class of all
(1:, E)-algebras is closed under isomorphisms. Thus, the four relnarks at
the end of Section 4.1 apply as well to the present context where equations
are allowed.

t Thai is, by restricting the interpretation runction for TIC'" fronl I:(X) 10 t; in
general, Ihe algebra rcsulling from such a rcslriclion of un ulgebra A to a
subsignaturc 1: is called a r.·r~duc' and is denoted Alt.

1"it ialit y, i"duct ;011, and COII,putabilit y

4.3 Equatiollal dedl,lclioll

Given a set ~f equations,'the sOlilldlJ~sS of (one-sorted) equational
logic asserts that applying a certain set of rules for deducing new equations
always yields equations that are satisfied by any algebra satisfying the
given equations. Similarly, cOII,pleteIJess asserts that every equation
satisfied by nil ulgebras satisfying the given equations can be deduced
using these rules. These two properties together ianply that, for the class of
all algebras satisfying a given set of equations, the naodel tlleoretic notion
of an equation being satisfied by all algebras in the class coincides with the
proo! tl.coretic notion of the equation being derivable from the given
equations by the rules of equational deduction. Such a theorem was first
given for the one-sorted case by Birkhoff [15]; see also Tarski [82].
Ilowever, neither I-Jiggins [39] nor DirkhofT & Lipson [16] gave rules for
equational deduction in their treatments of the many-sorted case. The first
completeness theorem for many-sorted equational logic was given by
Dcnabou [2] using a categorical approach, which does not involve explicit
rules of deduction. Explicit rules are given in Section 4.3.2 below;
soundness and completeness are treated in Section 4.3.3.

In general, the literature on ADTs has simply applied the ordinary rules
of one-sorted equational deduction to the many-sorted case. But this is not
sound. A first correction of the one-sorted rules by introducing explicit
quantifi~rs yields a systcln which, although sound, is flot.complete; further
rules arc nceded for lhe uddilion and deletion of quantifiers.

4,J. / A" ullsoulld dCl/uctio/1

l"he following eX31npJe demonstrates the unsoundness of using
the usual one-sorted rules for anany-sorted deduction. Let 1: be the
signature with sort set {a, b}, and with 1:1,. = {T, F}, 1:.,. == {.,}. 1:.... ­
{&, +}. La,. = {FOO}, and 1:..." = 0 for all other u, v. (Although we
inlend ·b' to suggest ·Doolean', 1:-algebras need not have as elements ofsort
b exaclly the truth-values T and F; indeed, it may help to think ofT and F
ns two arbitrary symbols that mayor may not happen to denote the same
clclnent in nn algebra.) Finully, let E consist of the following seven
equations, where A, B are variables of sorts a, b, respectively

IT = F
-,F=T
B+-,BI:IT
n & -,n = F

479
478 J. Meseguer, J. A. GoguelJ

B&B=B

B+B=B

FOO(A) = • FOO(A). l

Boolean algebra gives the first six equations. The rules of one-sorted .1
equational deduction now give r

·t
'\T == FOO(A) + • FOO(A) = FOO(A) + FOO(A) t

== FOO(A)	 1.

.. FOO(A) & FOO(A) == FOO(A) & -, FOO(A)	 \
== F.

If these rules of ded~ction ~er~ sound, then lhe equation T = F should
hold in every I-algebra satisfying E. But there is a l:-algcbra DAR
satisfying E where this is not S<l: BAR.. = 0; DAR. = {T, fi'}; 'FOa is' the
empty function; and all the boolean functions are as expected. Thcrefore
these rules are not sound. This example evolved from one suggcstcd by
Gerard Huet, who first pointed out to us the unsoundncss of the ordinary ~

!rules of deduction in the many-sorted case; it is intcnded to suggest how
unsoundness might arise in practical examples such as paranlcterized
abstract data type definitions.

4.3.2 The rules of deduction

The first step toward correcting this situation has already been
taken: equations must have all variables explicitly declared with their
sorts, yielding what can be thought of as equations with explicit
quantifiers. But, if the old one-sorted rules of deduction are modified in
this way. the resulting system is not co",plele. Two new rules arc needed to
add and delete the quantifiers.

Given a signature 1: and a set ()f l:-equations; the following are the rules
for deriving equations:

(I)	 Reflexivity. Each equation

(VX)t=t

is dcrivable.
(2)	 SymltJetry. If

(VX)t = t'

is derivable, then so is

(VX)t' = t.
(3)	 Transitivity. If the equations

lf(VX)t == ,', (VX)I' = t

Juitiality, inductiolJ, and cOlnputability

are derivable, then so is

(VX)I = t".

(4) Silbstltutivity.	 If •

(VX)II == 12

of sort s is derivable, if x e X is of sort s', and if

(V Y)ul == u2

of sort s' is derivable, then so is
(VZ)vl == 1)2,

w~lere Z == (X - {x}) u Y, vi == tj(x +- .uj) fpr. j = 1. 2, ~n"
'tj(x.- Ilj)' denotes the result of substituting uj for x in IJ.'

The following two rules complcle '(he system: ·

(5) Abstraction.	 If

(VX)t := I'

is derivable, if y is a variable of sort sand y is not in X, then

(VX \..({y}t = I'

is also derivable. (This rule also applied if X := 0. where there are
originally no variables, and one is added.)

(6)	 Concretioll. Let us say that a sort s is void in a signature ~ iff
TIl' == 0. Now, if

(VX)t :::z t'
is derivable, if x E X, does not appear in either t or t ' , and if s is
non-void, then

(VX	 - {x})t -= I'

is also derivnblc.

4.3.3 Soundlless, cOII.pleleness, alld ;1I;tlality theorems

This subsection gives the basic soundness and completeness
propprties for the rules of equational deduction given in Section 4.3.2
Although the ·ordina..ry' rules .of, deduction. are not .in general.,Jound
(Section 4.3.1). it turns out that for many.examples of interest they arc

t	 This notion of substitution enn be made precise by ulinglhe same machinery
that was used to define equational satisfaction in Section 4.2. Let I bo • E-term
with variables from X, i.e. IE Tr.(X). lei x E X. and let II E Tt<Z). where
Z - (X - (x})v Y. Now define): X -. T1(Z) byf(y) - y if y" x, andf(x) - ...
Then'-: Tt(X) Tt(Z) is the unique l:.homomorphism extending); and we
define ,(x .- u) -I" (I).

480 J. Meseguer, J. A. Goguen

both sound and complete; for example, it will suffice for there to be a
constant term of each sort. However, there arc important examples not
having constants of some sort$, such as the theory of partia"y ordered sets.
or many common parameterized ADTs. Theorem 14 below gives a simple
necessary and sufficient condition under which the ordinary rules arc both
sound and complete.

TI,eorem J2. SoulJdness. Given a set E of l:-equations, if an equation is
deducible from E using rules (1)-(6), then it is satisfied by every l:-algebra
satisfying E.

The proof, which is a straightforward but ledious check of the soundness
of each rule separately, may be found in the appendix. It is interesting to
notice that only this result, and not completeness, is needed to prove
existence of initial algebras fo~ the equational case, which we restate as

TI,eoren. JJ. For any signature I: and set E of l:-equations, there is a
(1:, E)·algebra T I •E that is a quotient of TI such that for any other (1:, E)­

,. algebra A, there is a unique I:-homomorphisrn from Tr..E. to A.

Proof. Let Q£, also denoted Q for short below, be the following I:.
cODgruence on TE• .",

.tQt' iff (V0)1 = I' is- derivable from E using rules (1)-(6) of
Section 4.3.2.

Rules (1)-(3) give that Q is an cquivulencc relation. We now show
substitutivity. Given u in l:w,J with w = 51 ••. SII, the equation

(VX)a(x), ... , XII) = a(xl' ... , xn)

holds by rule (I), with X containing xi of sort si for i = I, ... , II. Dy II

applications of rule (4), assuming thilt tiQt'; for; = I, II., II, we no\y get

(V0)u(tl, II., In) = a(t'I,. "' I'll),

and therefore a(tl, II., tn)Qa(t'l, "" I'll) as desired.

Now let Tr..£ = TI/Q. We first show that Tr..E is a (1:, E)-algebr&l, i.c., TI .£

satisfies each equation (\I X) t = I' in E. Say X has elelncnts x I, ... , .lll and
consider a map f X -+ TE•E sending xi to [Ii] in Tr..E' This nlap can be
factored as q 0 g, where q: Tr. -+ TItE is the quotient nnd g: J'(-t Tr. sends xi
to til By initiality of Tr..(X), we have/# = (/0 II". Then what we have to
show is that/"(I) = /*(1') or, equivalently, g"(t)Qg'(t'). Out (see footnote,

Initiality, ilUluCIioll, and conlplltability 481

S~clion ,. 4.1) g"(t) = t(xl +- tl, ... , XII +-. til) . and g#(t~).::

t'(x I +- t I, "" XII +- til). Moreover, the equation

(V0)'(~1 ~ tl, •.. ,XII ~ i-II) = l'(xl·~ tl~ •.• ,x" +- til)

,I is deducible using rule (1) in the form

(V0)ti 1::1 tl,
f
t for I == I •... , II, and II successive applications of rule (4). Thus.J#(t) ­
i

/'(t') as desired.
~ We now prove that Tr.,s is initial. Let A be a (l:,E)-algebra. By the

soundness of rules (1)-(6), A satisfies all equations ('10) t - t' deducible
froln the equations in E using these rules. By the definition of satisfaction,
this 11leanS that 1a(1) /1(1'), for (V0) t == I' any such equation. where CI

I,: Tr. -+ A is the unique hOlnomorphism. In olher words, we have that
Q ~ Q", and hence, by Proposition 6, there is a unique l:-homomorphism
II: T ItE -t A such thalli 0 q = II. where q: Tr. -+ Tr.,E is the natural quotient
Inap. All that is now left is to prove uniqueness of U. Any u': Tr.

9
E ... A must

.1" satisfy.,' 0 q = I. since TI is initial for all l:-algebras; therefore the
" uniqueness condition of Proposition 6 gives the desired result. 0

This construction of the initial (1:, E)-algebra, Tr.,. as a quotient of the
tcrm algebra by the congruence Q£ generated by equational deduction
rroan E, is the natural generalization of TJ:, to the case where there arc
equations. We now state the completeness of our rules of equational
ded~ction; the proof has. been exiled to the appendix.

TI,eorelll J3. COII",/etelless. Given a set E of ~-equations, then every 11
equation satisfied by all the algebras in the variety of E .is derivable from E

:\ using the rules (I) to (6) above.

We next give necessary and sufficient conditions for the ordinary rules of
equational deduction to yield the same derived equations as the rules of
Section 4.3.2. Recall that a sort s is void in 1: iff TJ:,.. aI 0. By an ordinary
equation of sort s over 1: is meant an expression of the form t =" where t
and c' are both l:-terms of sort s. Such an equation is satisfied in a given ~­
algebra A iff all the equulions of the form (V X) t z= t' are satisfied in A.
provided that X includes all the variables occurring in t and t'. By the
ort/illnry rules o/equatiulle" declllctioll we mean the variants of rules (1) to
(4) ubove obtained by elinlinating quantifiers. Then, for a given signature
r, we say that tlae soundness aflel co",pletelJe5S theorems hold in ordinary
fornl iff for any set E of l:·cquations (with quantifiers), an ordinary
equation is satisfied by all algebras satisfying E iff it is derivable using the

483
~rr'482 J. Meseguer, J. A. Goguell

ordinary rules of equational deduction. Let E{x: s} denote the new
signature constructed from 1: by adding a new constant x of sort s.

Theorem 14. The soundness and completeness theorems hold in ordinary
form for a signature L iff for all sorts s, s' of L, s' is non-void in the
signature :E{x:s}..	 0

The proof of this result may be found in [32], where necessury and
sufficient conditions for the quotient of Tr. by the L-congrucnce generated
by the ordinary rules of deduction to be an initial algebra arc ulso given.

4.4 Equivalel1ts of ill;t;ality

Some reseurchers have felt the initiality condition, that 'there
exists a unique homomorphism', is too abstract to be of interest (e.g.,
Cartwright [19]). Yet there are equivalent properties having nothing to do
with category theory. This subsection states a number of these, and in
particular some generalized Peano axioms.

We now generalize the 'no junk, no confusion' conditions to the case :,
where there may be equations. A (I:, E)-algebra A has 110 confusio" relative ~! I

to the set E of L-equations if and only if the unique L-homonlorphism
II: TI •E -+ A is injective. We now give a corresponding charactcrizlltion of
no junk, and then show that these properties cOfnpletely churacterize the
ADT of initial (1:, E)-algebras. I

Proposition 15. A (L, E)-algebra A has no junk if und only if the unique 1:­
homomorphism Tr..E: A is surjective. Moreover, A is isonlorphic to TI.E:
if and only if it has no junk and no confusion relative to E.

Proof. By definition,. A has no junk iff TI -+ A is surjective, and we know
from lhe proof of Theorem JJ lhal Tr. Tu is surjective; therefore (by
Proposition 3), A has no junk iff TI,E -+ A is surjective. Then II: TI,E -+ A
is bijective if and only if it is surjective and injective. 0

We now give more concrete equivalents of these conditions, first showing
that structural induction [17] is equivalent to the 'no junk' condition, i.e.,
to reachability.

luitiality, induction, allel cOI1.putability

})roposilioll /6. The following are equivalent for a 1:-algebra A:

(I)	 A is reachable, i.e., the unique IJ: Tr. A is surjective;
(2)	 A has no proper 1:-subalgebras;
(3)	 Structural i,lduct;OII. If P = (P, Is in S) is an S-sorted subset of A

such that
a. for each constant (1 in 1: of sort s, (1 is in P" and
b. for each function symbol a of arHy sl ... sn and sort s, if pi is in

P" for I =: I, ... , n, then a(pl, •..• ptl) is in P,.

then P = A.

Proof. We first show that (I) implies (2): if A is· reachable and P is a'proper
L-subnlgebra of A, then IJ-I(P) is also a proper l:-subalgebra of Tr.. which
is irnpossible by Proposition 4.

To show that (2) implies (3), it suffices to note that the conditions (3a)
and (3b) say exactly thai J) is a 1:-sub&llgebra of A.

Finally, to show that (3) implies (1), suppose that IJ is not surjective.
Then its image is a proper subalgebra P of A, i.e., is a subset P of A
satisfying (3a) and (3b). 0

We now treat the Cilse where there are no equations.

Propos;t ;011 J7. A is an initial 1:-algebra if and o~ly if it satisfies the
following gelleralized Peallo aX;OIJls:

(I)	 I f a and a' are distinct function symbols in 1: of the same sort s,
then the images of the functions that they denote on A are disjoint
subsets of A,.

(2)	 Each a in 1: denotes nn injective function on A.
(3)	 Slrllclliral illduction. If P == (P, Is in S) is an S-sorted subset of A

such that
a. for each constant (1 in 1: of sort s. a is in P,. and
b. for each function symbol a of arity sl. .. .slI,and sort s, if pi is.in

P" for ,I == 1•... , II tJ1e~ o(pl, ••.• P!1) i~ in P,.
then P == A.

])roo/. Assume that A is initial. Then by Theorem 9 and Proposition 2, A
is isomorphic to Tt ; so let us assume that A is Tt . Then axioms (1) and (2)
above follow from the construction of Tr. in Theorem 9. Next, axiom (3)
holds by the previous Proposition.

For the converse, assume that A is a l:-algebra satisfying axioms (I), (2)

"'0'+ J. M esegller, J. A. Goguen

and (3). Then the previous Proposition tells us that the unique L­
homomorphism 11: Tr. -+ A is surjective. We will be done if we prove that 1,
is also injective. i.e., if we prove that 11(1) = lI(t') for I, " in Tt ., implies that
t = t!. We will prove this by induction on n = max{depth(l), depth(t')},
where depth{t) is the depth of t as a tree. For n = 0, t and I' are constants
in l:A.J and what we want follows from axioln (I). Now suppose t,l' E Tr..J
such that max{depth(t), depth(t')} = II + I, and assume (without loss of
generality) that depth(t) = " + 1 and t = a(t I, ... , tk) for k > O. l"hen
lI(t) = (fA(JJ{t 1)•.. .,/'{lk», and by axiom (I), " must be of the form
a{t' •• ...• t'k) for some t'l •... , I'k in A. Then axiom (2) implies lhat

11(11) =h(t';) for i = I, ... t k.

Because each ti and t'; has depth less than or equal to '1, the inductive
hypothesis gives us that

. ti = t'; for j = 1•••• t k,

and hence that t = t', as desired. 0

It follows from the above proof that for reachable algebrns, the first two
generalized Peano axioms in Proposition 17 are equivalent to 'absolutely
no confusion'. This equivalence fails for nonreachable algebras, because

· the operations may fail to be injective outside the imnge of 7"r..
We now further generalize th.~ Peano axioms .to include c.quations.

Tlleore",18. Let L be an S-sorted signature, let A be a l:-algebra, and let J~

be a set of l:-equations. If t is a L-term (Le., a 'ground' terln, containing no
variables), let [I] denote the resull of evaluating 1 in A. Then A is initial
among all 1:-algebras that satisfy E if anti only if

(I)	 [I] = [t'] in A if and only if the equation (V0) I = I' CUll be
proved from equations in E using the laws of many-sortcd
equational deduction given in Section 4.3.2.

(2)	 Structural i"ductioll. If P is an S-indcxed fumily of subsets I'. of A
such that:
a. for each constant a in 1: of sort s, [a] is in P, and
b. for each function sylnbol a in L of arHy sl ... Inl and sort s, if ai

is in P,1 for i = 1•. "" II, then a(Cll • ••. , all) is in P,
then P = A.

Proof. We have only to show that.for a reachable,1:-ulgebra At axiom (I) is

. 'equivalent to 'no confusion" i.e., to injectivily of the unique II: TI •l -+ A. If

,. is injective, then A is isomorphic to TIlr. and TItF. SHlisfics uxioln (I) by

lllilicdily, ;lIt/IiClioli. antI cO/upulcJlJility .	 . "-485

construction. Conversely, suppose that A is reachable and satisfies axiom
(I). Let/. T1 -+ A be the unique l:-hornonlorphism. Then A is isomorphic
to T1/Q, and axiom (I) says that Q, = Q£ the congruence generated by
thc rules of equational deduction from E. Therefore A is isomorphic to
7r./Qt; = TI •l which is inilial; thus, 11 must have been an isomorphism. 0

'rhis proof shows that if the second axiom (which is equivalent to t no
junk t

) is satisfied, then the first axioln is equivalent to 'no confusion'. Thus,
when E =0, the first condition above is equivalent to axioms (1) and (2)
of Proposition 17. Theorem 18 may not have been formally stated before.
but the intuition behind it is part of the folklore.

5 Abstract Inacbines

Recall that cl"ta types are algebras, whereas II.acldlles have
intcrnnl slates and use techniques and concepts from automaton theory.
such as reachabilily, observability, and minimality. Abstract data types are
uscf~1 for understanding the type systems of programming languages; ..
especially when they perlnit user-defined types_ ~s it} ALGOL 68 [B7].
Abstract machines are useful for u·~d~rstanding the specification and im­
plclnenlalion of software modules, for example. as in the HDM metho­
dology of [61]. Il is a serious error to assume that there is little or no
difference belween these two enterprises. This error has led. for cxample. to
thinking that the appropriate definition of 'implementation' for software
modules is given by the algcbrllic nolion of isomorphism, and has also
led to the ruther pointless controversy about whether final or initial
algebra sClnantics is ultimately 'the best approach'. For abstract machines.
it is their bellavior that matters. Muchines that are different (Le., non­
isolnorphic) as duta types can still have the samc behavior. Thus. a
soft ware nlodule can in general be realized in many different ways.

