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1 Introduction 

This paper surveys, unifies, and extends a number of results on induction 
and computability in the context of an algebraic approach to the 
semantics of programming. The close relationship between computability, 
induction, and initiality is emphasized. 

Highlights of this paper include: a software engineering motivation for 
the initial algebra approach to data abstraction; a review of many-sorted 
general algebra, including rules for equational deduction that arc sound 
and complete; simple 'inductive' characterizations of initiality (including 
generalized Peano axioms); constructions for both initial and final (Le" 
minimal) algebra realizations of abstract software modules; Hnd a detailed 
introduction to computable algebras and their relationship to initiality. 
finality. and rewrite rules, showing in particuhlr how Gullel nUlnbcrings 
arise from initiality, and how equationally defined equality relates to both 
theorem proving by 'inductionless induction' and cOlnputability. Pfhe 
latter permits us to give a purely algebraic characterization of coruput­
able algebras: an algebra is computable iff it is a reduct of an initial nlodel 
of a finite equational equaiity ·presentation. 

2 Abstract data types and programming methodology 

Data abstraction enjoys considerable popularity. It is widely 
recognized as an important technique for structuring programs, perhaps 
even more useful than structuring programs by flow of control as in 
traditional now charts or more modern data now dingralns. Data 
abstraction has been advocated, for cXillnplc, by Jackson [48] (though hc 

1";1;ality, i"duct ;0/1. and co"rputabUil y 

does not use the phrase 'data abstraction'), and is discussed more formally 
by Gutiag [38], Liskov & Zilles [62], Goguen, Thatcher. Wagner & 
Wright [37] and many others. The basic idea seems to have first surfaced 
in the 'class' concept of the Simula programming language of Dahl, 
Myhrhaug & Nygaard [21]. Similar constructs appear in many later lan­
guages with names like 'form', 'module', 'cluster', 'object·, 'capsule', 
'donlain', 'package'. 'type', 'bundle'. and even 'category'. (The names of the 
languages involved are left as an exercise to the interested reader.) This 
paper favors the more generic term nlodule. 

2.1 ~VlJat is data abstraction? 

The methodological use of ADTs in programming is to suggest 
(or better, to require) grouping together in one module all the basic 
functions that manipulate one (or more) sort of data, and then ·hiding' the 
representation, in the sense that only the functions defined in that module 
can actually see the representation. Thus, any agent wishing to manipulate 
this data can only do so by calling the functions provided by the module. 
l~his techniquc is called data ellcapsulation, and such a module is often 
called a data abstractioll; the advantage is to localize the effects ofchanging 
representation in .an especially clear and sirnple way. It is often claimed 
(and we also ~clicvc) that this approach facilitates reading, writing. 
specifying, designing, modifying, maintaining, and reasoning about 
progranlS. t 

2.2 Al,strClct "Iaclri/lcs 

Much confusion can be avoided by distinguishing sharply 
betwecn (concrete or abstract) data types that are just algebras, and 
(concrete or abstract) IIlac/litleS that in addition may have internal ~~ales.t 

A typical data type'is thal of the ;,i;egers; there' are certain values, namely 
integers, and certain operotions upon them. While it is possible and 
fruitful to investigate abstract machines with the techniques of abstract 
data types, quite different concepts and techniques are also important. 
such us reachability. observability, and minimality. Abstract data types are 

t This distinction is lon,ctinlcs indicatcd with the words 'immutablc' and 
'nllilabic'. indicnting lhut duta items (such as the integer J) are idcal and 
'.irnelcss'. while lhc behavior of a machine can vary with time; see [33] for a 
formal treatment. 
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useful for understanding the type systems of programming languages, 
especially when they permit user-defined types as in ALGOL 68 [87]. and 
for deciding the correctness of data representations. Abstract machines nre 
useful for understanding the specification and implementation of software 
modules, in roughly the sense of Parnlls [74], and us used in the IIDM 
methodology [61] and in CLU [63]. The fact that many camlnon 
examples can be viewed from either perspective contributes to the 
potential confusion. 

There is, for instance, the rather pointless controversy about whether final 
or initial algebra semantics is 'best'. For abstract machines, it is behaviour 
that matters. Machines that represent and manipulate their internal states 
dilTerently (i.e., are nonisomorphie as data types) can still have the same 
behavior [26]. A software module can usually be realized in many different 
ways; among these. the final one uses as little storage as possible for 
internal states. while the ilJitial one has no sharing at all for storage of 
states [33]. Because the space efficiency of the final realiu1tion can greatly 
reduce its time efficiency, there are many cases where the pragrnatically 
correct choice of data representation is neither initial nor final, but rather 
something between. A good example is the list structure of_LtSP, which is 
often implemented by giving ~ unique cell to ~ach atom, but not to each 
list structure. QLISP can be seen as an experiment with the 'hashcons' 
final realization of list structure; it was found to run too slowly for nlany 
applications. Abstract Prolog machines also now tend to replicate 
information rather than to share it, and are therefore closer to an initial 
realization than to a final realization [90]. In summary, initial realizations 
are appropriate in case all behavior is visible behavior; final rcaliz.ltions 
may be appropriate in case there arc hidden internal states, but often the 
most practical realizations. although neither initial nor final, are rather 
close to being initial. 