Consider for in;;tancc the theory of autolJ.ata. It has three sorts. input.

state, uno output. and operalors

e: input, input -+ input

A: input

So= stute

'Iext: input, state ~ state

(Jul: Slate -+ output

plus some obvious equulions lhat Inake input a monoid and lIext a
Inonoid action. An ClIlIUIJlClIOIi is then an algebra on this signature,

487 486 J. Meseguer, J. A. Goguen

satisfying those equations. An autonlaton becolnes &1 /J/llck box when we
consider the sorts input and output as the only visible sorts. We can then
observe the automation's behaviour by feeding it inputs and observing
the corresponding outputs. More generally, we are allowed to evaluate in
our automaton a,lI exprf!Ssi(JllS willi visible sorls, such as oUI(lIexl(n. c,
next(b, so»), or A.. a • b but 110t internal states, i.e., not expressions of
sort stale, such as next(a. b, so). Two automata witti" same input and
output scts have the san,e behavior, i.e., nre indistinguishable us 'black
boxes" if and only if all expressions with visible sort have the sanlC value in
both.

All this generalizes for an arbitrary signature 1: and a subset Vs; S ofsorts
declared as v;sible sorts. Let M be a 1:-algebra (we usc M to stress that, by
specifying which sorts are visible, we are looking at M as &l machine) we
shall make more precise what we mean by 'evaluating an expression with
visible sort' in M. Let My denote the V-sorted set (M... I v E V); then the
expressions in question are the clements of Tr.(M If)1" for each visible sort v.
There is an evaluation map CM that computes the rcsult of evaluating any
such expression in M, namely the unique I:(M y)-hornomorphisrll to M
(M can be viewed as a I:(M If)-algcbra by adding the clements of AJ v

as constants). We then say that two I:-ulgebras, Al and M', nre
(V-)bellaviorally identical, or that they have the sanae (V-)belulv;or iff

(i) My = M'l', and
(ii) £",(t) = £",,(1) for each t in Tr,(M If)... with v in V.

For 1: an arbitrary signature, the usual notions of autonluton thcory
generalize to machines, Le. to I:-algcbras \vith a given set of visible sorts.
For exumplc, every autonluton behavior udlnits an i"i,;a1 re&llization,
which is initial among all 3lftomata that have that behavior; therc is also a
"lilli"ull or filial realization, having the property of jill"lity, dual to
initiality, among all reachuble reCllizCltions of thut belta vior. The initial
realization identifies as few states as possible; the millirnal realization
identifies internal slales as much as possible while retaining the same
behavior; thus it uses as few states as possible. The reader may consult [33]
for more powerful generalizations of classical automaton theory results
(e.g., [28]) to machines; see also [89] and [25]. llere, we construct initial
and final realizations of a machine's behavior using definitions which,
though not fully general, suffice to present the main results with a
minimum of technical machinery.

The initiality and finality theorems for machines use the notion of a
strong V-homomorphism between two V-behavior&llly idcntical machincs.
This is exactly a I:-homomorphisln that leaves unchanged all elenlcnts of

111;1 ialit y, i"clllct ;011, llllli co",plltability

external sort. For M and M ' V-behaviorally identical, this can be
formulated by saying thatt M -. M' is a strong V-/lomomorpllism ifffis a
'f.(M v)-hotnomorphism.

Theorel1' 19. Let 1: be an S-sorted signature, V s; S a set of visible sorts, . .. ,. ..
and M a I:-algebra. Then there is an algebra I(M) behaviorally identical 10

M, called the ill it it" realization of the behavior of M. such that for any 1:­
algebra M ' behaviorally identical to M there is a unique strong v­
honlolnorphism I,: I(M) -+ M'.

l'rooJ. I(M) is nn S-sorted subsct of Tr.(M 1'). Specifically, define I(M) to be
the (S-sorted) set of V-irreducible terms in Tt(M v), where a term t is v­
irreducible iff any subterm I' of visiblc sort 11 is an element of M., i.e., iff

t = t l(y 4- t') for I' of sort v E V implies t' EM••

In particular, for each visible sort IJ E V, we have l(M). == M p' The
opcrutions of I(M) nre defined as follows: the constants for visible sorts are
those of 1.1, and for other sorts the constant symbols in the signature. If
(J E 1:J1 ... J"•• t and if t, E I(M)J' for i = 1, ... , II, then the value of the
operat ion 0(1 I, ••• , til) is either the clclnent £.,(a(t 11 ••• , t,,» eM. if the sort s
is visible, or else if s is not visible, the term a(t h ••• , til) e Tr.(M y)" which is
itself V-irreducible since all its subterms t I, ••• , t. are V-irreducible.

From this definition it is clear that M and I(M) arc behaviorally
identical. Moreover, I(M) -= l(M') for any M' (V-)behaviorally identical
to AI, i.e., I(M) does not depend on the representative M, but only on its
behavior.

Note also that there is a unique surjective I:(My)-homomorphism
tICAl): TI(A-f 1') -. /(1.1-). Thus the uniqueness part of the" theorem ·is·proved.
since there is at Inost one l:(M If)-hoillomorphism (i.e., a unique strong V­
honlornorphism) between I(M) und any M' behaviorally identical to M.
To prove the existence part, for any M ' that is (V-)behaviorally identical
to M. define the function 11: I(M) -. M' by II(t) = £Af,(t). We will be done if
we show that

(*) II 0 tICAl) = £AI·

since then, by Proposition 6, II is a r.(Mv)-homomorphism, i.e., a strong V­
hOlnolnorphism, as desired. Notice that £,(,,)(t) = t for each t e l(M); this
follows from structural induction over the operations in I(M). Thus for II a
visible sort. (.) follows from M ' and I(M) both V-behaviorally identical to
1.-1. For sa nonvisiblc sort, note that any tcrm t E Tr.(M .,), can be written as

I = I' (x 1 .- t I, ... , :<II .- IIJ)

488 J. Meseguer,
•

J. A.
I'

Goguell

..	 with I'(X I .- £I(M)(ll), .•. , XII +- £,(M)(/II» V-irreducible (just luke II, ... , '"

the largest subterms with visible sorts occurring in I). This finishes the

proof, after establishing (by structural induction and the ho.nonlorphic

property of £M') that for any l:-algcbra M' and 1 as above, the following

I ..

equality holds	 "'t
':!~j'

(••) £M,(I) = £M,(t'(xl 4- £~f'(t I), ... , XII +- £),,(tll»),	
'ftJ

:~:~
since then we get

'~~f;f
h(£I(M)(I» = h(£l(u)(t'(xl .- cl(M)(tl), .•• , XII +- CI(M)(/II»»	 ~.~

(by (*.»	 \¥~,
~'
:,'i~= h(I'(x1 4- £,(M)(I I), , XII +- £1(~1)(tll»)
~"~ ~
~~,.= £~I'(t'(X I 4- £,(M)(I I), , XII +- £/(~,)(III») It~

.{~l~'(by definition of II)	 ,f1~I

,:..fl.
= £M'(l) (by (*.) and behavioral equivalence). 0	 ,I~~

"~~~

;I~The final realization theorem restricts attention to reachable machines. A

I:-algebra M is call,ed V-reachable, or a V-reachable machine, if the }~

,.	 evaluation map eM: Tr.(M v) -+ M is surjective. Int uitively this corresponds ~;f.
to not having internal stales that cannol be built up from the constants "'f,

'!l~
and the visible values by repeated operations. Note that J(fly/) above is V­,':i~

.1\;~reachable by construction. The construction of the final realization t.,;,
'~~identifies any two internal stat'es that cannot be distinguished CIS different ~ ..

Il
from the visible s'orts, i.e., thal are (V-)observably equal.	 :~,:.t

,~t:
.~.

TI,eoreln 20. For 1: an S-sorted signature, V £; S a set of visible sorts, and
'J~
,,';MaL-algebra, there is a V-reachuble algebra N(M) thal is V-behaviorally

identical to M, called thefilltll (or Neroi/e) realization of the behavior of M, '.
,

;~ I~such that for any V-reachable algebra A-I' behaviorally illentical 10 A-l
It,t;

there is a unique strong V-homomorphism q: M' -+ N(M).	 ".:.
'1:,
.,'.

" ~.Proof. Define N(M) to be lhe quotient of I(AI) by the following
~~}:

congruence ner: for visible sorls v, IncrIII' iff I = t'; for s not in V, tllcrJI' iff ..,•.,
~ ffor each tcrm tiE Tr.(M v u {Y})II with y a variable of sorl s, v E V, one has
" "• £I(M)(t I(Y +- I) = £,(M,(t 1(y +- I'»

Then ncr is a l:-congruence, and (after the trivial identificulion of each ~~ .
t EM" with the one-element equivalence cluss {I}) it also follows froln the

construction that N(M) is behaviorally idenlic&llto J(M), thus, also to M.

By initiality of I(M), any slrong V-homomorphislll 'I: M' -+ N(A/), for Af'

V-reachable and behaviorally identical to M must satisfy q 0 I, = p,

for h: l(M) -+ M' and p: I(M) --+ N(A;I) the unique strong V­

homomorphisms. £M' surjective and C~I' = " 0 £I(~I) ianply 11 is surjective.

llliliCllity, ;nducl;Oll, alJ,l ..~o",.'putalJility .. ,	 489

Thus by Proposition 6, q exists and is unique iff the congruence Q.
ussociated to 11 is contained in nero Let I, I' e l(M), be two terms such that
11(1) = ',(1') but (I, t') is not in ncr,. Then there is a term 'I E Tr'<M v u (y})"
for sonle v E V, such that

CI(~I)(1 I (y +- I» :F £,(AI)(I I (y +- t'» EM".
Since £Af' = I. 0 £,(A') and 11 11 is the identity on M tI this inequality becomes

CM·(t I (y +- I» :;:. £~,·(t I (y +- t'» eM".
which in turn can be expressed us

~ ~I·(t I (y 4- t» 'I: ~ M·(t 1(y f- t'» E M p

for Ju ': TI(M') -+ M' the unique l:(M')-homomorphism. since 6",. ex­
tends C~'·. Using the homomorphic property of ~u, and reasoning by
structural induction on t 1 as in (**) of the previous theorem. this
inequality can be expressed as

~AI·(II(Y .- ~~,.(I») :;:. ~~I'(t .(Y +- b~,,(t'») eM.,.
This is the contradiction we seek, since

«5,.,.(t) = £~,.(t) = 1,(1) = "(1') = £~,.(t') = bA1,(t'). 0

We fiJlish this section by giving a precise definition of an abstract nlacldne.
Two data types are '~bstrnctly ,th~ same' iff .they are Asomorphj~" Two
machines are 'abstractly the saine' iff their be/laviors are isomorphic. i.e.•
itT (up to a possible change of representation) any expressions with visible
sort give the sanle result in both. Notice thal, both for data lypes and for
Illachines, 'nbstract' nleans (independent of the representation', but in the
case of Inachines this can happen without the machines being isomorphic
algebras; only their behaviors have to be isomorphic. In [33] behaviors
are actually algebras and the phrusc 'isomorphic behavior·, has the usual
algebraic sense. In this paper we give an equivalent definition that does not
require explicitly defining beh&1viors as algebras, but captures the intuition
of visible expressions giving 'the silmc' result.

Dej;lIi1ioll 2J. For l: a signature and V a set of visible sorts. one says
that two machines M and M' are V-bellaviorally eqldualellt, or that they
ha vc ;sa",orpille bel.avlars, iff there is a V-sorted bijection ex: M v ... M'v
such that for each 1 in Tr.(M v)" with v in V one has

cx([~,(t» = £AI,(a" (I»,

\vhcre ex 11 is the unique l:.(M v)-homomorphism induced by the map
Al v .!+ M'., .!+ TI(M'.,), with '1 the inclusion.· 0

490 J. Meseguer, J. A. Goguen

• It is easy to check that behavioral equivalence is an equivalence relation.
..	 Thus we can now define an aBstract Illaclline'(or abstract "Iodule) as an

equivalence class of machines modulo behavioral equivalence. It is also
easy to check that if M and M' are behaviorally equivalent then

. (i) Their initial realizatians l(M) and l(M') are l:-isolnorphic.
(ii) Their final realizations N(M) and N(M') are l:-isolnorphic.

Indeed, if one defines a V-homo"10rpIJis,"f. M -+ M' as a ~-homolnorph-
,ism such that/II is bijective for each v in V, Theorcnls 19 and 20 still hold
after changing 'behaviorally identical' by 'behaviorally equivalent'. and
'strong V-homomorphism' by 'V-homomorphisnl'. Note finally that the
concept of abstract machine generalizes that of abstract data type since in
the case where all the sorts are visible two machines arc behaviorally
equivalent iff they are 1:-isomorphic, i.e., abstract machines become
abstract data types when all sorts are visi ble.

The most common use of final realizations N(M) is to take as M the
initial (1:, E)-algebra, for E a set of equations, and then to take the final
realization of its behavior, called the final algebra specified by (E, E). We
shall denote this algebra by NI,E. This is the idea in [38], latcr formalized
by Wand [89]. Note that TI,E and NI,E both specify 'lie sa",e abstract
machine; note also that I(Tt,E) is in general not isomorphic to TIlE but
there is a surjective strong V-homomorphism 1(Tt .l) -+ Tt,E;'

6 Iniliality and computability

This section. is a SlJrvey of results from a rather widely scattered
literature on computable algebras, initiality, and finality. including work
by Malcev, Rabin, and Bergstra and Tucker. We stress tire fundamental
role played by the categories of: (1) recursive sets and recursive functions;
and (2) recursive algebras and recursive homomorphisms. The latter
category inherits appropriate versions of basic universal algebra construc­
tions such as quotients and free algebras; this helps in establishing facts
about computable algebras. Our exposition also includes an introduction
to rewrite rules, and a discussion of equality enrichments and their relation
to both computability and 'inductionless induction' theorenl proving. One
new result is an intuitively appealing characterization of conlputable
algebras using only algebraic concepts; this can be secn as a purely
algebraic formulation of a Church-like thesis.

lll;l;ality, illduction, and con,pulability	 491

6. J Recursive sets alJd recursive /ulJctions

We assume that the reader is familiar with the intuitive notion of
an (cffectively) co,,,pldable total (or partial) function on the natural
numbers; this is a function for which there is an algorithm to compute its
values. Church's tlles;3 identifies this intuiti~e notion ..of a computable
function with the precise mathematical notion of a recursive function.
Recursive functions can be defined in several equivalent ways, such as
hunbda dcfinabilily, Turing machines, and primitive recursion with the IJ­
operator, using 0, the successor function and the projections, where, for
P(x) n predicate on the natural numbers, the p-notation JlX[P(x)] stands
for 'the smallest x such that P(x)'.

Unless otherwise stated, by a recursive functionJon the set w of natural
nUlnbers we will mean a total function f. Cl) -+ co that is recursive. A
recursive set is a subset U ~ CJ) such that its characteristic function
Xu: W -+ w is recursive, i.e., such that there is an algorithm to decide
whether '1 E U. The following is a useful technical tool in studying
recursive sets.

Le""na 22. Each nonempty recursive set U can be expressed as the image
of a recursive retract. i.e., of a recursive function q: co -+ w such that
q 0 q = q.

Proof. Let Ito be the smallest clement of the nonempty set U. i.e., let
'10 == Jlz[Xu{z) == 1]. Then qu: w -+ w as given by the A-expression

AX. if x E U then x else '10,.
satisfics qu(w) = U, and is a retract, i.e., qu oqu == qUe

Conversely, if q is a (recursiVe) retract; 'then its nonempty·· image
U = q(w) has a recursive characteristic function given by

All. if II = q(,I) then 1 else O. 0

A recursive/unctloll/. U -+ V between two recursive sets is a total function
from U to V that is equal to the restriction of a recursive function on the
natural numbers; i.e., there is a recursive/o: w -+ w such that the diagram
in Figure 14.3 commutes (where the vertical arrows denote set inclusions).
Under these conditions, we say that/is the restriction of/o, and lhatfO
ex' elltls f.

Lcnlllia 23. Recursive sets and recursive functions are the objects and
arrows, respectively, of a category that we shall denote REC.

. 492 J. Meseguer, J. A. GoguelJ

•	 Proof. Since the identity function 1..., on the natural nunlbers is recursive
and restricts to the identity function lu for each recursive set U, it is clear
that the identity axiom is satisfied. To see that the composition g ofof two
recursive functions f and g is recursive, consider the diagram and notice
that the rectangle obtained by 'pasting' the two smaller rectangles also
commutes. Now, gO 0 f O is recursive, since it is well ..known that the
composition of two recursive functions on w gives another recursive
function (this is intuitively obvious, since from an algorithm to computcfO
and another to compute gO we can obtain one to compute gO 0 fO.) This
shows that 9 of is recursive. 0

Given a recursive fO: CJJ -+ wand recursive sets U, V, it may not be
decidable whether or notlO restricts to a function from U to V. I~owever, if
V is noncmpty, the function q., 0 fO will always so restrict, since V is the
image of qy. This provides a fully general method (when V is noncnlpty)
for explicitly presenting a recursive function between recursive sets U, V,
namely as a recursive function on w followed by the retract 'Iv; for it is
straightforward to check that if fO restricts to f, then so does q., 0 fOe

Note also that our ~efinitic;>no.fa recursive function}: U -+ V bcl\yeen two
recursive sets captures all computable total functions from U to V. For iff
is effectively computable and if U is nonempty,' then the function f C) llu is
recursive on CJ) (by Church's thesis) and extendsf(here qu is understood to
have U as its target). Hence, i~ the sequel we will sometinles define a
function with domain U by giving its algorithm, without explicitly
mentioning its extension.

Len,",a 24. An arrow f. U -+ V in REC is an isolnorphism iff it is bijective.

Proof. Since the arrows of REC are functions, it is clear that Clny
isomorphism is a bijection. Conversely, if the recursive function f is
bijective. then its inverse function f- 1 is also recursive, as shown by the
expression Ax. Jlz[z E U and !(z) = x]. 0

Fig. 14.3. Definition of recursive function

u
I

• V

.! I
w • w

r

493J"it iality, iuc/llctioll, and COlllPUtcibilil y

An isomorphislnt U -+ V in REC will be called a recursive isoIJlorpIJis".,
and then U and V are said to be recursively ison.orplJic. (Note that this
notion of recursive isomorphism is differe'Jt from the standard one in
recursion theory.)

Lelluuo 25. Each infinite recursive set U is recursively isomorphic to 00;
each finite recursive set U, say with card(U) = ",, is recursively isomorphic
to the set [".] 1: {x E W Ix < ",} of the first III natural numbers.

Prouf. If U is empty, then U = [0]. If U is a nonempty. the function from
U to w given by the expression A.x. card{y E U I y < x} defines a recursive
isonlorphislll of U with w if U is infinite, or with [nl] if card(U) == III.

D

This proof is not constructive, since we may not be able to decide the
cardinality of U from an algoritlun to cOlnpute its characteristic function
(sec [80] 5.1, S.XV).

'A recursive equivalence relatioll on a recursive'set U· is' an equivalence
relation Q on U ~uch that it' ~haracteris1ic function Xu: w2

':-:t W is
recursive, i.e., such that we can decide when two elements are Q-equivalent.
The equivalence relation Q, associated to a recursive functionfi U -+ V is
clearly recursive (since xQ, y ifT!(x) = fey»~. Conversely, given a recursive
equivalence relation Qon U, it is an easy exercise to see that we can define
11 recursive retract Pa: U -+ U that induces Q, using the expression:
AX. J(z[(z, x) E Q]. The retract Po picks a canonical representative for each
equivalence class modulo Q, namely the smallest element of the class, and
so the set Pu(U) is in bijective correspondence with the set of equivalence
classes U/Q. Since PA(U) is a recursive sel and Pa: U -+ Pu(U) is a recursive
surjection, this provides a notion of quotient within the category REC
(replacing 'equivalence class' by 'canonical representative'). Of course.
Po: U -t Pa(U) also has Q as its induced congruence; moreover. the

, Fig. 14.4. Associativity of recursive function composition

,
I.
III ·v .. 51'U

I

I I !
.. w .. wwI	 r "

494 J. Meseguer, J. A. Goguen

(recursive) inclusion j: Pa(U) -+ U is a right inverse to Po. i.eo. 1'(1 0 j =
l,.o(v). More generally, for any surjective recursive function f. V -+ V we
can find a recursive right inverse 9 (a 'choice function') such that! 0 g = Iv.
One such 9 is given by the expression A.x. IlZ[Z E U and/Cz) = x]. There is a
lemma of quotients for recursive functions entirely analgggus to the one
for homomorphisms in Pro·position 6. .

Proposition 26. Lett U -+ V be recursive function. Then the following are
equivalent properties off.

(1) There	 is a recursive isomorphism u: Po,(V) -+ V such that
u 0 Po/ ==f.

(2) / is surjective.
(3)	 If II: U -+ A is a (not necessarily recursive) function to a set A,

then

a.	 There exists a function II: V -+ A such that u o! = Ja (i.e., the
diagram in Figure 14.5 commutes) iff Q, £; Q,..

b.	 If such a function II exists, then it is unique. Moreover, if A and
II are recursive, then so is u.

Proof. We first show that (1) implies (2): since Pa, is surjective and II is an
isomorphism, I is also surjective.

We next show that (2) implies (3b): let 9 be' a recursive right inverse forf.
For any u such that u 0 I = II we have

u o/= uo(/og)o/= (lI og)of.

Sincef is surjective, this shows that II = 11 00; thus II is uniq ue, ;and is also
recursive if II is.

Assuming (2), we now show (3a). In fact, we will show that (I. 00) 0/= 11
iff QJ' S; Q,. Again letting 9 be a recursive right inverse for f,f(y(f(x») =
I(x) gives us that xQ,g(j(x». Then Q, £; Q,. inlplies that lI(g(f(x» =

hex) for all x in U. Conversely, if there is an x in V such thatf(x) = f(y).
but h(x) " h(y), then we have Ir(g(f(x») 11:1 Ia(g(f(y») and thus
h:#:{hog)of.

Fig.	 14.5. Universal property of the quotient

h
U • A

,l	 ...······~·
tr

y

lliitiality, inductioll, and conlpulability	 495

Finally, we show that (3) irnplies (1): since Pal and/induce the same
recursive equivalence relation and since Pal is a retract, the restriction
/': Po,(U) -+ V of/satisfies!' 0 Pal =land also is injective. To see thatf' is
surjective, let v: V -+ Pa(V) be the unique recursive' function such tbat
~ 0/= Po,. We then have I =../',9 Pal = I' RV oJ. which by (3b). shows
1., =/'ov; thusf':Pa/(U) -+ J'is surjective.	 0

A slight variant of the above concept of a recursive function between two
recursive sets is the concept of a recursive function of several variables: we
say that t U I x··· x U1 -. V is a recursive /1I11ction ofk variables (where
V I, ••• , V., V are recursive sets) if/is the restriction of a (total) recunive
functionfo: wl -+ w. The same remarks made about recursive functions of
one variable apply now, ,nutal;S "ultalldis. to functions of several variablcs,
and show that they capture the concept of 'effectively computable total
function of several variables' between recursive sets. Such functions of
several variables are used for algebraic operations in the following
subsection on recursive algebras.

6.2 Recursive algebras

This subsection introduces the category of recursive algebras (their
carriers are re~ursive sets and their operations are recursive functions) and
recursive hOll1omorphisms. The reason for being interested in recursive
algebras will be seen better in the next subsection on computable algebras,
which shows that several natural definitions of 'computable' for general
algebras are equivalent to being isomorphic,to a rccursive algebra. Here
we will see that the category of recursive algebras has initial algebras and,
more generally, that any recursive set generates a free recursive algebra.
We also look at quotients and congruences of recursive algebras.

Unless otl.er\vise stated, ill tlris and tl.e/allowing subsections, all slgllatures
are assII/lied finite, I.e., "Iey I.Qve a jillite nUIJ.ber ofsorts and afinite number
0/ operators and constants.

Defillitioll 27. A L-algebra U is recursive if its carrier scts U. arc all
recursive sets and its operations are all recursive functions of the
appropriate number of variables. A recursive I:.-homomorphlsm f. U -+ V
between two recursive algebras is a homomorphism such thath: U. -+ V.
is recursive for each sort s. 0

496 J. Meseguer, J. A. Goguen

Recursive algebras and recursive hOlnonlorphisms form a category
RALG I . This follows immediately from the fact that both REC and the
category ALGI of ordinary I:-algebras and their L-homomorphisms are
themsclves categories.

A recursive I:.-col1gruence on a recursive algebra U is a congruence Q on
U such that Q, is a recursive equivalence relation for each sort s. The
congruence QI associated to a recursive homomorphism f. U -+ V is
clearly recursive. For Qa recursive congruence on V,let us define tlu(V) us
the algebra with carrier qo,(U,) for ench sort s, with operntions defined by

a(n., ... , nt) = Qa,(C1(n., ... , nt»,

and with constants the images of those in U under the (naps Pu Then,
I

there is a recursive homomorphism Po = (PfJ,): U -+ Pu(V) that satisfies
the expected property of a quotient.

Propos;li01J 28. Let fi U '-+ V be a recursive L-homomorphism. Then the
following are equivalent prop'crties of f.

(1) There	 is a recursive I:-isoillorphism II: PfJ,(U) -+ V such that

u 0 Pal = J.
(2)	 f is surjective.
(3)	 If II: U -+ A is a homomorphism to a (not necessarily recursive) L­

algebra A, then
a.	 there exists a homomorphism II: V -+ A such that II 0 f = /a (i.e.,

the diagram in Figure 14.6 commutes) iff Q, ~ Q".
b.	 If such a function u cxists, then it is uniquc. Besidcs, if A and I.

are recursive, then so is 11.

Proof. Put together Proposition 6 nnd Proposition 26. o

Recall that if X is an S-sorted sct, then L(X) dcnotcs thc signature
obtained by adjoining the elements of X as constants to the signature L,
and Tt(X) denotes the corresponding initial algebra, also called thcJree L­
algebra on X. If A is a l:-algebra und if X is un S-sortcd set contained in A,

Fig.	 14.6. Universal property of the quotient

h
u • A

fl	 ...·····..~.;

1"it ;t,lity, indllct ;011, alld COII,putabi/ity	 497

then the ilnagc of Tr.(X) by the unique honlolnorphism to A (considered as
n L(X)-ulgcbra in the obvious way) is called the (I:.-)subalgebra of A
generated by X. The theoreln that follows uses this simple result:

Lell,,"a 29. Let Y s; X be an inclusion of S-sorled sets. Then the ~­
subalgcbra of Tt(X) generated by Y is an initial I:.(Y)-algebra.

/'ro(Jf. Since &111 initial algebras are isomorphic up to a unique isomorph­
ism, we can assume that TI(X) and TI (Y) are algebras of terms. By the
conslruction of tc'rnl algebras, we then have an inclusion Tt(Y) S; Tt(X),
\vhich is a r(Y)-homoillorphism; thus, its ianage is initial, since it is Tt (Y)
itself. 0

We can now prove lhe nlain rcsult of this section, namely that the category
RALGs: has initial algebras. and more generally, has initiall:(U)-algebras
for each recursive S-sor~ed set U; .i.e" there are .recursive .free l:-algcbras.
This result is inlplicit in [67], Theorem 4.1.1 (that paper, together with
[78], inaugurated the systematic study of computable universal algebras).
Note that the theorem below stales the initiality property (expressed in
tcrnlS of 'universal arrows') not only for the category RALG t but also for
the category ALGI.

7"},eorell' 10. For each recursive S-sorted set U there is a recursive ~­
algebra Gt(U) (G for Godc1!) and a recursive S-sorted function
'Iu: U -+ Gt (V) such lhat for each l:-algebra A and S-sorted function
f U -+ A there is a unique L-hoillomorphismj": Gt(U) -. A such that the
diagram in Figure 14.7 commutes. If A and/are recursive, then so is'-.

/Jroo/. Let (I) denote the S-sorted set with (I), = w for each sort s. We will
define a recursive I:-algebra structure on (J) in such a way that the initial
;algebras we are looking for will appear as subalgebras of (I). The algebraic

Fig.	 14.1. Universal property of a free algebra

flu
u ~

I
1'­
t
A V

498 J. Meseguer, J. A. GoguelJ

structure on (A) is defined by means of an assignment of prime nUlnbers to
the constants and operation symbols of the signature l:: each constant (J is
assigned a prime number p(a);' and each operation symbol of arity s• ... s,

is assigned a sequence Pl(a) . .'. p,,(a) of prime numbers. We assulne that all
the prime numbers are distinct, i.e., that no operators (or constants) have
any primes in common, and that the primes in each sequence are distinct.
We also assume that the prime 2 docs not occur alnong theln. The
recursive l:-algebra structure of 00 is defined as follows: the constant (J is
the number p(a); if the operation symbol a has arity SI ••• s" then the
corresponding operation is the primitive recursive function

A.nl, ... , nk. pl(a)"1 ... p,,(a)"".

Now consider the primitive recursive function '1: w -+ w defined by All. 2".
This gives an S-sorted function '1: (A) -+ 00 having all components equal to

".
We claim that the subalgebra' of (A) generated by 11(00), which we denote

by GJ:(ro}, is an initial ~«(l)-algebra. This follows easily by checking the
Peano axioms of Proposition 17 for GI(oo): The axiom (3) (structural
induction) is clearly satisfied since, by definition, this algebra has been
obtained as the image of an initiall:(ro)-algcbra. Axioln (2) (injectivity of
the operations) is satisfied by the algebra w. by the unique factorization
theorem of arithmetic; thus, the operations are a /orl;or; injective when
restricted to a subalgebra. To check axiom (I), notice that 0 docs not
belong to any of the sorts of Gt(oo), since it is not in '1(00) and all the
operations return values different frorn O. Since the prime sequences of
each operation symbol are distinct, again by the prinlc factorization
theorem, their images cann?t have any va~ue in comITlQl1. The only
exception would be

1 = Pi 0
•• • Pt0

,

which has already been ruled out.
Since every recursive set is a subset of cu, every S-sorted recursive sct is

similarly an S-sorted subset of w. Since we have shown that GI(w) is an
initial ~(C1)-algebra, Lemma 29 gives that Gt (U), defined as the subalgebra
of (l) generated by '1(U), is an inithll l:(U)-nlgebra for each recursive S­

sorted set U. To finish the proof, we still have to show that

(i) the Gt (U), are recursive sets, and
(ii) the induced homomorphism / ~ is recursive if/is.

Here is the decision algorithm for Gt (U): for each integer I. of sort s. factor
n into its prime factors,

n = Pa"I ... pt"'.

J11;1hI/illy, ;/ICJUCI ;011, and COlllputability	 499

If k = 1 and PI = 2, then ,. belongs to Gt(U), iff nl belongs to U,;
otherwise II belongs to Gt(U), iff there is an operation a of sort sand
arity '5a ••• s, such that· (after eventual reordering of the primes)
Pa ::z Pa(a), ..•• P, ~ p,(a) and each exponent nj belongs to Gt(U),j:··

The algorithm for /- in terms of a recursive}: U -. A is given by

/6(2") =/(11); and
/6(Pl(0)"1)(...)(Pl(a)"l) == 0(/*('11)' .. .,f~(n,,». 0

Note thut the prinlcs in the above theorem could have been chosen in an
I

,1 inifinte nurnber of different ways, as long as they satisfy the conditions of
I being distinct and being different fronl a fixed prime (it was 2 above). More
1 generally, it is clear that one could define other recursive functions for the i . ,	 operations a that would still guarantee the Peano axioms for an algebra

generated as in the proof. The particular representation chosen does nol
nluch matter; what docs Inatter is that there is a/ree recursive 'E.-algebra/or
each recursive S-sorlecl set.

This suggests the concept of a Godel numbering for a free algebra, which
nUlnbers the elements of the free algebra in such a way that their images
form a recursive free algebra isomorphic to the original one. By the

'I initinlity of free algebras, it is enough to number the generators, i.e., to give
~ a function '1: X -+ U to the recursive algebra that provides the numbering.

We would ulso like to require that lhe map" is somehow ·computable·, but
since X is not a set of numbers but an arbitrary S-sorted collection of
countable sets, the besl we can do is require that the image 'I(X) is the
ilnage of a' recursive function, i.e., is a recursively 'enumerable set.

Dejiuilloll J J. A set Y s;; w is recursively ellullierable if it is either empty or
the image of a total recursive function}: w -. 00. Similarly, a set Y s; w' is
recursively elu""erable if it is either empty or of the form

y = {(/I(n), ...,ll(II» III e w} for some fl' ...,It total recursive
functions. · 0

Dejill;t;oll 32. Let X be a countable S-sorted set (i.e., each component of X
is finite or counlably infinite). Then a Godel prese,.,allon for X is an S­
sorted function 'I: X -+ U to a recursive l:-algebra U such that ,,(X.) is a
recursively enulnerable set for each sort s in S and, in addition, " is a
universal map in the sense that for each S-sortedfi X -. A to an algebra A

there is a unique hOlnomorphisrn I': U -. A such that f* 0 " - f. The
induced isomorphism from the term algebra, TI(X) -+ U, is called the
Gc)cJel IIIlIUberiIJO presented by '1· 0

.,

500 J. Meseguer, J. A. Goguen

As a corollary of Theoreln 30 we have

Len,nla 33. If ,,:·X -. U and b: X -. Vare two Godel presentations, then
U and V are recursively isomorphic 1:-algebras.

Proof. U and V will be recursively isomorphic if we show that both arc
recursively isomorphic to GI(card(X», where card(X) is the S-sorted
recursive set defined by: card(X). = [",] if card(X,) = ,", and card(X),
== w if X. is countably infinite. Since ,,(X) and ~(X) arc recursively
enumerable S-sorted sets, by combining Proposition 26 and Lernrna 25,
there are injective S-sorted recursive functions '11: card(X) -+ U and
~l: card(X) -+ V with images ,,(X) and ~(X) respectively. Then Theorenl
30 shows that there are bijective recursive 1: homomorphisms from
GJ:(card(X» to both U and V. By Lemma 24 these two homomorphisms
arc recursive isomorphisms. · 0

Note that with X = 0, Lemma 33 gives

Lemma 34. Any two Godcl numberings of an initial I:-algebra 7I have
recursively isomorphic target algebras; in particular, any such algebra is
recursively isomorphic to the algebra Gt = G1(0). 0

We leave the proof of the following lemma as an exercise (hint: use the fact
that the generators of GI(card(X» form an S-sorled recursive set).

Le,",na 35. The image 'leX) of a Gadel presentation '1: X -. U is an S­
sorted recursive set. 0

6.3 Computable algebras

This subsection shows the equivalence of three different defi­
nitions for the computable algebra notion. Since each definition is fairly
natural and general, their equivalence can be seen as supporting a
'Church's thesis' for effeclively computable algebras. We also look &It
c9mpulable minimal algebras (which are computable quoticnts of the
initial algebra), .showing ttH~t uny conlpulable algebra cun be seen as a
computable minimal algebra if hidden functions are ullowed. Our
presentation is based upon the work of Malcev, n..bin. and Bergstrn &
Tucker.

ll1il ialily, induction, and cOllaputability 501

Traditional mathematical practice considers an algebra effectively
cOlnputable iff it has a 'decidable word problem', meaning that it can be I
presented as a quotient of a free algebra in such a way that one can decide
in a finite number of steps whether or not two terms represent the same
clement of the quotient algebra (this is called the word problem).

Definition 36. The word problelJl is decidable for a L-algebra A iff there is a
countable S-sorted set X, a Godel presentation 'I: X -+ V, and an S-sorled
function f. X -. A such that:

(i) The unique homomorphismf#: U -. A induced bylis surjective;
. ~ and

I

(ii) the congruence Q,. on U is recursive.

By Lemma 33, the choice of Godel presentation is immaterial, so what
really does'lnaUcr is the mapt X -+ A. called the generarin'g map. We th~n

say that the map f 4ecides the y<prd problem Jor A.. .• , 0

TI,eorell. 37. The following are equivalent for a 1:-algebra A:

(i) The word problelll for A is decidable.
(ii) There is a recursive l:-algebra U and a surjective homomorphism

a: U -+ A (called a coordi,ult;zal;oll of A) such that Q. is recursive.
(iii) A is isolnorphic to a recursive I:-algebra.

Proof
(i) => (ii). Follows directly from the definition of decidable word problem.
(ii) => (iii). ny Proposition 28, the algebra A is isomorphic to the quotient
algebra l'aJ U).
(iii) => (i). Let U be a recursive algebra with p: U -. A an isomorphism.
Take as generating map the map p ilself, and as Godel presentation the
map 'Iu: U -. GI(U) in Theorem 30. The identity map l u: U -. U induces
a unique surjective recursive l:-homomorphism £u: GE(U) -. V. Since Pis
an isomorphism we have Q_-cu == Qcu and this is a recursive congruencc.
This shows that the word problem for A can be decided by the map
fJ: U -+ A. 0

We can now define a cOII,pultlble l:-algcbra to be an algebra that satisfies
any of the cquivulent conditions in the theorem above. For a ji,litely
!/elu!rtl,etl l:-ulgebra - i.e., a l:-algebra such that there is uji"ite S-sOrted set
X and a gencr~iting map X --+ A, i.e.• a rnap such that the induced
hOlllolllorphismJ# froln the initiall:(X)-algebra is surjective - condition
(i) takes a st ronger forn1:

502 J. Meseguer, J. A. Goguen

Lemlna 38. Let A'be a finitely generated algebra. If the word problem for
A is decidable, then it can ..be decided by WJy gcncraliAg ·map t X -. A
(with X finite).

Proof. By the above theorem, A is isomorphic to a recursive algebra. say
U with isomorphism p: A -. U. Lett X --. A be a generating nlap (with X
finite) and let }': X -+ card(X) be an arbitrary bijection. We will take as
our Godel presentation the map 'lcard(X) 0 y: X -+ Gt(card(X ». "he Illap
pofoy-l: card(X) -+ U is recursive, since for each sort s with card(X).
= [m] and m > 0, this map is given by the algorithm: A.x. if x = 0 then
P(/(y - I (0») else ... else if x == "' - I then P(f(y - I (II' - I») else
P(/(y-l(/n - 1)). Thus by Theorem 30. this map induces a recursive
homomorphism (fJ %y-I)': GI(card(X» -+ U which, by uniqueness,
satisfies (p%y-I)' = po(foy-l)'. Thus it is surjective, since (foy-l)'
is so by hypothesis. Now since P is an isomorphism, one has Q(/.7)" =
Q(le/.7)- recursive, as desired. 0

Minimal algebras, i.e., algebras such that their unique hOlnomorphism
from the initial algebra is surjective. are a particular kind of finitely
generated algebra. As a corollary of the lemma just proved, and recalling
Lemma 34, we obtain:

LenJma 39. A minimal1:-algebra A is computable iff Q"A is a cornputable
congruence on Gr. where IIA : Gr, -+ A is the unique honlomorphism. The
same holds after replacing Gt by any other Godcl nunlbering of the initial
l:-algebra. 0

This subsection concludes by showing that with hidden functions one can
reduce the study of computable nlgebras to that of 11linilnal conlputablc
algebras. This uses the following notion:

Definition 40. Given a signature 1:, another signature E' (perhaps with
more sorts) is called an ellrielllllelit of 1: if L w•• ~ L w •• for all \v in S· and s in
S; this may be written I: ~ 1:/. The enrichment is callcd fillite if each
1:'W.' - 1:w•• is finite. For 1:' an enrichnlent of 1:, a 1:-algcbra A is called the
l:-reduct of a :E'-algebra A', written A'it =s A, if the carriers of A and A'
coincide, and the operations froln the signctturc 1: are the same for A' as for
A; A' is also called an enriclll1Jent of A. Similarly. a presentation (}:', E') is
an enr;clll"elll of another presentation (L, E) if 1: ~ 1:' and E ~ E'; the

In;l ;£1lit y, iuduct ;011, aud colt,putability 503

enrichment is called finite if both (1:' - l:) and E' - E are finite. An
enrichment 1: ~ 1:' or (1:, E) ~ (I:':·E') is called w;t1.out new sorts i('l: and
1:' have the same sort sets. 0

Lell"ua 4J. For any S-sorted computable l:-algcbra A there is a finite
enrichment 1:' of 1: without new sorls by at mosl card(S) constants and
card(S) unary function sy.nbols such that there is a minimal computable
E/-algebra A' which has A as its L-reduct.