2.3 Wllat good is algebra? 

The basic argument for an algebraic approach is both simple and 
compelling. A software module has exactly the saine structure us an 
alge.bra: the various sorts of data involved (including states, if any) forln 

..	 sets, and the operations of intefest are funclions among these sets (Section 
3 precisely defines this sense of algebra). This argument is reinforced by the 
powerful, general and appropriate tools that modern algebra provides. It 
is also reinforced by the rel1}.~rkable fact (to be discussed later in this 
paPer, together with other important characterizations) that any CO".plIl­

lllitiality. induction. and con,plltability 

able algebra can be specified as an initial algebra for a jillite number of 
equations (ufter adding perhaps a finite number of auxiliary functions); 
this shows the general applicability of finitary algebraic specifications in 
computer science. 

Three dilTerent algebraic approaches to ADTs emerged i~ 1975: Zillcs 
[91] gave an abstract of somc results to appear in his Ph.D. thesis; Guttag 
[38] completed his dissertation; and ADJ (Goguen, Thatcher, Wagner & 
Wright [37]) sketched their initial algebra approach. Zilles [92] suggested 
a new kind of alg~.bra, called 'data algebra', based on the notation of Cohn 
[20]; Zilles' use of free algebras essentially corresponds to ADJ'. use of 
initiulity. OutlaS's work introduced the important ideas of 'consistency' 
and 'sufficient completeness'later formalized by others, and opened up the 
study of modules with states, i.e., abstract machines. ADJ. using initiality 
and the algebraic notation of Goguen [29], were able to formalize the 
ADT concepts entirely rigorously within standard many-sorted general 
algebra. Strangely enough, Zilles' work, though motivated by CLU 
'clusters', actually treated ADTs rather than abstract machines. Each of 
these three' approaches has subsequently been follow'ed up by its" 
originators, as well as by many o4hors, and toooy there is a vast literature 
on the subject. Parnas [74], Milner [71] and Hoare [41] were important 
early theoretical innuences in this development. All three approaches 
recognize that a concrete data type is a many-sorted algebra.t The 
algebraic approach to abstract data types (any of the three versions) goes 
beyond this in lIUlt one gives sOlne equations that the functions ought to 
salisry, and then restricts attention to models where they do. The initial 
algebra approach produces a 'standard' model that is defined uniquely up 
to renaluing data itenls, nUlllely 'the' initial algebra for the given signature 
and equations. What is magic about this is that a set of equations that the 
operations are supposed to satisfy actually defilles the data; there is no 
need to talk about how the data is represented. 

There arc many different ways to precisely define data abstraction (see 
Section 4); a fairly simple one (from Burstall & Goguen [18]) is as follows: 
assume that we are given a concrete data type and that we can tell whether 
or not two concrete data items in it represent the same abstract data item; 
call the two concrete data items equivalent in that case. (Thus, an abstract 
data item is an equivalence class of concrete data items; for example, 1.01, 
and ()() I arc three different concrete data items representing the same 
abstract <.lata item. namely the abstract integer ·onc'.) Given a signature of 
symbols for operations and constants, and a set of equations using the 

It	 It is nol clear where Ihis insighl originaled. The earliest work we know is 
Goguen [21]. 

. , 
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symbols from it, call a data representation standard if and only if it has the 
following two properties: 

1.	 No junk: Every data item can be constructed using only the 
constants and operations in ~he signature. (A dala itcln that 
cannot be so constructed is 'junk'.) 

2.	 No cOIl/usion: Two data items are equivalcnt if and only if they 
can be proved equal using the equations. (Two dilta iteills that nrc 
equivalent but cannot be proved so from the given equations arc 
said to be 'c,?nfuseq'.) , 

Section 4 shows that these two conditions define an ulgebrn ulI;t/uely up to 

renaming of its data items. It also shows that 'no junk' is -eqllivalent" to 
structural induction over the signature, and that the two conditions 
together are equivalent to the 'unique homomorphism' condition usuully 
called 'initiality'. Thus, a model is initial if and only if it has the nlinilnal 
number of data items (none that cannot be constructed from those that are 
given) and satisfies the minimal number of ground equations (none that do 
not follow from those that are given). 