Proof. To get l:' from l:, add a constant zero and a unary operation
symbol slice: s -+ s for each sort s in S such that A. is none~pty. Usina
Lemma 25, we can show lhat A is recursively isomorphic to a recursive
algebra C with carrier card(A). If card(A). == ro, we make zero == 0, and
slice the successor function; if cartl(A), = [II'], n. > 0, we make zero - 0,
and slice the function AX. if X < na - 1 tben x + 1 else n. - I, which is
cleurly recursive. Each of these constants and operations can then be
transported to A via the bijection underlying its I:-isomorphism with C.
Together with the original l:-operations this gives the desired minimal
conlputable I:'-algebra structure A' with reduct A. 0

6.4' Tile po\ver of specificatioll techniques: initial algebra sen.antic!

Let 1: l?e a signature and E a collection of 1:-cqu8tions. A 1:­
algebra A is said to have an i,llt;al algebra specification by means of the
prcscntution (t, E) iff A is an initial (L, E)-algebra. The specification is
calledjillittlry if both 1: and E are finite. As we have already seen in Section
4, this provides a specification method whereby certain abstract data types
can be defined, and certain concrete data types can be shown to belong to
the class of a so-defined abstract data type. For computer science
purposes, a specification method should be considered adequate (or
po\verful ellougll) if all cOlnputable algebras can be specified with iL This
section will show the adequacy of finitary initial abstract data type
specifications with hidden functions, i.e., of finite enrichments without new
sorts.t Lemma 41 already shows that every computable algebra has an
cnriclll11ent that is minimal on the enriched signature. This reduces the

t More gcnerally, one coulf.l require IJlCcifiability or all StnllCompulab'e .lacbr••
(see Definition 61 in Section 6.6) as in Dergstra &. Tuckcr [83]. who show Iha.
finilary initial algebra specifications are also adequate to specify the larler clau
or scnlicomputablc algcbrus if hidden sorts arc allowed.

504 J. Meseguer. J. A. Goguen

adequacy problem to the spccifiability of minimal cOlnputablc algebrlls
with hidden functions.

The adequacy question for initial algebra senluntics was rilised by
Majstcr [65], who gave an example of a cOlnputable concrete data type (a
traversable stack) for which no finitary initial algebra specification existed
without the introduction of hidden functions (i.e.• without enriching thc
signature). Majster [66] also gave an explicit definition for COlllputublc
concrete data types, and suggcsted (p. 123) using Kleenc's nornlal form
theorem to obtain a positive answcr to the atlequacy problern for initial
algebra semantics with hidden functions. The answer along these lines
canle from Bergstra & Tucker [13]•. who' undertook a rigorous &lnd
beautiful systematization of the cOlnputability of abstr.lct data Iypes in a
rich series of papers. This section will concenlrate on the adequacy
problem for initial algebra s~.mantics.

. We begin with a simple example (adapted from [84]) of a recursive
minimal algebra U which has no finitary initial algebra specification
without hidden functions.

The signature of U is shown in Figure 14.8: Uaa• = wand V••,. is the set
of even natural numbers union the number I. The constant 0 is interpreted
as the number 0; the constant odd is interpreted as the number I. The
operation red is the recursive function AX. if X is-even ahcn x else I, and the
operation s is the successor function.

Lemma 42. No finitary initial algebra specification is possible for U.

Proof. First note that since U... = wand the only operation of sortl1ua is s,
there can be no nontrivial equations of sort nat in any such specification
and the only possible equations have 10 be of sort evcn; lhe only terans of
that sort are: odd. and red(s"(O» and red(s"(x» for n ~ 0 (using the usual

Fig. 14.8. Signature of the algebra U

odd \

rl!ll

s

l"ititlli'y, induction. alltl cOII,pulabiUty 50S

conventions that sO(x) = x and S"i-I(X) = s(s"(x»). No equations of the
fonn

retl(1'(x» = retl(s'"(x»

are possible for III different froln II. since we get a contradiction by
instantiating x to 0 if,1 is evcn, or to I if II is odd. Thus we conclude that all
equations in E involve ground lernls. and are of the form

red(s"(O» = otld

or

red (1'(0» == reel (s'"(0».

To show that no (finitary) initial algebra specification is possible, let E be
one. and let ,,,0 be the first odd number strictly larger than any of the
exponents II. "' from the equations in E. Then the equation S-°(O) = odd
holds in U, but 'there is no' WCly to deduce it from the equations in E with
the rules of equational <Seduction. . .0· 0

The following enrichmcnt permits a (finitary) equational specification of
U: add operation symbols even: nal -+ nat. and cO,ld: nat nat nat -t nat,
for the recursive functions AX. if x is-even then 0 else I, and lx, y, z. if x =0
then J' else z, respectively. Thatcher. Wagner & Wright [83] show that this
enrichment of U has the following equational initial algebra specification:

evell(O) = 0

evell(s(O» =5(0)

evell(s(s(x») == evell(x)

COlltl (0. Y. z) == y

COUll (S(X), y, Z) = Z

reJ(x) = cOlld(evell(X), rCtl(x). odt/).

They &llso show that U has a (finitary) conditionalt initial algebra
specification with the two conditional equations

red(s(O» = odd
red(x) -= odd ~ red(s(s(x») == odd,

thus showing thut condilional specifications are stricl1y more powerful
lhun equational specifications if hidden functions are not allowed.

Wc shall now stille the theorClll of [13] that gives the definitive answer
to ~he udc~l~acy question for finitary initial algc.bra spec;ifications. The..
theorenl is stated for Ininimal algebras but, as proved in the previous
subsection, this is not a rcstrictioii when hidden funciions are allowed. We
do not give details of the proof (see the original paper), but just sketch the
flu,in lines of their argunlcnl.

t Sec di~ussi()n before Definition 64 in Section 6.6.

506 J. Meseguer, J. A. G~ouelJ

TlJeorell,43. Let A be a mi~imal computable l:-algebra. Then there is a
finite enrichment }:' of }: without new sorts and a finite family of L'­
equations E such that A is isomorphic to the l:-reduct of the initial (1:', E)­
algebra.

."
Ii

Sketc/l of 'lie proof. For simplicity, we will reason in the one-sorted casco
By Lemma 25, we can replace A either by w if A is infinite, or by [II'] if A is
finite. The finite case is straightforward, and reduces in essence to giving a
table for the operations of A. So we are left with w, a few numbers
corresponding to constants, and a finite collection of (total) recursive
functions/.... .,f" each having an appropriate number of argulnents. The
key observation is the following theorem about the graph of a partial

;tI,recursive function:	 ,
,I

Theorem 44 ([68], Thm. 6.~.1). A function is partial recursive iff its graph ".j

is recursively enumerable. 0 f
, I
-,
;1

For any recursively enumerable set one can actually find a pr;",i,;ve .'j

recursive function having that set as its image ([67], Thm. 4.2.1). As a
consequence, for each of the functions f. w· -+ W, therc are prirnitivc
recursive functions II It ••• t "., 0: w -+ w such that the graph off is the set:

{(h 1(n), •.• : 1I.(n), 0(11» I '1 E w}.
This suggests specifying the functions J by equations of the "form

(i) j(IJ.(x), ... , h.(x» = g(x),

but, of course, we have to specify also the primitive recursive functions

hit ... ,h'n g. This is not difficult, since prinlitive recursive functions are

defined equationally in the following way: for 9 primitive recursive, there is

a sequence of (primitive recursive) auxiliary functions 0, s, 0., ... ,0'" = 9

such that each 9, .. 1 in the sequence is defined equationally in tenus of

i:
Iprevious functions in the sequence by a pair of equations	 I

(ii)	 9,+ 1(0. xl, ... , xq) = lll(xl, ... , xq) . I

\ I (iii) 0,+ 1(s(y), xl, ... , xk) = OJ(Y, xl, ... , xq, 0,+ l(Y, xl, ... , xq». " l

Thus. the following enricillnent 1:' of the original signature allows ! t
. I

everything to be equationally specified: add function symbols for 0, 5 ~

(successor), and the primitive recursive functions 11 It .•• t 11., 9 associatcd to
, I

each operation); add also function synlbols 0 ,0"'-1 for the auxiliary ~I

functions of each primitive rccursive function g. Let E bc the collcction of
equations of type (i), (ii), (iii), together with an equation

(iv) q 4 = s"q(O)

J11;1 iellity, induct ;011, anti con'putability	 507

for each constant (1, -of the original signature that waS interpreted by the
integer " •. The original algebra is then a reduct of the initial (1:'. E)­
algebra. 0

Sec [8] for a difTerent proof of this result in a beautiful theorem that settles
in one blow the adequacy question for both initial and final (in the
Bergstrn und Tucker sense) algebra semantics, and also gives a bound on
the nUfllbcr or hidden functions required that is linear in the number of
sorts; see Section 6.6. Still another proof of the above theorem follows
from Bergstra and Tucker's rewrite rule characterization of computable
algebras, discussed in the next subsection.

6..5 Re,vr;'e rilles

There are close connections between general algebra and rewrite
rules. One connection is that equations can be seen as two-way rewriting
systems. Another is that rewrite rules provide computationally effective
representations for objects that are more abstractly defined by equations
plus initilliity.

A l:-equation (VX) t = I' such that each variable occurring in its
left-hand- side t also occurs in its right-hand side t', can'bc used as a rewri'e
rule as follows: a term 10 can be rewritten to a term t 1 if to contains a
subternl that is a substitution fil,stance of th~ iefl-hand side t and t 1 is the
rcsult of replacing that subtcrm by the corresponding substitution instance
of the right-hand side I'; this is often indicated with the notation t~ -+ t l'
Rc\vriting gives a unidirectional version of equational deduction (compare
the above with the substitutivity rule). Under mild conditions on a set E of
1:-cquatiolls, every term can be rewritten to a unique- canonical form. This
nlC&lllS that the initial (L, E)-algebra is then computable, since we can
decide the word problem by rewriting and then comparing canonical
forills. A rcnlarkable theorem of [6] shows the converse: any (minimal)
cOlnpuhlble ulgebra is the reduct of the initial algebra specified by a finite
enrichment without new sorts. whose equations regarded as rewrite rules
give canonic'al forms for the equivalence classes (the minimality restriction
can be removed by Lemlna 41).

In this way, rewrite rules provide an operational semantics for all
conlput&lble algcbrus. Thc evaluation of an expression is its canonical form
aftcr rewriting, and equality of terms is decided by identity of their
canonical fOflllS. This point of view is the basis for the language OOJ [34,
35].

• • •

509 508. J. Mesegller, J. A. Goguen

•	 This subsection gives the basic definitions and properlies of rewrite
rules, and discusses their relationship to initial algebras, ending with the
theorem of Dergstra and Tucker mentioned above. For Inorc on rewrite
rules, [42] is admirable and complete, and [45] is an excellent survey thut
is consistent with an algebraic approach.

Given a term I E Tt(X), the finite set of variables occurriuy in I, denoted
vars(t) is the smallest S-sorted set Z contained in X such thal I E TL(Z).

That vars(t) is well defined is intuitively obvious, and is forlnally clear ufler
noticing that: (i) there is always a finite X' ~ X such thut I E 1i:(X '); and
(ii) if t is TJ:(Y) and in TJ:(Z), then t is in Tt (Yn Z). We will suy thut an
equation (VX) t = t' is usable as a rewrite rule if t has all the variables that
I' has (i.e.• vars(c') S;; vars(I» and in addition, the quantified variables
include only those occurring in I (Le., X = vars(t». If these two conditions
are satisfied, we can omit the quantifier without introducing any

·	 ambiguity. Usable equations su'pport term rewriting. For exulnple, the
equation x + s(y) = s(x + y) c~n be used to rewrite the term (.~(x) +
s(z» + (y + (s(x) + s(z») to (s(x) + s(z» + (y + s(s(x) + z» by malching
the left-hand side x + s(y) with the second occurrence of the sublerm
sex) + s(z). Now the formal definition.

Definition 45. A I1latclling of a term t with a subtcrm of another tCrln
to E TJ:(Z) is a pair (f, v) with/an assiylJlllelJtf vars(l) -+ Tt(Z) and with
v E (TJ:(Z U {y}) - Tr.(Z» a term having exuctly one occurrence of the
variable y (Le., there is no v' with vars(v') = Z U {II, \v}, "~'\', &lnd
v == v'(u +- y,lY +- y» such that to = v(y +- /#(t».t A set l~ of usable
equations defines a binary relation -+ x on lhe tenn nlgebra 1'1(X), C6lllcd
one slep (E-)rewritillg, as follows: for any two tcrms 10 and t, we have
to -+ xC 1 iff there is an equation I = I' in E such thai I matches a subtenn of
to by (f, II) (i.e., to = v(y +- f# (I») and also I. = v(y +-f' (t'». 0

Notice that to --+x 11 iff to -+.,.rs(l.t tl. This is because, if the rewriting wus
obtained by a matching (f, v) of the right-hand side of a usable equation

.•t = t', then the image or the homomorphism f~ is always contained in
Tt(vars(t 1», and vars(t 1) ~ vars(to) since vllrs(l') ~ vars(l) by hypothesis.
As a consequence, the relation -+ x restricts well to terlll algebnls with
fewer variables, i.e.,

-+ x IT1(Y) = -+y

whenever y ~ X, and we can therefore drop subscripts on -+. Out unless

t This includes the case in which the ternl v is the vllriable)', i.e., the suh.cran
matched is 10 itself.

Illil ialil y, ;udllcl iOIl, allcl COII.putabilily

otherwise specified, the rest of our discussion will assume the rewriting
rehltion -+ is restricted to the initial algebra Tt ; this restriction involves no
loss of generality since, for any X, TI(X) is the initiall:(X)-algebra. and all
the results we discuss specialize to terlns with variables by taking l:(X) as
the original signature. In this subsection, signatures are not assumed finite.

Let .!. denote the reflexive-transitive closure of the one step rewriting
relation nssociatcd to a set of USilblc equations E; i.e., t .!. t' iff either t t'1:1

or there is &\ finite sequence of one-step rewrilings beginning with t and
ending with I':

I -+ I I -+ ••• Ii; -+ I'.

We call ..!. the re,,'riliIiO relation associated with E. Also we let'!' dcnotc
the snlullcst equivalence relation containing -+. This equivalence relation
is easily described in terms of yet another relation t, defined as follows:
I t ·1' iff there is a term I" such that t .!. t" and I' .!. t".· .

LeIJ"na 46. The equivalence relation:" is the transitive closure of the
relation t, In other words, t :... t' ilT there is a sequence t ttl t ... t t. t t' as
shown in Figure 14.9.

Proo! It is clear that the relation t contains -+ and is contained in :..,
since the same conditions hold for ~, and:'" is symmetric and transitive.
'''hus, the transitive closure t is also contained in :.., since:" is transitive.
So, we have only to show thal this transitive closure is reflexivc and
symlnetric. Oul both these follow froln t being reflexive and symmetric.

o

Lell""" 47. The relation:" is a l:-congrucnce on Tr..

I)roof. We have to show that for each operation C1 E 1: and for all pairs
I, :... I,' for I ~ ; ~ II (of the appropriate arity), one has
0(1" ... , 'ft)':'" a(I,', ...• 'ft'). The key observation is that if a term t matches
a subtenn of anolher term t', then il also matches the same subterm for any

,	 Fig. 14.9. The equivalence :..

" - '2 ,,\'/,1
\/ \1

I

510 J. Meseguer, J. A. Gogllen

- term t" that has t' itself as· a subterm. As a conscq uence, if t. -+ t 2 then
l(y 4- I.) -+ t(y +- '2) for any t E Tt{{y}). Hence the scque11c~

11 tt ll t ... ttlkttl'·· .

yields another sequence

a(th ... , til) t a(t. It ••• , til) t ... t a{ll', t 2•... , I,,).

Consequently, we get

a(t., ... t tIl) :.. a(t 1,', '2, ... , til) :.. ••. :... aCt .', .•. , tIl')'

as desired. 0

We can now prove the central property of the rewriting relation [30].

Theorem 48. Let -+ be the one-step rewriting associated with a set E of
usable equations. Then the algebra TI :" is the initial (L, E)-algebra.

Proof. By Theorem 11, we know that the initial (1:, E)-algebra is TJQF.
with tQ£(iff (V0)t = t' can be de~uced from E by the rules of
equational deduction. Whenever I. -+ 12 holds. there is ,lI1

.. equation (VX) t.' = 12' in E:a term VE TJ:({Y}), and a nlap! X -+ T1

such that I, = v(y +- f'(I,'» for i = 1,2. Consequently, (V0)!"(I.')

= f'(12') can be deduced by card(U. X,) applications of the substitutivity
rule. and t 1Q£12 can be obtaine.9 by one more application of that rule. This
shows that (-+) ~ Q£ which by the renexivity, symmetry and transitivity
rules of deduction~ shows that:'" S; Q£. SO we will be done if we show that
Tr/:'" satisfies the equations in E. Let (V X) I = t' be any such
equation. Oy definition of -. we then have thntfll'(l) -+ /"(1') for each Inap
f. X -+ TE and hence the equation holds in TrJ:". 0

This shows that for constructing initial algebras, the unidirectional
deduction provided by the rewriting relation is as good as the usual
equational deduction (sec also [88]), but it docs not show any cOlnputa·
tional advantage of rewrite rules. In fact, it cannot do this, since the
theorem applies to any set E of (usable) equations. and it is well known
[40] that there are (finitary) initial algebra spccifications (1:, E) with
undecidable word problems; nothing can be done in those cases to solve
the word problem, regardless of the kind of deduction used.

We will soon see that if the rewrite rules satisfy two natural conditions
then the word problem is decidable, and can be decided by rewriting. We
will also see that this method is fully general: any minimal algebra \vilh &l

decidable word problem is the reduct of the initial algebra specified by u

\I Initiality, induction, amI computability 511

\ finite enrichment without new sorts and a finite set of usable equations
\ whose rewriting relation decides it.

Defillition 49. Let E be a set of usable equations and let -+ be its one-step
rewriting relation. Then a term 10 is a 'Jorlllaljor"l relative to -+ if it cannot
be further rewrittcn; i.e., if there is no t 1 such that to -+ t 1- The relation -t
is called ,ern.illcltillg if there is no infinite sequence of rewritings

10 -+ t. -+ - •• -+ I. -+ · _.­

Notice thut if a system is terminating, then every term rewrites to a (not
necessarily unique) normal form (called 'a normal form of ttl after a finite
nunlbcr of rcwrilings. 0

An example of non-termination is given by the commutativity law for
addition, which yields infinite rewrilings like

3+2-+2+3 ... ···-+3+2-+2+3 ···.

Silnilarly, un equation of the form x =: a(x) gives an infinite rewriting

(10 -+ 0(00) -+ ••• -+ (111(00)

for a constant 00. Intuitively, for, -+ to be terminating, the 'size' of terms
should decrease after. rewriting, for sOlne notion of 'size' suited to the
problem at hand.

Defi,~it;()11 50. Let E be, a set of usable equations and let -+ be its
corresponding one step rewriting relation. Then -+ is c~lIed cOlljll4,ent (or
Claurcl,-Ro:.ser) if for each (erln ·'0 'and each p~ir of rewritings to .!. '. and
to .!. 12 we have that 11 t 12, i.e., that 11 and '2 rewrite to a common term f3·

o

Fig. 14.10. The Church-Rosser property ,

;'0\.
'. 12

\
.\ /.I

"
71,eore", 5/ (after [31]). Let 1: be a finite signature, and let E be a finite set
of us"ble I:-equalions such that the corresponding one step rewriting
relation -+ is terminating &tnd connuent. Then:

513 512 J.	 Meseguer, J. A. Gogllell

(i)	 Each terln t has a unique normal form, denoted [I]. For each
pair of terms. t. t', one has t·:" I' iff [t] = [t'].

(ii)	 The initial (1:. E)-algebra is computuble.
(iii) The (S-sorled) set of normal forms, denoted CanJ:.E with constllnts

[0] and operations 0([1 1]•...• (tn]) = [o(t •• ... , I,,») is nn initial
(1:, E)-algebra, called the canonical tern. algebra ilssociated to E.

Proof. Doth (ii) and (iii) follow from (i), since rewriting provides an
algorithm to decide the word problern in the initiul (1:. E)-algebra; by
Church's thesis this algorithm<·corresponds to a recursive congrucnce 011

Gt and this is our form,,1 definition for dccidability of the word problclll;
thus we get (ii). Again using (i), Canr..£ is isomorphic by construction to the
initial algebra 1r..E formed by the equivalence classes of tcrans. '·hc
isomorphism is the map can: [I] -. [t], where [t] is the E-equivalence
class of t; this gives (iii).

Now let us prove (i). Since -. is tcnninating. each ternl t has at least one
normal form 'I; suppose it has a second normal fornl t 2• Dy connucnce
there is a I) such that both II and '2 rewrite to IJ. Since 11 and '2 arc
normal forms. this can only happen if II = I) = '2. If (I) = [I']. then
t :.. t'. That I :... t' implies [t] = [t'] follows by induction on the length
of the sequence 1 t ... t I', using confluence; this is left to the readcr. 0

Given a set of equations, if we cun show that they are lcrnlin&aling "flU
connuent, then by the above theorem, we have solvcd the word problcln
for its initial algebra. For recent methods to establish tCflnin&ation of a sct
of rewrite rules see [76, 22, 52. 23]. We will now discuss rllcthods to
establish connuence. The idea is to reduce conflucnce to a silnplcr
condition of 'local confluence' which is decidable, providing tcrmination
holds (this can be relaxed, as explained below).

Definition .52. Let E be a set of equations and let -+ be its corresponding
·	 one-step rewriting relation. Thc'n -. is locally cOllfluell1 if for each tCrln 10

and each pair of one-step rew~jtings 10 -+ t l , '0---' 12 wc ha~e·(hat/. t '2.

o

The following result is originally due to Newman [73]; a silnple proof by
'Noetherian induction' can be found in [42]. Although this result can be
stated very generally for an abstract relation, we specialize it lo rewriting
systems.

JIIi' iality, induct ;011, alld cOlI,putability

/>roposit;oll 53. Let -+ be a terminating rewriting relation associated to a
set E of equations. Then -. is confluent if and only if it is locally confluent.

o

Thc Knuth-Bendix algorithm tests for local confluence of a set of
equations, and can also be used to attempt completing a nonconOuent set
of equations into an equivalent set of (locally) confluent equations. What

),	 follows is an informal introduction to the main ideas and extensions oCthis
nlgorittun; technical details can be found in the cited references.

. Let X be a fixed S-sortcd set with an infinite number oCvariablcs ofeach
sort, and consider the rewriting relation -+ on Tt(X). Huet [42] has shown
that local connucncc· of the re'wr'iting relation -+ is 'decidable' 'by the
Knuth-Dcndix algorithm provided that the relation is terminating. The
idea is that any pair of one step rcwritings either can trivially be shown to
rc\vritc to a COlllffion term, or else is a spccialized instance of a finite set of
'rnost gener&l)' pairs of one step rewritings, called 'critical pairs', that can be,
obtnine<.l by 'superposing' pairs of equations in E in a 'most general' way.
Since the relation is assumed lerlninating, we can decide local confluence

I

(hence connuence) sirnply by comparing Ilorlnal forms for each side of the
j pair. The Knuth-Bendix algorithrll [55] finds all the critical pairs of a set

of equations. For example, if E contains the equations

o(t(x, y), z) = Ji(X, y, z)

t(x, 'I(Y» == I\(Y, x)

then (O(K(y, x», z); p(x, '/(Y), z» is a critical pair. Even if a set of
equations does not give a confluent rewriting relation, in many common
Cilses it can be replaced semiautomatically by an equivalent one that does,
using the Knuth and Uendix algorithm. The idea is to choose a good
oricntation for the nonnal fornls of each critical pair that does not have a
comlnon rewriting, and iteratc the algorithm until this does not happen
anYlllore. Unfortunately, this process may nol stop.

Thc Knuth-Bendix algorithrn has been extended to handle special cases,

Fig. 14.11.	 The local confluence properly..	 ,. .. .
.~

'I
~ i /\

I,

'.	 I J

'.1
I	 \ I

-\ /­
t)

514 J. Meseguer, J. A. Goguell

such as a commutative equation, that give a nontcrnlinating rewriting
relation. The idea is to split the equations in E into ~, set of 'rewriting' rules
£. and a set of 'equivalence' rules £2 and then to consider \vnys of
rewriting with E1 '.nodulo E2'. Three basic papers arc: [58,75,42]. For thc
present state of the art see [49, 50]. The nonterminating case requires in
addition a complete unification algorithm for thc 'equivulence' equations
E2 to compute 'complete scts of critical pairs' modulo the equivalence.
Such algorithms are known for various special cuses such as cOlnnlulativ­
ity [77] and associativity-commutativity [81]. General 111cthods for
building such algorithms are studied in [46, 51].

We now conclude this section with the theorem of [6] showing the
converse, that any computable (lllinilnal, but we know this is no loss of
generality) algebra has an initial algebra specification by a finite enrich­
ment without new sorts of its signature and a finite nunlber of equations
that yield a terminating and confluent rewriting systcrn. As bcfore, details
of the proof are not given, but the main lines of the argunlcnt are sketched.

TlreorelJ154. Let I: be a finite signature and A a minilllal r-algcbra. The
following are equivalent:

(i)	 A is computable.
(ii)	 There is a finite enrichment without new sorts l:' of L and a finite

set E of usable equations such that induced rewriting relation -+ is
I· terminating and confluent, and A is isomorphic to die 1:-reduct of

the canonical term algebra Cant· .E.

Ske'ch of the proof. Theorcm 51 shows that (ii) => (i).

To see that (i) => (ii)t we consider the one-sorted CHSC for sirnplicily. A
ca~ be taken to be w or [m]. The finite case is easy, since for any finite
algebra the tables of their operations provide a ternlinating and connucnt
rewriting relation. Thus, we need only consider A with cHrrier w, a finite
collection of numbers for the constants and a finite collection of (total)
recursive functions fit ... ,il each having the appropriute nunlber of
arguments. We use a fundamental result in the theory of recursive func­
tions, Kleene's enumeration theorenl:

TI.eoreln 55 ([68], Thm. 6.2.1). Evcry partial recursive function
f(x., ...• x,,) can be written in the (orin

f(Xl •••• , XII) = lefi(JlZ[F(xa, ... , XII' z) = 0]),

where left is the (primitive rccu·rsive) Jeft projection function for the Cantor

lnitiality, illcJuc~iou, autl COl1Jpulability	 515

diagonal cnulneration of w 2• caul: w 2
-+ w. i.e., le!t(calu(II, n.» = 'I, and F

is a primitive .recursive function depending on f. 0

We can appl, this theorcln to each operation): w" -+ CJJ of our algebra, and
definc two auxiliary primitive recursive functions 11, 9 by the equations

lI(z, XI' ••• t x,,) = lefi(llz' ~ z[z' = z or F(Xl' ••• ' XII' z') = 0]),
u(z, x , x,,) == if 3z' ~ Z[F(.~h •.. , X"' z) == 0] then 0 else I,

and nn auxiliary recursive function t defined by the equations

(i)	 I(Z, X.. ••• , X", 0) = I.(z, x It •••• XII)

(i i) I (z, X It ••• , x"' y + 1) = t(z + I, x It ••• , x". g(z + I, XII •••• x.».
It is thcn easy to check thut f cun be defined by the equation

(iii) !(XIt ...• x,,) = t(O,x" ...• x", I).

The enriched signature L' is obtained by adding the following function
sylnbols: 0; the successor function s; the functions g,lI, t for each operation
f; and function synlbols for each of the primitive recursive functions
01, ... , 0"., '11, ... , 11",- needed to define each 9 and Ia from 0 and s by
primitive recursion for each operationj: The equations in E are as follows:

(I)	 The equations defining each g, 11, and their auxiliary functions g, .
and 11) by prilllitive recursion for each f.

(2)	 !he equations (i)-(ii) for each j:
(3)	 An equation aq = s"·(0) for each constant aq of the original

signature 'which was int~tpreted by"the number IIq. ...

One must then verify that this specification induces a terminating and
confluent rewriting relation that has w as its canonical term algebra. This
is done in two steps, with the following lemmas:

LeIJulIa 56. If t is a terminating term for (1:'. E) (i.e., if there is no infinite

sequence of rewritings beginning with t), then t has a unique normal form

of the form s"(O). 0

Le"""a 57. The relation -+ associated to (1:', E) is terminating. 0

The proof of the last)enllna uscs induction on the depth of terms and case
analysis. Note that connuence follows from termination by the existence of
a unique normal form for cnch tcnn. .. 0

6.6 Tile power of specification teclllJiques: filial algebra semantics

To examine the relationship bctween final algebra semantics and

516 .f. Meseguer, J. A. Goguen

computability, it is reasonable to restrict attention to rnachines (i.e.,
algebras) that have cOlnputable bel,avior, since this is clearly nccessary for a
conlputable realization of that behavior to exist. By 'computable behuvior'
we mean that the word problem is solvable for the visible sorts. 1·lere is the
definition.

Definition 58. For 1: a finite signature and Va subset of sorts, &l E-ulgebra
M has a COluputable. V-behavior iff there is a V-sorted rccursive set IV und a
V-sorted map f. W -+ M such that the induced hornomorphism
f-: Gt (W) -+ M is surjective"in each compon'cnt f# p witfi V'E J/, and the
equivalence relation (Q/.)., is recursive for each v E V. 0

Since Gr. ~ GI(W) for any W, if M is a nlinimal E-algcbra, then lhe above
definition can be rephrased by saying that M has a cOlnputable v­
behavior iff (Q ..)., is a recursive equivalence relation for cach v E V, for
h: Gr. --. M the unique homonlorphism. Note also that this definition is
stable under isomorphism: if M has a computable behavior so docs any M'
isomorphic to M.

The following theorem of Dcrgstra & Meyer [5] shows lhat every
computable behavior is effectively realizable by the initial rcalization.

Tlleoreln 59. Let M be an algebra with a computublc V-behavior, for V a
subset of its sorts. Then the initial realization J(M) is a computablc
algebra.

Proof. If f. W -+ M shows that M has a computable behnvior, then by
Proposition 26 we can find· recursive sets' Ulland recursive retracts
p,,: Gt (W) -+ U., such thatfill ., = Ou 0 p., with g.,: U II -+ Atl., bijective for each
v in V. Since computability of un algebra is a concept stuble under
ispmorphism, without loss o[..gencnllily we may assunle tlHlt the bijection
0: U -+ My is the identity. I~ec"ll lhul l(M) was constructed HS thc J/­
sorted subset of Tr.(U) forlned by the V-irreduciblc tcrlus. Noticc that
there is an algorithm to decide if a lenn I is irreduciblc: just cxalnine nil
proper subtcrms of t and see if there is one of external sort different frolll a
constant in U. Consequently, I(M) is in bijective correspondence \vith &lll

S-sorted recursive subset by the uniquc isomorphism of Gt (U) with 1't (U)
as 1:(U)-algebras, since this latcr isoillorphism is given by an algoritlull,
and we can then use Church's thesis. Using this bijection nnd again by
Church's thesis, each operation of J(M) corresponds to a recursive
function for the image, i.e., J(M) is a cOlnpulablc nlgcbrH, since, for (J with

Juitialily, illductiol1, alld COIIJputability 511

non visible sort, the algorithm to compute u is the same as the one to
computc (1 in Tt(U), and, for a with visible sort, the algorithm to compute
0(11, to t, til) is as follows: (i) compute al, ... , an, the Godel numbers of
'1, . to. flJ, in Gt (U); then the result is p.,(a(a 1, ... , all». 0

As a corollary to this theorem, we next show that (V-reachable) algebras
with conlputable behavior are always nlinimal in a finite enrichment
without new sorts of their original signature. Recall that an algebra is V·
re:lchnble: for V a set of sorls, iff the evuluation map e'M: 'Tr.(M y) -+ Ai is
surjective; thus any·mininlal l:-&tlgcbra is V-rcacha·ble, but a V-rea·chable
algebra need not at all be IniniJnal.

LellUIID 60. For L a finite signature, let ~I be a V-reachable l:-algebra with
n computable V-behavior. Then there is an enrichment without new sorts
1:' of 1: by at nlost IVI constants and IVI function symbols, and a minimal
I:'-algebra lvi' with a computable V-behavior (as a L'-algebra) such that
M'h:=M.

Proof. Uy Theorem 59, l(M) is conlputable; therefore, it is isomorphic to a
rccursive nUlnbcr algebra U, which we may assume for each sort s has
either U. = w (if U. is infinite), or U, = [II] for some integer II (if U. is
finite). For cach visible sort v such that U., is nonenlpty, we can pick 0 e U.
as a constnnt and a recursive function s: U" -+ U" that is the ordinary
successor function when U., is infinite, or the truncuted successor function,

AX. if x < II - I Ihen x + 1 else II - 1,

when U" = [II]. This Inakes U into a recursive l:'-algebra, U', for the
signature obtuincd by adding n constant 0 and a successor function s to
each visible sort IJ with Up nonclnpty. Using the bijection between I(M)
nntl U, we can thcn makc I(M) into a computable l:'·algebra, I(M)', and,
since, I(AJ)., = kl., for each visible sort V, this also makes M into a};'·
algebru A1'. . ' .

(Incidentally, I(M)' is the initial realization of M'.) M' is the algebra we
Wtlnt; since I(M)' is gencrated by Mv as a l:-algebra. then J(M)' is a
Inininllli l:'-algcbril, and so is M' for the saine reason. The unique 1:'.
hOlllolnorphisnl I,: Gr.' -+ M' factors through the quotient J(M)' -+ M'
and 1("")' is comput&lblc, so M' has a computable V-behavior. as desired.

o
Ucfore considering the relationship between final algebra semantics and
cOlnputability, we define sClnicomputablc and cosclnicomputablc
algebras.

518 J. Meseguer, J. A. Goguell

Definition 61. For 1: a finite S-sorted signature, a L-ulgebra A is
senJicolnputable (respectively coseI11;cOII,plltable) if there arc an S-sorted
recursive set Wand an S-sorted map f. IV -+ A such that the induced
homomorphism/': G1:(W) -+ A is surjective and the congruence Q,~ is a
recursively enumerable set (respectively its complement GIl - Q,_ is a
recursively enumerable set). 0

Thus, A semicomputable means that the word problenl for A is
senlidecidable, i.e., there is an algorithm that assigns the value I to (I, ,') ifT
/#(,) = /'(1'), but may not stop if/'(t) ~ /'(1'). Similarly, A cosemicom­
pUlable means that the word problem for A is cose",;eJec;e/tlble, i.e., there
is an algorithm that assigns the vulue 0 to (It t') iff/I (I) :F J~ (I'), but Illay
not stop if /*(1) = /#(l'). Thus, an nlgebra. is computable iff it is both
semicomputable and cosenlicomputable. Note that since G[£; Gt (JV) for
any W, in the case where A is a minimal L-algebra, the above C4ln be
rephrased by saying that A is semicomputable (respectively coscmicorn­
putable) iff the congruence Q" associated to the unique homomorphism
II: Gr. -+ A is recursively enumerable (respectively its complelncnt is
recursively enumerable). Note also that the choice of the Godel nunlbering
Gt(U) is immaterial, since it can be replaced by -any other recursively
isomorphic to it.

We have already pointed out that there are finitary initiul algebra
specificalions with undecidable word problems [40] (however, they are
semidecidable.)We now show that the final realization N(M) of an M with
computable behavior is always coselnicolnpulable, and we give lutcr an
example of an N(M) that is undecidable.

TI,eorem 62. For 1: a finite signature, and Va subset of sorts, if an algebra
M has a compulable V-behavior, then its final realization N(A1) is
coscmicomputable.

Proof. Since M has a computable V-behavior, there is a homolnorphism
II: Gt (W) -+ M surjective on the sorts in V, with (Q,.)., recursive for each v
in V. Reasoning as in the proof of Theorem 59 there are recursive retracts
p,,;. Gt (W)., -+ Ulland bijections g.,: U., -+ M., with g., 0 p., := 11.,. Since being
cosemicomputable is stable under isomorphism, we may assume without
loss of generality that the V-sorted bijection g: U -+ My is the identity. We
can then replace the above II "try the homomorphism tA': Gt(U) -t A1 for
the purposes of the cOlnput~.bility of the bel,"vior. Indecd,..considcr the
diagram of Figure 14.12, which shows e,., = II oj~. Since the inclusion

519I,,; t ialit y, induction, and cOlllput"bility

j: U -+ G[is a recursive function, j# is a recursive homomorphism by
Theorem 30, and thus (Q.,,)., is recursive for each v in V. Note that, by the
identification U = Mv we have (t,,,)., = P., 0 j *.,. Thus, (eM)" is recursive for
each v in V. Let I and I' be two terms in Gt(U). We will be done if we
exhibit a scmidecision procedure for £N(M)(t) #: £NCM)(t') or equivalently for
failure of £ICA,)(I)ncr£'C_O(t'). By definition of ner, this means that there is a v
in V and a term u in Tt(U u {y})., such that (identifying Tt(U) with

Gt(U»,

CICAf)(U(Y +- £UA,){t») ~ £ICM)(U(Y +- £I(A.){t'»).

As in the proof of Theoreln 1~, this inequality can be rewritten as

CI(Af)(II(Y +- I» ~ £I(A')(U(Y +- I'».
Since J(M) is behaviorally idcnticHI to M this, in turn, can be written as

(.) £A'(U(y +- £I(,.,)(t») ¥- £AI(Il(Y +- £/CAI){t'»),

llerc then is the semidecision procedure: (i) number all the terms of
Tt(U u {y})., for each u. in V in a 'diagonalized' way, i.e., ul of sort
vI, ... t III' of sort VII, '~II + 1 of ~or.l vi, etc.; a~d then (~D compu\~.J·) for
each term II = UII (note that (CM)" is recursive); if there is a u giving an
inequality, it will be found in a finite number of steps. 0

At the end of Section 5 we pointed out that the most usual final
realizations are those beha viorally equivalent to an initial algebra Tr..,; for
E a set of equations, i.e., the behavior (for V a subset of sorts) is specified
using initial algebra semantics, and lhen the final realization Nt.1: of that
behavior is considered. This algebra is called the jinal algebra specified by
(1:, E) relative to the visible sorts V, or the final (E, E)-algebra relative to
v. We 11lso nlentioned that Tr..1i need not coincide with the initial
realization I(Tt.,J, which does not have to satisfy E, but thal there is a
surjective strong V-holnomorphism from l(Tt ,£) to Tt,~. Thus even if the

Fig. 14.-12

Gz:<tn.

"

_______-4.~ u. .. M.u.

520 J. Meseguer, J. A. Goguell

initial (1:, E)-algebra is not computable, there is a computable realization,
l(Tr.,E). of its behavior, provided the behavior itself is computable.

Note also that we have proved that any V-reachable algebra 1.1 with a
computable behavior is the l:-reduct of a minimal algebra M' with a
computable behavior for a finite enrichment without new sorts }:' of its

..	 signature. Thus, it is natural to ask for a comp~tational characterization of
the class of machines having finitary final algebra specifications. We slate
below a conjecture on such a characterization, in a sense a converse to the
la~t theorem. Call the V-behavior of an algebra M 11011"";1 if there is a v in
V such that M., ~as more th,\n one elelncnt.

COlljecture. For 1: a finite signature and V a subset of visible sorts. the
following are equivalent for a minimal algebra M with nonunit cOlnput­
able V-behavior:

(i)	 M is cosemicomputable.
(ii)	 There is a finite enrichment without new sorts 1:' of L, and a finite

set E of equations such that M is isolnorphic to the reduct Nt'.r.lt
of the final (1:', E)-algebra. 0

We now give an example (inspired by [9]) of a final algebra \vith a
computable behavior that is cosemicompulable but is not computable.
The signature 1: is given in Figure 14.13.