3 Many-sorted algebra 

So-called 'general' (or 'universal') algebra wus established by 
BirkhofT [15] in order to subsume many basic aspects of particular 
algebraic systems into a single framework. This work involved only one 
sort of datu. proving the existence of initial algebras us well &&s giving nlany 
other basic results. It was later generalized to Inany sorts by Iliggins [39], 
by DirkhofT & Lipson [16], and by Ocnabou [2] following the Inore 

, · abstract approach of Luwvere [59]. 
A simpler notation for many-sorted algebra that is now often used in 

computer science was introduced by Goguen [29]. It uses indexed (or 
sorted) sets, defined as follows:)et S be a set (of sorts), then an S-;lIt/eXCt/ 
(or S-sorled) set A is just a family of component sets A. for each index s in 
S. If A and B are both S-indexed sets, then n IJuIPl'illlJ o!S-;IIJexetl.-;el.-; (also 
callcd an S-sorted function) f. A -. H is an S-indcxcd farllily of functions 

(/.: A. -+ B.l s in S). 

We now apply this to many-sorted general algebra: An S-sortcd si'llJlllure 

1: is an S· x S-sorted family (l:wts' \y in S·. s in S); 0 in 1:..,.• is u function 
symbol of arity wand sort s; the ctrity of a function syillbol expresses what 
sorts of data it expects to see as inputs and in whal order; and the sorl of a 
function symbol expresses the sort of data it returns. A constant sYlllhol of 
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sort s has arity the empty string A; i.e., it is a member of EA••• Signatures 
fornl&tlize the notion of a (strongly typed) collection of functions available 
to the user or an abstraction. For example, we might have S == {stack, nal, 
boot) I:.,uk••ClCk = {POP},1:.l'•••ck = {EMPTY}.1:..ack .......ck = {PUSH} and 
so on, for a stack-of-nnturals abstraction. 

Then a 'r-algeIJra A consists of an S-indexed family (A.ls in S) of 
Ctlrr;er sets. and for each function sylnbol a in 1:w•• an actual function 
«(0'): A W 

-+ A. where A· == A,I x··· X AM when w == st .. .S" (when w - A.­
then AW is a one-point set). Notice that ex is an S· 'x S-indexed family 

a w••: 1:..,.• -. [A ~ -+ A.] 

of illlerpre'cllioll mappings for the function symbols in 1:, each Cl... 

interpreting 0 in ~W.' os a function to A, from AW (Here [A -. B] denotes• 

the set of all functions from A to D.) It is usual to write (1 for (%«(1) if the 
algebra in question is clear from context, and it is often convenient to write 
u ... if it is not. 

According to current practice in abstract algebra, one should define not 
just SOlllC structure of interest, but also functions that preserve that 
structure. We do this as follows: a L-"OIJ10nJorpllisln from a ]:-algebra A to 
another B is nn S-indexed function f. A -+ B that 'preserves the function 
symbols in 1:' in the sense that 

f(a(al, ... ,oll» c:: o(f(al}, ... , I(a,,», 
or Inore precisely, that 

};(cx(a)(al • ••.• t"'» = /l(o)(h.(al), ... , /,,.(011», 
where fl is the interpretation mapping for B, where w = s1••• sn. for ai in 
A" nnd a in 1:....,. For constants, i.e., for w = A, the condition becomes 

h(a(o» = (1(a). 

These equations Clrc culled the lIoll.ollu)rIJ"is", conditiolJ. 
We can now define the central concept of this paper. 

Dejill;tion J. A ~-algebra A is ;lIitial in a class 'I of 1:-algebras!fand onlY.if 
A belongs to (C and for cae1l l:-ulgeb'ra 'c in (~ thc're is one and only ]:­
honloillorphisill frolll A to C. 0 

One comlnon case is that (I is the class of all1:-algebras; another is that f8 
is the class of all L-algebrus that satisfy sOlne set E of equations; then lG is 
called the lJclr;elj' of E. In general. the class (I will not be mentioned when it 
is clear front context. 

Perhaps the most basic fact about initial ulgebras is that any two are 
'abstractly the saine', in that they differ only in the representations given to 
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their elements. This is formalized using the following concept: A 1:­
isonlorplJism is a 1:-homomorphismfsuch that each component function,h 
is bijective. Then isomorphic I:-algebras are 'abstractly the saine'; this is 
the essence of the word abstract in both the phrases 'abstract algebra' and 
'abstract data typc'. Indeed, one of the main ideas of abstruct nlgebrn is to 
study algebras (such as groups and vector spaces) independently of how 
their elements happen to be represented. The following states this basic 
property of initial algebras; it can be proved using the properties given in 
Proposition 3 below. 