There are no equations of sort fun; the equations of sort nat arc the usual
primitive recursive definitions of addition. +, truncated difference. ~ (Le.,
'1 .:.. nl = if n > m then n - nl else 0), mUltiplication. _, the test for II ~ O.

and "lin (i.e., "lill(n) == if 11 = 0 then 0 else 1), plus the following equations:
O[nl,. ,., n14] = 0

1[11 1, ...• '1 J4] = 1

xi[nl, n14] = IIi (for I ~ i ~ 14)
5(f)[nl •...• 1114] == s(/[III, ... , 1114])
</1	 +/2)[n,l, ... , 11,14],=/1[111, ...• 1114] + /2[111, ...• 1114]
(f 1 .:.. /2)['11, · · ., 1114] =s / I [" 1, , 1114] .:.. /2 [III, ... , 1114J
(/1 e/2)[nl, ... , nI4].·=/l[1I1, , 1114] e/2[1I1, ..-., 1114]
nlill(!)[nl, ... , 1114] = ,,1111(/[111, "., nI4]).

For E the above equations, (TI,E),. = (Tt),., and (TI .E)••• can be
identified with w. These equations evaluate each expression in the
variables xl, ..., XII, to its result in CJ) after binding each xi to the value Iii.

Thus. it is clear that Tt,E is computable; in particular, il has a computable
behavior for V = {nal}. (Incidentally, TI,E is the inithlt realization of its
own behavior, since no nontrivial equations of sort fun cun be deduced
from E.)

JlIitialily, ;lIlluctioll, alltl COII'l'lllabilily	 521

Another very natural (1:, E)-algebra is n with 0 ... = wand 0,. =r

[ClJ
14

-+ co], set of all functions of 14 variables on the natural numbers.
The operation -[---t ... , _] is function evalualion. i.e., f[1I1, ••• , n14] 1:11

f(lIl t ••• ,1I14); the operations s. +, ..:.., e, and mil1 are interpreted as
usual on co, and for the sorl fun are interpreted as acting on the value of
each function, i.e., are defined by the above equations; 0 and 1 arc the
constant functions with values 0 and 1 respectively, and xl is the ith
projection function, Le., is defined by the equation Xi[III, ••• , n14] = 111
above. '·hcrc is then n unique homomorphism II: Tr.,E -+ n. and letting Ot
denole the image subalgebra under this homomorphism. we obtain a
minimal algebra behaviorally identical to Tt,s. We claim thot 0t is the
final (1:, E)-algebra. To see this, note that if 0t were not final, there would
be two functions! 1 :F /2, with corresponding expressions t 1. t2, such that
for each II in Tt(wu {y})••• one would have

I:TL1 (II(y +- tl» = £TL.(U(Y'- 12».

In particular. one would have 11[111••.. , n14] = 12[nl,.,., nI4], for each
111 ••••• 1114 E W 14

, in contradiction lo/i :1=/2.
Dy Matijasevlc's theorem [69, 70], 0t is not computable. Define an w­

pulylloll.;al expression (in 14 variables) to be a {nal}-irreducible term' of
sort fun in Tt,l such that the operations":'" and min do not occur in' (i.e.,
nn expression on the variables xl, ... , xl4 involving +. _, and natural
nunlbers as coefficients). Malijascvic's theorem can be formulated as
follows:

TI,corelll 63. A set U s; co is recursively enumerable iff there arc w­
polynomial expressions I, I' e 1r..£ such that for each n in co

II E U iff 3".2, ... , 11114 E c.o such thot t[n, n12, .•• , m14] ­
1'[11, ,,12•... , 11114] in Tr.,E. 0

Fig, 14.13. The signature of an example

xf x2 _.. -(-I ..-.', -I ' min

1
~/"

../ I

?o ..
...

,

522 J. Meseguer. J. A. Goguen

It is a basic fact of recursive function theory that there are nonrccursive
recursively enumerable sets. and that thc cOlnplcments of such sets are also
not recursively enumerable. Let U be such a set. Dy Mutijascvic's theorenl
there are w-polynomials, t, t' such that for each number ". II E W - U iff

(.) Vm2•... , nl14 E W

t[n. nI2•...• m14] ~ 1'[11. 1112••••• m14] in TIIS '

Let 'II be the w-polynomial obtained by replacing each occurrence of x 1 in
I by s"(0). It is easy to see that for each nil •...• 11114 in w one has

' ..[1111. "" n114] = t[lI. IJ12, ••• , ,,114] in TI,E-'

Define t'" similarly from t'. Then condition (.) can be rephrased as

(••) h(mill(t" -=- I'll) + (t'" ..:.. til») = I in 0I.

where h: Tr..E -+ Or. i.s the unique homomorphism. If 0t were conlputablc,
we could decide for each n the word problem (••), i.e.• we could decide
n e CJ) - V. which is impossible. ' - "

This example shows the strong computational difference bctween
intensional and extensional notions of function. Functions in i,ue,ls;onal
form (i.e., understood as rules of computation) are amenable to finitary
specification by initial algebra semantics, whereas functions considered
extensionally (i.e. identified as equal jf they give the same result for all
values) lead to cosemicomputable data types with a final algebra
specification. The above example illustrated this for arithmetic ex­
pressions, but we could have chosen an entire progranlming language
instead.

We now discuss a different notion of final algebra, due to ncrgslra and
Tucker. who have established a nUlnbcr of important lhcorcrns for this
notion. We shall call their notion nT-final to avoid confusion, since the
two notions are not equivalent; their intuition is also different, since there
is no notion of visible sorts or of the behavior associated with a DT-final
algebra (no sorts playa privileged role). Rather. their intuition is one of
logical consistency. Before giving the definition, we will say a few words
about cOIJditlonal equations. i.e., equations of the form

(VX) t 1 = t'l & ... & til = 1'" => I = I'.
An algebra A satisfies such an equation iff for any assignment f. X -. A
su~h that the conditions hold~. the consequence also holds. Then A is a
(1:. E)-algebra, for E a set of <;onditional l:-cquations, iII A satisfies each
equation in E; and a (1:, E)-algebra is initial iff there is a unique 1:­
homomorphism from it to any other fE, E)-algebra. Sound and conlplete
many-sorted rules of deduction for conditional equations are given in
[33]. These rules of deduction give the set E· of all (ordinary) equations

I'litiality. induction, and conlputability	 523

that are satisfied by all (1:. E)-algebras, for E a given set of conditional
equations. [33] also shows that A is an initial (1:. E)-algebra iff A is an
initial (1:, E ·)-nlgcbra. Thus. Tr..£. is also initial for the class of all algebras
satisfying E. Similarly. by the filial (1:. E)-algebra Nr. B (for Va subset of
sorts), we mea~"the final realization N(Tr..£) of the V-~havior of the initial
algebra Tr.,E. We are now ready to define BT-final algebras.

Definitioll 64. Given a signature 1: and a set E of conditional equations, a
DT-fillul-(r,. E) algebra. if it exists, is a minimal (~t E)-algebra F such that,
if 1,: Tt -t F is the unique homomorphism. then the following hold:

(i)	 Q,.:I: Tr. 2 (i.e.• F is nol the 'unit' algebra).
(ii) If	 11(1) ¥: h(t'), then Tr.. £ v (cve)l- ") is the unit algebra. i.e. it has

exactly one point of sort s if (TJ:), is nonempiy.· . 0

Thus. the nT-final algebra is the algebra obtained by imposing on T~. all
the equations t = I' such that there is a nonunit minimal (1:, E u {t 1:& t'}}­
algebra, i.e., all equations that in a certain sense are not 'inconsistent' with
the equations E. In general such a process. although well-defined. may
yield an algebra that is the unit algebra. For example, with the natural
nunlbers, the equations 2 == 0 and 3 == 0 have nonunit models. but the two
together collapse all the natural numbers to one point. But, when they do
exist, any two BT-final algebras arc isomorphic and can be characterized
as the final object of the category with objects minimal (1:. E)-algebras
(with exclusion of the unit algebras) and morphisms the l:-homomorph­
isms. Thus. all the final BT-algebras, if they exist. form an abstract data
type. and we talk of the nT-final (1:. E)-algebra.

Ilere is the theorem of [9] characterizing cosemicomputable algebras;
their proof uses Matijascvic's theorem.

TIJcorel1165. Let A be a minimal l:-algebra (~ finite and one-sorted). Then
the following are equivalent:

(i)	 A is cosemicomputable.
(ii)	 A is the l:-reduct of a BT-final (1:', E)-algebra. for ~' an

enrichment without new sorts of 1: by at most Shidden functions,
and E a set of ai most 15 + 11:1 conditional equations.

I, ••••

The same holds for A a minimal !-algebra when 1: is finite and many-
sorted. making the appropriate modifications on the bounds for the
number of hidden functions and conditional equations. 0

We conclude this section with a very nice theorem of Bcrgstra & Tucker

524 J. Meseguer, J. A. Goguen

[8] showing the simultaneous adequacy of initial and nT-final algebra
semantics to specify computable algebras, and giving a bound on the
number of hidden functions and equations required. This bound depends
only on the number of sorts and not on the size of the signature L.

Theoreln 66. Let A be a minimal1:-algebra, and II the number of sorts of
its signature 1:. Then the following are equivalent:

(i)	 A is computable.
(ii)	 A is the I-reduct of an algebra that is both initial and DT-final for

(1:', E) an enrichment without new sorts having at most 3(11 + 1)
hidden functions and 2(n + 1) new equations. 0

The proof of this theorem also makes essential use of Matijasevic's

theorem. The original algebra is 'rigidified' by introducing new operations

that act as injections (with corresponding retractions) of each sort into a

highest cardinality sort. Identification of any two elements after this

enrichment produces the unit algebra. Further enrichment, use of

· Matijasevic's theorem, and an elegant tfolding' of equations using

conditionals give the required result and bounds.

6.7 Equality enriclllnents, conlputability and illduclionless ilJductioll

Whatever other operations an abstract data type rnay have,
programming intuition strongly suggests that it can be given equality
oPerations that tell whether ~r not two abstract data itclns arc the sanle;
intuition also suggests that these operations will be equationally definable
[31]. This subsection gives a formal justification to this intuition by
showing that a data type is computable if and only if its equality can be
axiomatized with a finite number ofequations. This can be secn as a purely
algebraic formulation of a Church-like thesis. that the intuitive nolion of
computability agrees with certain algebraic concepts. The equational
axiomatization of equality is also closely rclated to the recent theorem­
proving method called tinductionlcss induction', which uses purely
equational reasoning (in the form of rewrite-rules) to prove theorenls valid
in an initial algebra that would normally have to be proved by induction.
We explain the basic facts about the satisfaction of equations in initial
algebras and about inductionless induction, and give pointers to further
developments in this area. This subsection drops the implicit assumption
of finiteness for signatures.

Illil ialit y. illduct iOll, Qntl cOlllputability	 S2S

Intuitively, we seek to enrich a given dala type with equality predicates.
i.e., operations =.: ss -+ newbool for each sort s, where newbool is a new
sort with constants true and false, we also want to ax;on.atlze those
operations by giving new equations such that. for an)' two ground tchi\s
I. I'. one can proye (t E t') D.Jr«e (respecti~ely .false). iff t and. t' can
(respectively cannot) be proved equal in our original data type by the rules
ofequational deduction, and, of course, one cannot prove true ~ lalse. For
instance the equations

(x e x) c: true
(0 == s(x» a= false
(s(x) == 0) = false
(s(x) == s(y» a: (x == y).

give such an axiomatization for the natural numbers.
We also desire that the new equations should have no effect on the old

sorts. This property is meaningful for any enrichment, a'nd corresponds to
sufficient completeness plus consistency in Guttag's terminology; it is
weaker than 'persistence' since it is only stated for the initial algebra.

Defillitio/l 67. Given an enrichment (1:', E') of (1:, E), there is a unique 1:­
homomorphism I,: TE,E -. Tt ·,,;,11:. Then this enrichment is protected iff I.
is an isomorphism. 0

We give now the definition of an 'equational equality presentation'; the
definition is meaningful even without explicitly giving a subpresentation
that it enriches by equality. In case this is explicit, th~ equational equality
presentation is called an tequality enrichment' of the given
subprcsentation,

Defillitioll 68. Lei L - be a signature that contains a sort newbool with
constants trlle and false, and for each sort S:F ncwbool an operation
=,: 55 -+ newbool; let E- be a set of l:--equations. Then (~-, £-) is an
equcltiollal equality presentatioll iff it satisfies the following conditions:

(1)	 Equational equality. For each sort s '#- newbool in 1:- and each t, I'
in (T[.).:
a.	 The equation (V0) (t == t') = true is provable from E - if

and only if (V0) t = I' is provable from E·.
b.	 The equation (V0) (I == I') = false is provable from E - if

and only if (V0) I = t' is not provable from E - .
(2)	 Consistency. It is not provable from E - that (V0) true =­

false for sort ncwbool.

526 J. Meseguer, J. A. GoguelJ

In addition, if there is a subpresentalion (1:, E) with sorts those of 1: except
newbool and such that the enrichment (1:, E) ~ (E -, E-) is protected, then
we will call (E-, E-) an equality enricillnent of (E, E). Note that by having
a protected enrichment, the equational equality condition is then equiva­
lent to the following:

(I') Equational equality'. For each sort s of I: and each t. I' in TI ••:

a.	 The equation (V0) (I ==
and only if (V0) 1 = I'

b.	 The equation (V0) (I ==
and only if (V0)·' = t'

t') := true is provable from E - if
is provable from E.

t') = false is provable fronl E - if
is not provable from E.

In other words, the equality predicate in the enrichment is characterized
by equational deduction in the original subspecification. 0

In general, the p~operty of an.enrichment being protected requires careful
analysis. However, for the case of equality enrichments there is a silnple
sufficient condition that applies to all reasonable situations that appear in
practice:

Lemma 69. Let (1:, E) ~ (1:', E') be an enrichment such that: there is only
one sort So in 1:' and not in 1:; the operations and constants in 1:' that are
not in 1: all have sort so; and the equations in E' that are not in E all have
sort So. Then the enrichment is protected..

Proof. For each sort s :I: So we have Tt ,. = Tr:,. and. by inspecting the
rules of many-sorled equational deduction, it is easy to check that since
there arc no operations of sort different from So which have So as an
argument, the equations in E' and not in E have no effect whatsoever on
terms or sort different from So. 0

A close connection exists among initial, final and BT-final algebras for
equational equality presentations.

Lemma 70. Let (~-. E-) be an equational equality presentation. Then:

(1)	 Taking V ='{newbool} 'as the set of visible sorts, the initial and the
final (1: - , E-)-algebr~s coincide.

(2) Assuming that	 (Tt·.£·).,,~ = ([true], [false]) and adding to
E - the conditional equation
V{x, r} Irue =false ~ x = ~

for	 each sort different from ncwbool to form an enrichment

lllitiality, induction, alld conlputability	 527

(1: -, E -'),	 the initial (1: -, E -)-algebra and the BT-final
(1: -, E -)- algebra coincide.

Proof. To prove (I), assume [I] = [I'] in the final algebra but [I] ~ [t,] in
the initial algebra. This gives [true] = [t == t] == [t == t'] -= [false] in the
final algebra, a contradiction.

To prove (2), first note that (Tt -,£-) vacuously satisfies the conditional
equation of(2). i.e., it is also initial (1:-, E-')-algebra. We will be done if we
show that the only proper quotient, A, of Tr.-.E- that satisfies E· is the
unit algebra. Indeed, for such an A, if [t] = [t'] in A and if [t] :F [I'] in the
initial algebra, then

(i)	 If the sort is ncwbool this means that [Irue] :a lIaise]. and hence
, everything reduces to one point for the sort newbool. and so by the

I I	 conditional equations, ev'erything also reduces to'one point i'~ any
I

other noncmpty sort; i.e., A is the unit algebra.
I

(ii)	 For any other sort, we reason as in the proof of (I) and reduce to
the case (i). 0

!I	

The following theorem characterizes the computability of an abstract
data type in terms of equational equality and initiality. From the last
lemma. one can obtain as immediate corollaries two similar characteriza·
tions replacing initiality by either finality or by nT-finality.

TI,eorel" 7J. For 1: a finite signature and a minimal 1:-algebra the
following arc equivalent:

(1) A is computable.
(2)	 There is a finite enrichment 1: s;;; 1:- with only one new sort

ncwbool and a finite set E- of E--equations such that (1:- t E-) is
an equational equality presentation and A is l:-isomorphic to the
reduct (Tt-.£-)It.

(3)	 Same as (2) plus the equations E- arc confluent and terminating
as rcwrlt~··rules.: I

Proof. Clearly, (3) ~ (2). To sec (2) => (1), notice that we, can decid~ the
t ; word problem for A 'by the following algorilh~~ gi~en ground ~-terms t,

and t', start generating all the consequences of E- by the rules of many­
" .
.,

I	

sorted equational deduction. After a finite number of steps you either
obtain the equation (V0) t = I' (if t = t' in A), or the
equation (V0) (t == I') == false (if t ~ I' in A).

528 J. Meseguer, J. A. Goguen

To see (1) ~ (3), we may assume without loss of generality that A is a

recursive algebra. We take 1:-"0 the enrichment of 1: by sort ncwbool with
constants true and·false and o·perations 5,: S5 -+ s for each old sort s. We
extend A to a recursive l:-o-algebra A - in the obvious way: sorts and
operations for the signature 1: are those of A, (A .)....... == to, I} with
false = 0 and true = 1; for each sort s in 1:, (A -)•• is the function:

A(xt y). if x == y then 1 else 0,

which is clearly recursive. By Theorem S4 characterizing computable
algebras by rewrite rules, we know that there is a finite enrichment without
new sorts ~ -0 ~ 1: - and a finite set E- of usable cquations such that the
induced rewriting relation is tcrminating and connucnt, nnd A - is
isomorphic to the 1: -a-reduct of the initial algebra 1~[-. £-. As a
consequencet A is isomorphic to the 1:-reduct of that initial algebra. To
finish the proof we need only note that (1:., E-) is an equational equality
specification. The consistency property is clear, and the equational
equality property follows from the bijection between A· and TI -.£- and
the definition of the equality predicates (A -)... 0

We will now consider the relationship betwccn equality enrichincilts and
the satisfaction of equations in initial algebras. This relationship, nalncly
the reduction of satisfaction to consistency, underlies the 'inductionlcss
induction' theorem proving method. FinallYt we brieny discuss the
literature in this area.

An initial (1:, E)-algebra in general satisfies more equations than just
those deducible from E by the'rulcs of equation'al deductioll. For cXQlnplc,
the natural numbers with zero, successor and addition arc the initial
algebra for the following equations E:

x+O=x
O+x==x
s(x) + y = s(x + y)
x + s(y) = sex + y),

and it is well-known that natural number addition satisfies the associative
law

(x + y) + z = x + (y + z).

However, this law is not satisfied by all the algebras that satisfy the above
equations E. One way to see this is to first remark that the above rules are
indeed terminating and confluent (more justification for this below), and
they remain terminating and confluent when Tr. is replaced by Tt(X) for X
a set of additional constants, and then give risc to a canonical term algcbra
Canr..£(X) which is an initial (I:(X), E)-algebra; but for X = {a, b, e},

111;1 iality, induction, alld con.putabUity 529

CanI.£(~) does not satisfy the associativity law, since the terms (a + b) + c
and a + (b + c) are both in canonical form~

Associativity of + depends on' l1~e addition'al fact th~t the natural
numbers are initial. This must be used in any proof of associativity by
induction. We will now establish two basic lemmas about the satisfaction
of equations in initial algebras.