Proposition 2. Let A be initial in a class f4 of l:-algebras; then an algebra 
A' is initial in tG iff A and A' are l:-isomorphic. In fact, there is then a 
unique isomorphism from A to A'. 0 

The existence of initial algebras is discussed in the next section. We now 
turn to some basic properties of homomorphisms. 

Proposition 3. Let 1: be an S·-~orted signature, and let A, D, and C be 1:­
algebras. 

(1)	 Given l:-homomorphisms f. A --. Band g: D -. C, their COli.PO­
sidon, 9 0 f. A -+ C defined by (g 0 f), = (0, 0 !.), is also a ~­
homomorphism. 

(2)	 The S-indexed function 1u defined by (I D). == 1B. is a l:-homomor­
phism B -+ B calJed the ie/entity at D; moreover, I. 0 f = f and 
go Is = 0 whenever these compositions are defined. (The nota­
tion ida may also be used occasionally.) 

(3) Given): A -+ Band g: B -+ A, if 9 0 f = IA then 9 is surjective and 
f is injective. 

(4)	 A I:-homomorphism f. A --. B is a :E-isomorphism if and only if 
there is another l:-homomorphism 0: B -+ A such that Joy = I. 
and fog = I.,.; this 9 is unique if it exists, and is caIJed lhe inverse 
of f, denoted f- 1. Moreover, (f- I). = (Is) - I, the indexed fUlnily 
of inverse functions (i.e., converse relations) to f, for each s in S. 

(5)	 If fog is surjective, then J is surjective. 
(6)	 Iff 0 9 is injective. then 9 is injective. 

Proof. These are left as exercises in the use of the definitions; the 
arguments are genetally sc't-tllcoretic. 0 
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A L-sub,dgebra B of a l:-algebra A is an S-indexed family of subsets (B.> 
= n ~ A that is closed under the operations in L, Le.• such that for any a 
in L w•• with ", == 51 ••• sn, a{al, ... , all) is in B. if ai e B., for i = 1, ... , n. A 
l:-subalgebra of A is essentially the same thing as an injective 1:­
hornomorphism g: B .... A, since such a B is isomorphic to its image in A. A 
subalgcbra of A is proper if it is not equal to A; this corresponds to an 
injective homomorphism that is not an isomorphism. 

Propos;t;oll 4. If A is initial in a class fj of l:-algebras. then A has no 
proper subalgebras in fe. 

Proof. Assume that P is in fI and j: P -. A is an injective 1:-homomorph­
ism. By initiality of A, there is also a homomorphism II: A -. P. Then 
j 11: A -+ A is also a l:-homomorphism, and since there is only one such 0 

from A to A, namely the identity on A, we have J 0 II == lA. By (3) of 
Proposition 3 this implies that J is surjective, therefore .bijective, and thus 
not pr,oper. 0 

If f: A -. B is a l:-homomorphism and C is a l:-subalgcbra of B. then 
r I(C), the inverse ilJ.age of C under f, defined by (f-l(C»,­

" ~ {a in A.lh(a) in e,l, is a l:-subalgebra of A. Notice that if C is proper 
~ 

~ and f is surjective, then I-I(C) is also proper. 
l~ 

~ } 

J. / Quotients~ 
J' 
I' 
t This subsection says everything you always wanted to know 

about quotients; moreover, it proves that it has told you everything in the 
sense that the properties given actually cllaracterize quotients. 

I The quotient of a set A by an equivalence relation Qon A (identifying 
t. some elements of A with others) is formed by considering the Q­
,! equivalence classes (the sets of mutually Q-equivalent elements of A) as the 
~~ 

, elements of a new set A/Q. Now suppose that A is a 1:-algebra. Unless 
applying an operation in 1: to equivalent elements of A yields elements that, 
nre again equivalent, A's l:-alge~ra struclure cannot be inherited by A/Q. 
This motivates the following discussion. 

Once again th~ nOlation of indexed sets nlakes it easy to go from the 
one-sorted case Jo the many-sorted case. Let A be an S-indexcd set. Then 

t 
:1 nn (S-indexcd, or S-sorted) equivalence relation on, A is jusJ an S-indcxcd.. 
~ 

fam'ily {Q.is·eS}, where Q, is an equivalence relation on A, (i.e., 
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Q. ~ A. x A. is a reflexive, transitive and symnletric relation). If, in 
addition, A is a 1:-algebra, where 1: is an S-sorted signature, then we call Q 
a 'E.-congruellce relatioll provided that the following Sllbstitutivity co/ulitioll 
holds: . 

for each a E I:w•• with lY = sl ... SII, and each ai, a'; E A•• if aiQ••a'i, then 
a(al, ... , a,,)Q.a(a'l, .0.. ' a',,). 

For example, suppose that S'= {na., bool}, A... = w (the natural nurnbcrs) 
and A = {T, F}; suppose- also that LA.hoI == {T, F}, LA .••• = to}, 1: . 
== (inc}.l:.......hoI = {odd}, and l:w.• = 0 otherwi~e. Finally, suppo~c thut 
these operation symbols have their usual interpretations in A, with odd(II) 
= T if n is odd and odd(n) = F if n is even. Now define an S-sortcd relation 
Q8 on A by: nQ8...n' iff n - n' is divisible by 8; and bQ8.....I" iff b = b'. Then 
the reader may verify that this is indeed a l:-congruence on A. Another I ­
congruence on A, Q2, is given by 'IQ2...'I' iff '1 - 'I' is divisible by 2, with 
Q2... = Q8.... 

A very general way that congruences arise is given by the following. 

Proposition 5. Letl: be an S-sorted signature, let A and B be l:-algebras, 
and let I.: A -+ B be a l:-homomorphisrn. Then defining aQ".,a' iff 1I,(a) = 
h,(a'), for each S E S and a, a' E A" yields a I:-congrucnce on A. denoted Q,. 
and called the kernel of ,•. 

Proof. Substilutivity follows from the homomorphism condition for 
h: I',l(ai) c= h,,(a';) implies a(IJ. 1(a I), ... , '",,(all» = 0(11. I (a' I), ... , ",,,(a'II» 
and therefore ",(a(a 1, ... , all» = h,(o(a' J, ... , a'II». 0 

We now introduce the quotient algebra construction. Given a 1:-algcbra A 
and a l:-congruence Q on A, define A/Q to have carriers (A/Q), = A,/Q. for 
S E S. Now letting [a] denote. the Q-equivalence class of a in A, define the 
effect of a e l:w" on A/Q by a([al], .. 0, [an]) = [o(al, ... , all)]. 

Substitutivity guarantees "that this is well-defined: if -raj] == [a' I] for 
1- I •...• n, then [a(al, ... , an)] == [a(a'I, ... , a'n)]. Therefore A/Q is a 1:­
algebra. 

For example, using S = {nat, bool} with 1: and A as above, A/Q8 is the 
natural numbers modulo 8, and A/Q2 is the natural nurnbcrs modulo 2, 
each with an oddness predicate. 

Given a l:-algebra A with a l:-congruence Q on it, there is a natural 
quotient l:-homomorphism q: A -+ A/Q defined to send a E A, to [a] in 
(A/Q)•. Substitutivity gives the homomorphism property or q. Notice that 
q is surjective. 

" 

I., 
W 
1	 Proof. We first show that (I) implies (2): since q is surjective and u is an 

isomorphisrn, / is also surjective. 1 We next show that (2) implies (3a): first suppose that QI ~ Q". Then we 
can define a function u: A' -+ n such that the diagram of Figure 1 
commutes by lI(a') = '.(a), where f(a) = a'; such an a exists since f is 
surjective. This is well-defined, because f(al) = f(a2) -= a', implies I,(al) 
== 1,(a2). so that· 1I(/(ClI» == U(f(CI2». Conversely, if there is a function u 
such that Figllre I cOlnmules, then we have that f(al) r= f(a2) implies 
lI(f(a I» = u(f(tl2» inlplics lI(a I) = lJ(a2), i.e., QI ~ Q". 

Assulning (2), we now show (3b), i.e., that u satisfying (3a) is unique, and 
is a l:-holnomorphism. First uniq ueness. If ,I': A' -+ n with u' 0 f == la, then 
lI(f(a» = 'Ir(a) = U'(f(Cl» for each f(a) in A'. 0 •• ... 

1 Fig. 14.1. Universal property of the quotient 

.i h
 
A ~ B
 

1 II ...······~·~ 
A' 

t	 The general nolion or S-indelcd sets lells us that this means (Q/). ~ (Q,). ror 
each J in S. 

JII it iality. illduction. alld co/nputability 

We are now ready to say everything (about the quotient construction). 
The following says, intuitively, that a quotient, a surjective homomorph­
ism, and a function satisfying two certain properties (called ·universal'). are 
three different ways of looking at the same situation. 0 

Proposition 6. Let f: A -+ A' be a 1:-homomorphism. Then the following 
are equivalent properties' of f: 