Le"IIJ1a 72. Let (1:, E) S; (1:, E') be an enrichment by equations only. Then
the initial algebra Tr...E satisfies the equations in E' iff the enrichment is
protected, i.e., iff Tr..,; == Tr..,;"

Proof. If Tr..1i = Tr..E' then Tr..£ clearly satisfies E'. Conversely, if Tr...
satisfies E' then there is a unique homomorphism): TE.£' -. TE••• Now
since TI •E, certainly satisfies E S; E', there is a unique homomorphism
q: TItE -+ TI •E•• Then) and q must be isomorphisms, since they give rise to
endomorphismsj 0 q and q 0 j that by initiality must satisfy J 0 q = 1Tu and
q 0 j = 1Tl.J.' Indeed, q and j are both identity functions, since again by
initiality, q 0 ,. = II', for I., la' the unique homomorphisms from TE so that
the congruences associated to 1J and la' are identical, i.e., TEtl: = T1:.£'. 0

LellllJla 73. A set E" of l:-cquations holds for the initial (1:t E)-algebra iff it
hold,S for ql(~ initial (1:', E')-algebra for every prote~te4 enrichment ..
(1:, E) S; (1:', E').

Proof. If E" holds for every protected enrichment, it will in particular hold

for the trivial onc.

ConverselY,let (1:, E) S; (1:', E') be an arbitrary protected enrichment and
let (VX) I == I' be an equation in E not satisfied by the initial (1:', E')­
algebra. This means that if X consists of variables x....., x., there is an
nssignnlcnt fi X -+ Tr.'.,;', say !(x,) == [I,J, such that /"(1) :F /"(t'). Since
the enrichment (1:, E) S; (1:', E') is protected. we may assume that the
representatives tit .•• , 'II are ~-terms. This provides a similar assignment
/0: X -+ TI.£ by /O(x,) c: [t,] from which (using protection of the enrich­
ment and the obvious factorization of/'ITJJx) as (fO)' composed with the
isomorphism I.: Tr..£ -+ TE·,£·Ir. which follows from initiality) one sees that
the equation ('IX) t == t' does not hold in Tr..E. 0

We are now ready to reduce the problem of satisfaction or a set of
equations in an initial algebra to that of consistency in an equality
enrichment augmented by those equations:

531 530 J. Meseguer, J. A. Goguen

TlJeorem 74. Let (1::, E) be a presentation and let (1: -, E-) be an equality
enrichment of it. Then a set E' of :E-equations is satisfied by the initial
(1:, E)-algebra if and only if (\10) trlle =false is not deducible from
E- ~ E' by the rules of many-sorted equational deduction.

Proof. If E' holds for the initial (1:, E)-algebra then, by the previous
lemma, it also holds for the protected enrichment (1:- t E-); it then follows
from Lemma 72 and the consistency property of the equality enrichment
that (V0) true =false is not deducible from E - u E'.

Conversely, suppose that an equation (\IX) t = I' in E', say of sort
s, is not satisfied by TJ:.~; i:e., suppose that there is an assignment
f: X	 -+ TJ: such that [/"(1)] ~ [/"(1')] in TJ:.a; then

(i) CV0)(/#(t) 3,/#(1'» =/alse

can be deduced from E- by the rules of many-sorted equational
deduction. On the other hand

(ii)	 (V0)f~(t) == 1#(1')

can	 be deduced from E' by the rules of equational deduction, and by
reflexivity we have

(iii) (V{x. y}) (x =. y) == (x 5, y).

Hence from (ii) and substitutivity we can deduce

(iv) "(v{x}) (x =.,/'(1» =(x =.I'(t'».

Again by substitutivity and reflexivity we can then deduce that

(v) <V0) (/#(t) =./#(t» == (1'(1) =,I#(t'».

Since /"(t) =,/#(t» == 'true follows from E· by the rules of deduction,
from E·uE' and transitivity we deduce (V0)(f'(t}=',/'(t'»C&
true, which together with (i) gives (V0) true == false, 0

..	 This theorem provides an 'jnductionlcss' (i.e., 'purely equational) way of
proving that an initial algebra satisfies a given equation. Several
algorithms can help in automating most of the proof effort, turning it into
a theorem-proving strategy. On the one hand, the Knuth-Bendix
algorithm can attempt to find" a set of confluent equations deductively
equivalent to a given set of equations, provided termination is satisfied; on
the other, attempts to prove rewrite-rule termination can also be
semiautomated [32] or even automated [52]. Here then is a possible
strategy, using the Knuth-Bendix algorithm, to prove that a set E' of
equations holds for the initial (1:, E)-algebra:

(i)	 Enrich (1:, E) to a confluent and terminating equality enrichrncnt
(1: -, E-).

~

~ 'I..

" ~~

I
t

1
\
:1
i

;1
I

.j

~j

I
O!

l,aitialily, i'JducliolJ, alJd COI1Jputability

(ii)	 Use Knuth-Bendix and termination methods to attempt complet­
ing E- u E' to a confluent and terminating set of equations.

(iii)	 If somewhere in the completion process for E- u E' the
equation (V0) Irue == false is derived, then SlOp: at least one
of the equations in E' is not satisfied by TEe£­

(iv) If the completion process terminates with a set of confluent and
terminating rewrite rule for which [true] ¥: [falsel, then
the equations E' are satisfied by Tr..s.

(v) Otherwise (i.e., if the completion process does not terminate and
we; .could not prove (\I0) true == false from. already gon~

crated rules), nothing can be decided about the satisfaction of the
equation. Nevertheless, ·If we were to ideally 'wait forever', this
would actually give a proof that the equation holds; this is so
because, in the limit, the set of all generated equations is conOucnt
[43].

For example, consider the associativity of natural number addition. The
set E· below is a confluent and terminating equality enrichment:

x+O~x

O+xax

s(x) + y =sex + y)

x + s(y) == sex +'y)

(x a x) = true

(0 Ei s(x» .. false

(s(x) a 0) == false

(s(x) Ei s(y» .. (x =y).

It so happens that E- union with the equation

(x + y) + z -= x + (y + z)

is already terminating and confluent, and is certainly consistent (i.e.•
Irue :F false), so that associativity follows. Termination can be seen using
the following ordering on terms: t ~ t' iff "'(t) ~ c/J(t') where t/J(O) as

q,(lrue) = tJ>(false) = I, q,(x) = I for any variable x, and t/J(S(I» :::: tfJ(t) + I,
4J(1 + I') = 4J(t) • 3·('"), and 4J(t == t') = 4J(t) + t!J(t') + 1. Then one
can sec that for anyone step rewriting t -+,' induced by the equ'ations,
"'(I') < 4>(1); hence the rules are terminating. Confluence is handled
semiautomatically by the Knuth-Bendix algorithm, which for the above
equations slops without producing any new rules. This is because all
critical pairs produce the same normal form. For instance, the associativ­
ity equation and the equation x + s(y) = s(x + y) give the critical pair
(x + (y + s(z); s«x + y) + z», both one step rewritings from (x + y).
+ s(z), and both sides rewrite to s(x + (y + z)). We

\

532	 J. Mesegller, J. A. Goguen

actually compute all cases (see [42] for a precise definition of critical
pair).' . /'

The inductionless induction method is originally due-to' Musser [72].
Goguen [31] generalized and simplified the method, and proved Theorem
74. Huet & Hullot [44] give a variant of the method that when certain
conditions are satisfied by the original equations, does not require the
introduction of an equality predicate; intuitively, if there is a subsignature
a s; 1: or,'constructors' (with same set of sorts) such that the enrichment
(0, 0) ~ (1:, E) is protected, i.e., such that each equivalence class [I] of 1:­

terms has a unique O-term as its representative, then we can handle
equality implicitly, as identity between the representative a-terms. This
idea has been extended further to the case of a protected enrichment
(0, Eo> S; (1:, E) by Kirchner [54]; this opens generalizations of the above
method that usc generalized Knuth-Bendix algorithms modulo 'nice'
equations such as associativity and commutativity for proofs by induc­
tionless induction; termination methods in this context have recently been
considered [23]. Lankford [56] discusses potential limitations of the
inductionless induction method, and [52] gives 8 careful explanation and
examples of the method (for the case without equality predicates).

6.8	 Concluding rel1Jarks on abstract data type cOlllpulabi/ity

This brier subsectio~ indicates some additional references and
research directions in abstract data type cOlnputability; it claims neither
exhaustion nor completeness.

6.8.J TIle classics

Even before the establishment of any formal notions of computa­
bility, van der Wacrdcn [85] defined 'explicitly given fields' and proved
[86] that there was no general splitting uigorillllll applicable to all
explicitly given fields. The subject of computable fields was further
developed in the framework of computability theory by Frolich &
Shepherdson [24] and later by Rabin [78], who proved that the algebraic
closure of a computable field is also conlputable. Doth Rabin [78] and
Malcev [67] develop equivalent versions of computable algebra for an
arbitrary signature, as in Section 6.3, and establish the foundations of the
subject.

.\	 lllitiality, indllctioll, and COIJJputability 533

6.8.2	 Further \vork by Bergstra, Tucker et al.I,
(i)	 By Bergstra and Tucker, besides the references already cited, sec

[7.10, II, 12].!	 (ii) Asveld & Tucker [1] study the computational complexity of
abstract data types. f

t· (iii) Bergstra, Droy, Tucker & Wirsing [14] give characterization
theorems for hierarchical specifications and partial abstract data\ .\ types.

(iv) Dergstra	 & Klop [3, 4] begin the subject of computability of
parameterized abstract data types.

6.8.2	 COlllputabili,y of partial abstract data types with equationally
defilled dOllla;lIs

A natural way of extending (total) data types is to consider partial
data types with operations defined on (vectors of) values that satisfy
equational conditions (e.g., empty(x) == false). This approach has been
proposed in [79]. Kaphengst [53] gives 8 careful study of the computa­
bility of these data types, and 1-1 upbach [47] studies the related problem or
computability for irnplcmentations.

Ii,
Acknowledgements

We would very much like to thank Rod Burstall. David Plaisted,
and Rob Shoslok for their COlnnlcnts on an early draft of this paper.
Special thanks to Arthur Knoebel, Melissa Smartt, and other members of
the New Mexico State University Theoretical Computer Science Seminar,
to T. Rus, and to Jean-Pierre Jouannaud for their detailed comments and
suggested improvements on a more recent version. Andrew Black, Stephen
Bloom, Akira Kanda, Fernando Orejas and Bill Wadge provided
comments and pointed out mistakes or possible improvements; to each of
them we also express our thanks. Responsibility for any mistakes is, of
course, entirely ours.

Appendix: proofs of soundness and compleleness

We first prove the Soundness Theorem stated in Section 4.3.3.

"
Proof of TI,eorelll 12. For technical reasons, it is easier to prove the

534 J. Meseguer, J. A. Goguell lllitiality, induction, alld cOll.putability 535

soundness of a set of rules equivalent to those given in Section 4.3.2. The
new rules are (1)-(3), as before, together with:

(4') Substitulivity-l. If

(V Y) .ul == u2

of sort s is derivable and if (J e 1:'1 ...'11." is an operation with sk == s.
then so is

(VZ) a(xl, ...• xk - 1. ul, xk + 1•... , xn) == .
a(xl,tt.,xk- l.u2.xk + l •...• XIl),

where Z == Yu {xl•... , xk - 1. xk + 1, ...• xn} with xj of sort sj.

(5') Subslitutiv;ty-2. If
(VX)·, z= I'

is derivable and if g: X -+ Tr.(Y) is an S-sorted map, then

(VY) g'(I) == g'(I')

is also derivable.

We first prove the soundness of the rules (1)-(3), (4'). (5'). and then prove

their equivalence with the original rules (1)-(6) in a subsequent lemma.

Soundness of rules (1}-(3) follows directly from the definition of satisfac­
tion and is left to the reader; the soundness of rules (4') and (5') remains.
For (4'), we must show that if A is an algebra satisfying (V Y) u 1 = u2.
then A also satisfies

(VZ) a(x),. tt, xk - 1. ul, xk + 1•... , XII) =

a(xl, .•.• xk - l.u2,xk + 1, ...• XIl).

Now let f: Z -+ A be a (S-sorted) map. and consider the commuta­
tive diagram in Figure 14.14, wherej: Y -. Z is the inclusion map which
induces the inclusion homomorphism Jill: Tt (Y) ... 11(Z). We then have

, • I' •

(J (a(xl, ... , xk - I, ut. xk + I, ...• xn»
== a(!III(xl)•...• /~(xk - 1),f lll (1I1),I*(xk + I~, .·~ •• f-(XII»

=a(!'(xl), ...,!'(xk ­
= a(/"(xl), ...• I"(xk ­

Fig. 14.14

J.
TJ:(Y) - - - -- TJ:(Z)

qy t f~z
y .. z

J

(by f' a homomorphism)
l),/IIIU III «ul»,/"(xk + I)•.. .• /III(xn»
I). (1 0 j)'(ul)./III(xk + I), .. .•1 III (xn»

(by)" inclusion and diagram above)

/.------A

1
z= a(/"(xl)• .• .,I'(xk - 1), (1 0 j)'(u2),f'(xk + 1)•.. . ,/'(xn»

(by hypothesis)

:2 !'(a(x 1, ... , xk - I, u2, xk + 1, ... , xn» (reversing the steps)

as desired.
To see the soundness of (5'). let A satisfy (VX) t az I', let f. Y -t A

and g: X Tt(y) be maps. Then the diagram of Figure 14.15 sfK)ws that
fill 0 g" == (I' 0 g)', and so we have that

/"(0"(1» - (/" 0 g) 111(1) .. (I' 0 g)'(I') (by hypothesis)

:= /'(g'(I'».
as desired. To finish the proof we need only prove

Lenlllla 75. The rules (1)-(3), (4'), (5') are equivalent to the rules (1)-(6),
i.e., an equation (VX) t - I' is derivable by the first set of rules from.
set E ofequations iff it is derivable by the second set of rules from the same
set of equations.

Proof of Lemll,a. For the 'ir part. we must show that any equation
derivable by the rules (4)-(6) can be derived using (1)-(3), (4'). (5'). First

note that (5) and (6) are particular instances of (5'): for (5), take as 9 the

inclusion X Xu {y} Tr.(X u {y}); for (6), take g: X Tr.(X - {x})
with g(x') :2 x' if x' :I: x. and g(x) == II E (TE),. For (4). reason by induction
on n c:: max(depth(t 1), depth (12» where depth(t) J:I 0 if t is a variable or a
constant and dcpth(a(vl, ...• vIla»~ .. I + max{depth(vl), .•. t depth(um)}.
We leave the reader to check the case n .. O. Let n + 1 .. max{depth(tl).
depth(12)}; say II + 1 .. depth(ll), 11 == a(vl, ••. ,vln). Then we have

,I(x· f- ul) =z a(vl(x +- ul)•. tt, unl(x +- ul»
- a(vl(x +- u2)• ...• Vl1I(X +- u2)} ·

since by induction hypothesis.,· (VZ) vi(x +- Itl) :::z ui(x +- u2)·· can be
derived using (1)-(3), (4'), and (5'). Then by II. applications of (4') we have

II: 1I(x +- u2)
z= 12(x +- u2) (by (5'»,

as desired.

, Fig. 14.1S

I· /­
Tt<X) - - - --. TJ:<Y) - - - --. A

~x1
,

1
yx

531 536 J. Meseguer, J. A. GoguelJ

For the 'only ir part, we must show that any equation derivable using
rules (4') or (5') can be derived using rules (1)-(6). Rule (4') is n particular
instance of (4) with t 1 = t2 == o(xl, ... , XII) and with x = xk. Rule (5')
follows: (i) if X ==.0, from as many applications of the rule of abstraction
as variables in Y; (ii) if X :I: 0, from as many applications of the rule of
substitutivity as variables in X. 00

Now we prove the Completeness Theorem stated in Section 4.3.3.

Proof of Theorem 13. We have to show that if an equation

(.) (VX)t == t'

is satisfied by all (1:, E)-algebras, then it is derivable from E using the rules
or deduction (1)-(6) or by the above lemma, using the equivalent rules (1)­
(3), (4'), and (5'). Assume that the equation (.) is satisfied by all (I, E)­
algebras, but is not derivable. We will reach a contradiction by considering
the algebra Tt,E(X), defined as the quotient of Tt(X) by the congruence E'

such that (u, v') is in E # itT (VX) U = IJ is derivable from E using the
rules (1)-(3), (4'), a.nd (5').,Th~ fact that E" is n congruence follows trivially
from the rules (1)-(3) and (4'). Also Tt.£(X) is a (1:, E)-algebra, since for
any equation (VY) u == u' in E wilh, say· Y = {yl, .:.,·y'I}, and for
f. y Tt.£(X) a map with, say f(yj) = tj, we have

j"(u) = u(yl f- tl, ...• yll 4- III)

== u'(yl +- t 1, ... , yl1 +- til) (by II applications of lhe rule
(5'»

.. /*(u'),

as desired. By hypothesis the equation (.) holds for ull (1:, E)-algebrus but
is not derivable. This means that [I] ~ [I'] in Tt.£(X), which contradicts
the fact that (.) is satisfied in Tt,£(X), so in particular [I] = [I'] when we
consider the assignment

X	 -+ T1(X) Tt,I:;(X)

obtained by composing the inclusion of X with the quotient map from
Tt(X) to Tt.,{X). 0

References

A.veld, P. R. J., and Tuck~r, J. V. Complexity theory and the operalional
structure of algebraic programming systems. Ae'a 111/0rtnell/cD, 17,4SI-76,
1982.

2 Denabou, J. Structures Algebriques dans Ics Calegories. Callitrs de Topolnl/;~ ~,

Geomelr;e Differtntitl, 10, 1-126, 1968.

lllilialily, ilJclllct;OIl, and cOll,pl4lability

3 Dcrgstra. J. A., and Klop, J. W. Algebraic specijicatlonJ for parameterlzeJ Ja'"
','ptS wl'h n.ilaimnl para'''t'tr alld .arge. algebras. Technical Report IW 183,
Malhematical Center, Dept. or Computer Science. Amsterdam, 1981. 22 pp.

..	 Dcrgstra, J. A., and Klop, J. W. Initial algebra &~cljica"ollS/or ptJl'ame.,r'Jetl
data 'y",s. Technical Report IW 186, Mathematical Center. Dept. of Computer
Science. Amsterdam, 1981. 20 pp.

S	 Dcrgstra. J. A. and Meyer, J.-J. I/O-Computable Dala Structures. SIGPLAN
Nolle,., 16(4), 27-32, 1981.

6	 Derlstra, 1. A. and Tucker, J. V. It cl,arac',rlza"oll ojcomp.llabl, da'a l,pI' by
natallS 0/ a /illite, equa.'olud &ptcijicaflon ,ne.hod. Technical Report,
MathematiKh Centrum, Amsterdam, Holland, 1979. Preprint lW 124f19.
November. 1979.

7	 Bergslra, J. A., and Tucker, J. V. On the adequacy oC Rnite equatorial method.

for dala Iype specification. SIGPLAN Notices, 14(11), 13-18, 1979.

8 Dergslra, J. A., and Tucker, J. V. n., co",pl","," 01 ,h, alg,bralc IIMcffitalloll

mt"teHls/ar da.a typls. Technical Report IW 156, Mathematical Cenler. Dept.

of Computer Science, Amsterdam, 1980. 18 pp.

9	 Dergstc., J. A., and Tucker, J. V. Inilial and final algtbra stman,'c,/or datil "1M
sptcljica,lotU.· two characttrlsa"on 'heorenu. Technical Report IW 142,
Mathematical Centre, Dept. of Computer Science. Amsterdam. 1980. To appear
in 51 AAI Journal on Con.pullng, 36 pp.

10	 DCfgslra, J. A., and Tucker, J. V. A nalural dala type with a finite equational
final semantics specification but no effective equalional initial semantics
s~ification. B"II,IIn European Association/or Thtor,tlca' Compu',r Scl,ItC'. ­
II, 21-13, 1980.

II	 Dcrsstra, J. A.. and Tucker, I. V, Eq.,a"onal s~cljic:rJtlolUlor compu'ab'i dala
I yp's: 6 lliddtn fune"ons suffice and oil." sufficiency bound,. Technical Report
IW 128, Mathemalical Centre, Dept. of Computer Science. Amsterdam. 1980.
16 pp. .

12 Dcrgslra, i A., and Tucker, J. V. 0,. boulaJsfor ,h, speclfica"on o/finl', da'"
'Y~J bit m~ans 0/ tqUDI'OIlJ and cond'''olla' equatlonJ. Technical Report IW 131,
Mathemalical Centre, Dept. of Conlputer Science. Amsterdam. 1980. To appear
in combined ronn with the previoul reference in tho JownGl 0/ ,h, ~1GI101t

/tIT Conapu""11 Machinery. 24 pp.
13	 Derillra, J. A., and Tucker, J. V. Alscbraic lpecification. or computable and

scmicompulablc dala struclures. 1983. To appear in 7la,oretlcal Comp.,'"
Scltllte; 24 pp.

14	 Bcrgslra, J. A., Droy, M., Tucker, J. V. and Wirsing. M. On the power or
ulgcbraic specificalions. In J. Gruska and M. Chytil (editors). MatJltmtJ"cal
/",,,••Iallolls 0/ con.p",'er science /981, Czechoslovakia, pales 192-204. Sprinlcr-
Vcrloa. Bcrlin, 1980. Springcr Lecture Notes in Computer Science, volume .
118.

IS Dirkhoff, O. On the structure or abslract algebraL Proc,edlngs of,h,
Camhrldgt Phl'oJopl.lcal Society, 31, 433-54. 1935.

16 DirkholT, G. and .Lipson, J. Jleterogencous algebras. Juurnlll 01 ConabllUJ'orkJl
71.~ory, 8, IS-J3, 1970.

17 Durstall, R. M. Provina properties of programs by structural induction.
CumpII'tr Jo",,,al, 12(1),41-8, 1969.

18 Durslall, R. M. and OOluen, J. A. Alacbras, theories and freeness: an
introduclion for computer scientists. In Proct,dings, 1981 Marlc.obertlorf
N A TO S,,,,ulI~r Scl,Ofll, Reidel, 1982.

19	 Cartwright, R. A constructive alternative to axiomatic data type definitions. In
l)rotetJinfls 011980 !-'SP Ca"/trtnt~. palCi 46-SS. Stanrord University, 1980.

539 538 J. Meseglle't J. A. Gogllen

20 Cohn, P. M. Unlv~rsal algebra. Ilarper and Row, 1965. Revised edition 1980.
21	 Dahl, O.-J., Myhrhaug, D. and K. Nygaard. The SI AI ULA 67 Ctlmlnl)1I base

language. Jechnica) Report, Norwegian Conlputing Center, Oslo, 1970.
Publication S-22.

22	 Dershowitl, N. Order!~8 ror term-rewritina systems. JO'ITJJal..o/1'htorellcal
Computer Science, 17(3), 279-301, 1982.

23	 Dershowitz. N., IIsianl, J., Josephson, N. and Plaisted, D. A.uocle",­
COntntUlative rewrillng. Technical Report, University of Illinois, 1983. To appear
in IJCAI 1983.

24	 Frolich, A. and Shepherdson, J. C. Effective Procedures in Field Theory. PilI/us.
Trans. Roy. Soc. London sere A, 248, 407-32, 1956.

25 Ganzinger, U. Paran,etric spe(:ijicallolls, puram"er pa.uing al.d opllmlzII,g
II"plemenlatlons. Technical Report TUM-181 10, Tcchnical University or
Munich, 1981.

26	 Giarrantana, V., Ginlona, F. and Montnnari, U. Observability concepts in
abstract data specifications. In Proceeding." Co,,/trtltct on Alatlltmarkal
Foundations o/Computer Sclellct, Springer-Verlag. 1976.

27 Goguen, J. A. Some remarks on data structures. 1973. Abstract or Lectures at
Eidgenossische Technische Uochschule, Zurich.

28 Goguen, J. A. Realization is universal. Matlltn.allcal System 71.tury, 6, 359-74,
1973.

29	 Goguen, J. A. Semantics or computation. In Procttdinos, First Internclli"nal
Symposium on Cattgory n,eory Applied to Cump,dal;on and Co"trol, pages
234-49. University or-Massachusells at Amherst, 1974. Also published in
Lecture Notes in Computer Science, Vol. 2S, Sprinscr-Verlag. 1975, Pfl, 151-63.

30	 OOluen, J. A. Some desisn principles and theory for OOJ·O, a langualc for
expressing and executing algebraic specifications of programs. In Proce~d;nlJs,
Internatlollal Conlertl'c~ on Afatlttnu'tical Studies oflnfurmatlun Pruc,ss;ng,
pages 429-7S. IFIP Working Group 2.2, Kyoto, Japan, 1978.

31	 Goguen, J. A. Bow to prove algebraic inductive hypotheses without iru..luction:
with applications to the correctness or data type representations. In W. Dibel
and R. Kowalski (editors), Proceedi"gs, 5tlt Con/,rence on Auto".al,J Deduction,
pages 3S6-73. Springer'~Verlag, lecture Notes in Computer Science, Volume 87,
1980.

32 Goguen, J. A. and Mescguer, J. Cornpleteness or many-sortell elluational logic.
SIGPLAN Notices, 16(7),24-32, July, 1981. Also appeared in SIGPLAN
Notices, January 1982,17, no, I, pages 9-17; extcnded version as SRI Technical
Report, 198~ and to be published in llou.tton Jour"al of Math,matics.

33 Goguen, J. A. and Meseguer, J. Universal realization, persistent interconnection
and implementation of abstract modules. In ProcttJillgJ, 9111 Inl,rne,,;ollal
COIIOqllluI" olr Automata, LailOllagts ol.d Program,n;lIfJ, Springer-Verlag, 1982.
Lecture Notes in Computer Science, Volume 140.

34 Goguen, J. A. and Tardo, J. An introduction to OOJ: a language for wriling
and testinl software specifications. In Specification uf rtliable software, pages
179-89. IEEE, 1979.

3S Goguen, J. A., Mescluer, J., and Plaisted, D. Prosrommina with parameterized
abstract objects in ODJ. In Ferrari, D., Dolognani, M. ond Goauen, J. (editors),
n,eory and practice 0/ software technology, pages 163-93. North-llolland, 1982.

36 Goguen, J. A., Thatcher, J. W. and Wagner, E. An initial algebra approach to
the specification, correctness and implementation or abstract tlata types. In
R. Yeh (editor), Current trends '" programmillg methoJ(,Iogy, pales 80-149.
Prentice-Ilall, 1978. Original version, 111M T. J. Watson Research Center
Technical Report RC 6487, October 1976.

JII;tialltYt ;lIdllctioll, alld CO"lputabilily

37	 Goguen, J. A., Thalcher, J. W., Wagner, E. and Wright, J. B. Abstract data
types as initial algebras and the correctness or data representations. In
Co'"puter grDphics, palltrn recognilion Dnd data structure" pales 89-93. IEEE. ..
1975.

38	 GUllag. J. V.' 1fte specljicallcm and application "0 programming 0/ abs'YGC' da'G
Iype!. Ph.D. thesis, University or Toronto, 1975. Computer Science
Deportment, Report CSRG-S9.

39 Ilissins, P. J. Alacbras with a scheme of operatorL Mathema,lsche Naclarkhten.
27, 115-32, 1963.

40 Iligman, G. Subgroups of finitely presented sroups. Proceeding! of the ROId'
Sndtty, (A) 261, 4SS-75, 1961.

41 lIoore, C. A. R. Proof of correctness or data representation. Ac,a ''fformotlca.
I, 271-81;~1972.

42	 IIuet, G. Connuent reductions: abstract properties and applications to term
rewriting .ystems. Journal 0/ tI.e Assoclallon lor Computing MDc/,/ntry, 17, 797­
821, 1980. Preliminary version in 18th Symposium on Foundations or
Computer Science, IEEE, 1977.

43 II uet, G. A complete proof of correctness of the Knuth and Bendix completion
algorithm. JCSS, 23, 11-21, 1981.

44 lIuet, G., and lIullot, J. M. Proor. by induction in equational theories with
constructors. In Symp. on FoundatlolU 0/ Computer Science, IEEE, 1980.

45	 lIuct, G. Ind Oppcn, D. Equations and rewrite rules: a lurvey. In Book, R.
(editor), fo",.al languaflt t"eory: perSptctlHs and open probltnu, Academic
Press, 1980.

46	 Ilullot, J. M. Canonical forms and unification. In W. Bibel and R. Kowalski

(editors), Proc~~dlnos, jtlt COlverence on Automated Dtdllctlon, pagcs 318-34.

Springer-Verla&. Lecture Notes in Computer Science, Volume 87, 1980.

47	 Ilurbach, U. l. Abstract implementation or abstract data types. In MFCS '80,

pages 291-304. Springer-Verlal, 1980. Lecture Notes in Computer Science.

volume 88.

48 Jackson, M. A. Prillclpies of program design. Academic PrCls, 1975.
49 Jouannaud, J. P. Connuent and coherent equational term rewritinglystems. In

I'roc. Jth CAAPI Springer Lecture Notcs in Computer Science, 1983; 10 appear.
SO	 Jouannaud, J. P: and Kirchner,'lI. Complttloll 0/ a set o/'fules modulo .,rut 0/

eqllallons. Technical Report, Centre de Recherchc en Inrormatique de Nancy,

1983.

5I	 Jouannaud, J.-P., Kirchner, C., Kirchner, H. Incremental construction of

unification algorithms in equational theories. In Automata, LAnguages and

Pr"(Jrammln9, Barcelona, 198J, pages 361-73. Springer Lecture Notes in

Computer Science, 154, 1983.

52	 Jouannaud, l-P., lescanne, P., and Reinig, F. Rtcurslve decomposition ordering
",.d lIIultiJel orJ,rlllys. Technicul Report MIT/LCS{TM-219, MIT, Compo sa.
Lab., 1982. To appear in 1982 IFIP T.C. 2.2, Garmisch-Partenkirchen, and in
lor. Proc. Lcllers.

S3	 Kaphenlst, II. Whot il computable ror abstract data types? In Proceedings 0/
Feral, pagel 173-81. Sprinler, 1981. Sprinlcr-Verlal Lecture Noles in
Computer Science, volume 117.

S4	 Kirchner, II. A Iletleral'nductlve comp/~Ilon algorllhm and application 10

abstract dala types. Technical Report, Centrc de Recherche en Inrormatique de
Nancy, 1983.

55	 Knuth, D. and Bendix, P. Simple word problems in universal algebra. In
J. l.eech (editor), Computatlollal prublenu In abstract algebra, Pergamon Press,
1970.

541

540 J. Meseguer, J. A. Gogue"

.56 Lank(ord, n. S. Sill"" rl'"",rh ,,/111111 i"<1l1clirlll/,,s.t illtlllClillll. Technical Reporlj~
f\.1ilthclllaliC'~ ()cparllllcnl, Louisiana Tcch University, ICJRU. lt~ ,

57 Lankford, D. S. A 5//11/,1" t'XI'I<lIlC/lillll "/ ill//ul·I;'III/.·.u ;"Jlleli.lII. TeclllliCill ,ll
Report, Malhcloatics I)cparhncnl. Louisiana Tech Univcrsity, 19K I. f\.1 PT-14. '

58	 l.ankrord, D. and Ballanlync, A. Ve·ci.,,;ml l,rocc·c/""c· ... ji.r ... imp/t' ("/lIclliullcJl ...~
Ilwor;e." W;I" f'erllliliulille ,1."(;0",.\: fompl"'e .~c'h 0/ f'('''''"'ClI;''f! n',lllct;'IIIS. ..-~
Technical Rcport, lJlliv. of TCX.IS at Austin, Dept. of ~1athcll1atics :lud 0,

COlnputcr Scicl1\:c, 1977. ATP.)7. "
59 Lawvere, F. W. FIInclu ria15elllilni ics of aIgchraic I heuries. I'ma...1;"1/.'. .;'f)

N,,'i""11/ A('tJdelll)' 0/ Sdt.'lIces, 50, 1963. SUl1l1nary of Ph.l). Thcsis, Cululnbia',.
lJnivcrsily. ..~e

60 Lawvere, F. W. An ele.lllen/ilry lh~ury of lhe calegory of sels. ,.",(.....<1/"1/5. "'~~
N,"wIIClI Anl,/t'III)' of ~~CI ..."n·.~, U.S.A., 52. 1506'-11,)')64. ..t:

61 Lcvill, K., Rohinson. I.. ,lnd Silvcrherg. B. Tilt' I/IJAI 1I,,,,dln.ok. Tcd\l)i~al :".~
Itcporl, SRI, International, Cumputcr SdClllC Lah, I97tJ. Volulucs I, II, III. !',~

62 Liskov, n. and Zille~, S. Spccification Tcehni<illc~ for Dala Ahstra\:tiun. IfEE'
Tr"'I.~(I('liOlI'i Oil S(~/iw"re Ellyill('f'r;It!J, SE-I (I), 7-19, 1975. ..~!.

63 Liskov. B. 11., ~1()ss, E., Sdltlllcll, C., Sdlciflcr, n., and Snydcr, A. CI.U . <­
U,''/t'rellct Al(IIIIWI. Tcchnical Report, MIT, I.ah fur CO'llpuler ScielKc, 1979. ~

64 MacLilnc, S. ilnd Ilirkho/T, <i. AIY""rrl. Macmillan, 1967. ._~~
65 ~1ajstcr, ~1. E. tilBits of the .aigehraic ~pecilicatioll of ahstract data types. ~'i'

S/~/'LAN N~,';""'" 12,37-42, OCl. 1977.'!il
66 MaJstcl', rv1. f:. Data types, .. hstlilCI data lypcs and their sflCl'IIKallon problem,:

In '1l1c'""c'I;(',,1 (,(""/'II/('r. ",cit'w't', pages X') 127. NOI lfa Iiollalld Puhll~hillg ...1

CUlllpany, 1')79.
67 ~1ah.:ev, A. 1. Cunstnu.:tivc Aigehra~ I. l~u.H;eltl A(,lIll('lIItll;n,1 Sura'I'}'.ct, 16(3), 77S_

129, PHil. • .\~
68 Malccv, A. I. A/f/orilllllis (111,1 f('(·ur.c;;.,(.' j;4II('liOl Woltcls-Noordhllf PUblishing' ~

<."0., I (j70. ,i
69 M.llijasevic, Y. V. Diophantinc reprcscnlalion or recursively enumcrable

predicates. In l'rocf't.'ll;"y.ct, Serew,l ScclII,IiIlQl';tlll l.oyie S)''''I1tH;u",. pagcs 171-1~'
Norlh·llullanc.l, 1971. I"I.~I .,

70 Davis, M., M"lija~cvic. Y. V. and l(ohiIlSOIl, J. Ililhcrt's tcnth prohlcln:
diophantine cquations: positivc aspcl:ts or a negalivc solution. In

AI fliltellwlicul (}('lJ('/opmelll.f u,.; ... ;"" fr"'" /I """" l.roblt'IIu, P;'8cS 3.2] -7K.
AMS, 1976. Proc. Symp. Pure ~1alh., Volume 2M.	 .

71	 Milner, It. All "I(/I'/"flic '/e/illilio" O/.ct;III11I,IIWII /'('1\"('('/. I',oor,,,,,ct, Tcdllli(al ~.~'
Reporl CS-2U5, Slall.ford Ulliv~rsiIY, l'llll~JlUler Science Ilcl'arllllcnl, 1971. i.tJ.

72 Musser, D. On provlllg Inductive properties of ahslract data lypcs. PrufefJ;lIg~.
7111 It CAl S}''''PO.~;II''' 011 I'rillcip/e'.f ol/Jrllurlllll",;IIU 1.(1110 1111(/' I t)XU.

73 Ncwlnan, M. II. A. 011 theorics willa a cUlnbinettorial dclinilion of
'cquivalcncc'. A,,,,. AI(IIII., 43,223-43. 1942. 'I

74 Parnas, D. L. A tcdlniqllc fur sorlware 111oc.lulc spcl:itication. C,mltrllm;CCII;mu 0/
IIII! A.uoriCH ..""ji" C""'/'III;IIO (\1",,11;/1('')', IS, 1972. . /~:,

75 Petcrson, (i. and Slidt~cI, 1\1. ('olllllkIC sels ur Icc.ludiuus for sOlnc clluational ~
theorics. JACA1, 28, 23J-64, It)XI. ... :'

76 Plaislcd. D. A ,eclln.;(le/), '/I.'./;"e''/ ore}cr;II" for 1""I'iIl~1 1('",,;mll;OI' oj Ic'I". ,

r~",r;I;IIY syslems. Technical Report 1{·7H-t)4J, Universily u(Illilluls, Computer',
Science Department, 1978. ':;1

77 Plotkin, G. Building-in equational thcolics. hllld.i"c I",dliyellce. 7,73 90, :.:~
1972. ~

7M Rauin. ~1. COlllpulahlc algeura: g~ncral lhcnry aud Ih~()1 y uf computahle ficld~.
7"WI.~(ICI;(UI.~ ofllu· Americall AI",h('IIwlic,,1 S"";I.'I)', 95, 341 .~.O. 1960. -,'

J"il ialitJ'. ;'ltillci iOll, (11,(1 COII,pU(tlbility

79	 Reichel, II., lIuphach, U. R., and K.. phenA~t, II. IlIil;dl (1llwbruir .'ipt'cijicell;Oll.t

of ,I,ll,. 1}'I't'.t, ,"""'",'I('I'iz('c/ ,iald ')'Pt'.li, IIl1cl (,I!luri"mu. Technical Reeport, VEil
Robntrun, Zenlr"lll fur Furschung und Tcchnik, Drcsdcn, 1980.

80 Rogcrs, II. 7'IJe IIIt·ory uf rc·CII,.c;;t'e !IlI,('t;elll.s tJlIJ L:O....cI;lJe complIl"""ily.

~1c(;raw·llill. 1')67.

81	 Stickel, M. A unific'llion algorithm for &,ssociativc-collllnulative functions.

J,.1CAI. 28,423-34, 1981.

K2	 Tarski. A. I'I/UlII;ml/l//"rlil" Im.l ,·quali"..al I/lt'",i".t "/"/f/"/'rru. Norlh-Ilolland,
196M, pagcs 275 -HR.

83 Thalchcr, J. W., Wagner, E. (,. and \Vrighl. 1. n, Data type specifil'atiun:

parelillcleri/alion and thc power uf ~pecili\:aliun lcdllliqucs. In l'roC('e,I;t1y.ct
o/197tJ PO/J/., AC~1, ItJ7(j.

84 Thaldlcr, J. \V., Wa~lIcr, F. (,., and \Vrighl, 1. n. Dala lypc specificalion:
para,nclcri/alinn and lhc power or spceilkatiun tedilliqucs. ACAI TV/'I.AS.
4(4),711]2. (lei. 19M2.

85 van cJcr \Vacrdcn, n. L. ,\lod(',"t' ,,1!/t'brcl, I (/.H. ('el.). Julius Springer, 1930.

86 v.'n der \Vacldcn, IJ. L. Eillc IJc 1Il'e I kung (iher Jic Unzerlcbarkcit von

POIYllolllcn. "',"11. A,,,,,, IUZ, 7.1M :.9. 19]().

87 Vlln Wijn~aal"clI, A. ,'1 /II. Hevised Itcpurl 011 Ihe Algurithmic l.anguage.

AI.G()L 68. Actt' I,ajormell;n" 5, 1,236,1974.

88	 Wlind. M. A '1/"''',,;e 11,,'ori.·.. /111.1 " •••• rell";Ii1111 .t)'H ..m.'. Tech lIic" I Re pllrl 66,
Computer Science Dept., Indiana Universily, 1977.

89	 Wan,(, M. Final algchra sClllanli.cs alld ,1;,1" Iype ",Iellsiull. J. ("0III1'. .'il'.'.
Snt'IIC·('.'i, 19, 27 4,1, 1')79,

90 \Varrcn, David. 1'1'1 ah.ctlrllCI pr%f! ;/ •.\lrll('l;oll .~t'1. Tcchnical Report Tcchnical
Note 309, SR I 1ntcrllillional, Artificial Inlelligeru.:c ("enler, ItJX.l

91 Zilles, S. Ab,\I'''et~/·('('flifcllielll ,,/ clllitl I)'f't'J. Tedillieal){epoll 119,
(\Hnput;&lion Slnu.:lurcs (iroup. ~IIT, 1974.

92 Zillcs, S. All inlrol!uclion to dala algehras. 1975. Ullpuhlishcd draft.