(I) There is an isomorphism· u: A/QI -+' A' such i'hat u 0 q .~../. for 

~ q: A -+ A/Q, the natural quotient function (sending a to [a]). 
(2) f is surjective. 
(3) If II: A -+ B is a I:-homomorphism, then 

a.	 There exists a function u: A' -. B such that u 0 f == II (i.e., the 
diagram of Figure 14.1 commutes) iff QI S; Q,.t 

b. If such a function Il exists, then it is unique, and is a 1:­
J homomorphism. 
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Next we show the homomorphism property for u. For constants this is 
clear (since hand f are homomorphisms) froln commutativity of the 
diagram. Suppose that (J is in 1:...., with w = sl ... SIl; then what we have to 
show is that u«(J(a I', ... , an'» = O'(u(a I'), ... , u(al1'» for ai' E A;,. Now, let 
u(ai') be given by lI(a;), where ai is such thatf(ai) = ai'. Further, let a' = 
O'(al', ••• , an') and let a = O'(al, ... , all). Then I(a) = O'(/(tll), ... ,/(all» 
because f is a homomorphism, so lea) == O'(al', ... , all') =z a'. Therefore, 
u(a') - heal. Then what we have to show is that II(a) .. 0(/I(a1), ... , Ia(on»; 
but this follows because II is a homomorphism. 

Finally, we show that (3) implies (1): since q: A -+ A/Q, is surjective and 
we have proved that (2) implies (3), we know that q satisfics (3), with thc 
equation u 0 q = 11 rather than II 0 f = h. Hence, taking Ia = I in (3), we get 
a unique l:-homomorphism II: A/Q, -+ A' such that u 0 q = f. We now 
need only show that this is an isomorphism. Using (3el) a!.1d"<3b) for f. with 
now h = q, we also obtain a··unique I:-homomorphism u': A' -+ A/Q, such 
that u' 0 f = q. We now use (3) for q with II = q also: q = 14' 0 f = (II' 0 II) 0 q, 
and also IA/Q/ O q = q; therefore (3b) gives u' 0 u = I A/Q,. Similarly, we use 
(~) for f with II = f, then the unique homomorphism is surely IA'; but also, 
(u 0 u') 0 f = U 0 q = f, so therefore U 0 II' = 1A'. Thus u is an isomorphism. 

o 

For example, let S, 1:, and A be as in the examples above, let Q be Q8 and 
let B = A/Q2 with f the natural quotient l:-homomorphisrn A -+ A/Q8. 
Then u sends (n modulo 8) to (11 modulo 2) and preserves oddness. 

Define the il1lage f(A) of A under f: A -+ B to have carriers I(A), 

==f,(A.) and operations a(!..(al), ... ,/,,,(afl» ==/,(o(al, ... , all» for 
is e 1:•.• with w = sl ... Slit and for a e LA.• define aJ(A) == /(0 A)' Then we 
can apply Proposition 6 to show that I(A) is l:-isomorphic to A/Q,. 

4 Abstract data types 

This section applies the concepts of Section 3 to data abstraction. 
Separate subsections consider the case where no equations are nceded. and 
theil the use of equations in defining ADTs. Other subsections discuss 
equational deduction and "give several equivalent characterizations of 
initiality, including a generalized Peano characterization, 

We set the stage for what follows by dcfining lhe basic concept of an 
abstract data type. We have already said that a (lata representatioll is a 1:­
algebra. Now notice that the relation of isonlorphism is an equivalence 
relation on the class of all E-algcbras: any algebra is isomorphic to itself; if 
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A is isomorphic to B, then B is isomorphic to A; and if A is isomorphic to B 
and D is isomorphic to C, then A is isomorphic to C. An ison,orphism class 
is an equivalence class of E-algebras under the equivalence relation of 
isomorphism, that is, it is a maximal class of E-algebras, each of which is 
isomorphic to all the others. 

Definition 7. An abstract data type is an isomorphism class of l:-algebras, 
for some signature 1:, called the signature of the abstract data type. 0 

This definition docs not addrcs~ the issue of computability; however, we 
will see latcr that algebraic methods can also be used for this. 
.Initialitypro~ides a particularly elegant way of denning abstract data 

types. Let us say that a class ('I of 1:-algebras is closed ullder ;son.orpllisln if 
for each A membet of fit if B is l::isomorphic to 'A, then B is in'li. The 
following is a direct corollary of Proposition 2: 

Propos;t;o1l 8. Let 'I be a class of l:-algebras that is closed under 
isomorphism and has an initial algebra. Then the class of all algebras that 
nre initial in fj is an isornorphism class. 0 

Thus, to define an abstract data type, all we have to do is give a class fI or 
l:-algebras that is closed under isomorphism and has an initial algebra; 

J	 then its class of initial algebras will be an abstract data type. Two following 
'-'	 subsections consider, respectively, the case where ~ is the class of all ~. 

algebras, and the class of alll:-algebras satisfying a set E of l:-cquations. 

4.1 Data types witlaout equations 
~~ 
'.'	 Perhaps the most important and familiar abstract data type is the 
)~ non-negative integers; let us denote this data type N. It can be very simply ~. 
: characterized as a standard algebra (i.c., no junk and no confusion, as in 
:J Section 2.3) with signature having only one sort, namely nat, one constant 
~ oof sort nat, with one unary function symbol inc: nat -+ nat, and with no
'"' 

equations. (Of course inc(,.) represents the 'incrclncnt' Of'I, thal is, n + 1.) 

Speaking informally, the 'no confusion' condition says"that each distinct 
term inc(inc( ... (0) ... » denotes a dilTerent number; and the 'no junk't condition says that all numbers are defined by such terms. 

~~ The tinitiality' property characterizes the natural numbers more simply 
but more abstractly by saying that there is one and only one homomorph­
ism from N to allY other algebra with the same signature. The natural 
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numbers were first characterized in this way by Lawvere [60]; a proof of 
equivalence with the usual Peano axioms can be found. in MncLane & 
BirkhofT (64], pages 67-70. This is generalized in Scction 4.4 bclo\v. 

Natural numbers can be d~noted in many <JilTerent ways; each different 
data representation gives a different algebra, but they are all initial nnd all 
isomorphic; in fact, there is a unique isomorphism from anyone to any 
other. The isomorphisms simply give the translations alnong these 
reprcsen tations. 

All this generalizes. For any signature 1:, there &lrc many initial L­
algebras, with the property that therc is one and only onc I:-ho.noillorph­
ism from it to any other I:-algebra; but, any two are 1:-iso.norphic, and 

thus are abstractly the same. We'mcntion two farniliar data representa­
tions that give initial algebras. In the first, the carrier of sort s consists of 
all the well-formed I:-terms of sort s. For the natural nunlber signature, 
these are just the expressions 

0, inc(O). inc(inc(O». inc(inc(inc(O»)•.... 

Such an algebra is called a terll' algebra (or sonlctimes a ,vord tllgebra) 
because it consists of all the l:-terms (or words).t 

In the second representation, the carrier of sort s consists of "lithe well­
formed l:-trees with root of sort s; these cun be seen ns the parse trees of a 
grammar G(l:) associated to ~. For example•. a L-tree for I: the signature 
for vcctor spaces is given in Figure 14.2; the corresponding l:-lcrm is 

r. 

o+ (a. 0). ~, 
We now make this precise, beginning with an inductive definition of the ~ 

sels TE•• of all L-tern.s· of sort s, for a given S-sortcd signature I:: 
· (I) LA.• S; Tr. .• for each s· in S; and	 'I' 

/\	
J 

+	 '(1 

o 4Je 

I 
o Fig. 14.2. A l:-lree 

t More exactly, Ihese mighl be called r.-groun,1 lerms, 10 dislinguish thcnl from 
lerms thai may contain variable synlbols; in computer science. ternlS either with 
or without variables are called expre.uiolu. 

t For T1 to satisfy the initiality property. ternlS should be un~lnlbiguous; n suf­
ficient condilion for this is to require 1:•.• " I ...... - 0 whenever length (tV) _ 

length (w') and (w, oS) " (w', ,'). This can alwuy. be ensurcd rcplacinG 1: by 
]:', where 1:'•.• - 1:•. , )( (w, oS)}, and we will assunle throughout thnt ternlS nrc 
always buill from such a disambiguute\J signature whenever I is ambiguous. 
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(2)	 0(11, : III) is in TI •• for each a in E. 1 ••• '''.' and each ti in Tr..•, for 
i = 1, , '1. 

We next show lhat the S-indexed f~llwly Tr. == <Tr..• 1s in S) is a I:-algebra. 
by defining the interpretation cx(a) of C1 in I:A,. to be the symbol a in Tr. (it 
is in TI by (I »; and defining the interpretation CX(O') of 0' in 1:.... for 
II ~ A, to send (11, ... , III) in (Tt )" to the term 0(1 I, ...• til) in Tt .• (it is in 
Tr. by (2». 

Two differcnt elcnlenls of Tr. never represent the same abstract data 
itenl; this 'absolutely no confusion' condition is defined precisely a little 
luter. (These algebras are sOlnelimes called 'absolutely free on zero 
gencrntors'.) The following very basic result just says that Tr. is an initial 1:­
algebra. 

TI.eorell. 9. Tr. is initial in the class of all L-algebras, i.e., for each 1:­
algebra At there is one and only one 1:-homomorphism Tr. -+ A. 

Proof. First notice that Tr. is by definition a countable union 

T1 = U71"1
 
"
 

of S-sorled subsets 

71~1 = <L~.• I s E S), 

71"+ II == 71:"1 U <{o(tl, ...• til) I C1 E LII........ and ti e (7tJ)" for 
i = I.~",n nnd sl •••. ,SIlES·} IseS). The proof is by induction on n. 

Uniqueness: Supposc·thatll, II':'T~ -+ A are two homomorphisms."Then 
they coincide on 71°) because they preserve the constants: 

(i)	 11(0) == 0' == 11'(0'), 

and assuming that they coincide on 71"1 they coincide on 71"+ 1), because 
the honlolnorphism property and the induction hypothesis give 

(ii)	 lJ(u(t I, ... , til» = 0(11(11)• •.. , lI(tn» = 0(/"(11), •• " Ia'(tn» 
= 1"(0(11 • ••. , In». 

Thus, they coincide on all of Tr. as desired. 
Existence.' Agnin by induction, we can define ,. on 71°1 by (i), and on 

11"· 1Jby (ii), assuming 11 already defined on 11"1. Thus II is defined on all of 
7~ 0 

t· 

We now introduce additional basic concepts. A data representation A has 
(Ibsolulely lUI cOllfusioll if und only if the unique l:-homomorphism 
11: 7·r. -+ A is injective (i.e., each 11, is injective), and a data representation A 
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has ',0 jlll1k iff II: Tr. -+ A is surjective (Le., each Jr, is surjective). A :E-algebra 
having no junk is sonletimes called reachable, prilue, or l1,illi,ual. Proposi­
tion 8 says that for a given 1:, the initial :E-algebras are an abstruct data 
type; moreover, because an isomorphism is surjective, this AD1· (Le., eHch 

,~. 

member of it) has no junk, and because an isonl0rphism is injective, it has 
absolutely no confusion. In f~ct, these prop<;rties characterize this ADT. 

Proposition /0. A 1:-algebra A is isomorphic to Tr. if and only if it has no 
junk and absolutely no confusion. 

Pr.oof. The unique l:-homomorphism 11: Tr. -+ A is bijcctive if and only if it 
is surjective and injective. 0 

It may now be worth emphasizing certain points: 

1.	 Notice that we have not defilled the abstract data type for a given 
signature (i.e., syntax) 1: to be Tr.; rather, we ha ve let 1: plus the 
property of initiality define the ADT as an abstract algebra, that 
is, as an isomorphism class of algebras. For example, there will be 
one data representation that uses l:-trecs, and another that uses 
1:-terms. Approaches that work in terms of onc particular model 
are sometimes called 'abstract model' approaches. Ilowever, we 
do not believe that the word -abstract' is really npproprhltc for 
such approaches (the term -constructive' is used by Carl\vright 
[19]). Even if one does prefer such an approach, nlCiny-sorled 
general algebra is still a powerful Clnd relevant tool, because such 
a model actually is a many-sorted algebra! Of course, one CeI" 

define an ADT by giving a particular data representation (as a 

representative of the isomorphism class); the point is then that the 
class (Le., the ADT) does not depend upon the choicc of 
representative. 

2.	 We have defined not just the data items of an ADT, but also a
 
complete set of constructors for thern; in fact, thc·sc"constru·ctors
 
define the data items 'abstractly', that is, uniquely up to change of
 
representation. 

3.	 We can speak of ,the' initial algebra for a given signature, because
 
any two are isomorphic, and because we really want to talk about
 
the ADT, that is, about the whole class of isomorphic algebras.
 

4.	 Despite this interest in abstraction, it is often necessary to IIl""e
 

elements of an ADT. The most convenient way to do this is often
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with terms, i.e., with elenlcnts of the ternl algebra Tr.. If A is a }:­
algebra, if I,: Tr. -+ A is the unique l:-homomorphism, and t is a ~­
term, then "(1) is the element of A nanled by t; this idea was used 
above to define -absolutely no confusion' and 'no junk'. It may be 
useful to think of t as a simple ('straight line') program, of A as a 
machine that can execute each -instruction' in 1:, and of h(t) as the 
result of running t on A. 

The tcrm 'finite constructability' is used by Cartwright [19] for the 
condition of no junk with a finite signature. and he uses the term 'unique 
constructability' for our"absolutely no confusion' condition. In addition. 
Cnrtwright [19] imposes an 'explicit definabillty' condiClon that wt·\vill see 
in Section 6 is unnecessary if the functions involved are computable. Thus, 
we have here the strange case of an author who not only uses (something 
exactly equivalent to a special case of) the initial algebra approach to 
abstract data types without knowing it, but who actually argues in very 
strong terms agaillst using an algebraic approach to data types at alii 

4.2 Data types lvitll equalions 

One Inight think that for every abstract data type A, there is some 
finite signature 1: (perhaps contained in the signature of A) such that the 
abstract data items in A form a l:-algebra absolutely without confusion. 
This would mean that the abstract data items are in one-lo-one 
correspondence with L-terms (or 1:-trecs). Unfortunately. this cannot 
always be done; SOlllC data abstructions are inherently confused. Such data 
ubstractions require the use of equations and of a 'no confusion' condition 
thut is nlore general than the 'absolutely no confusion' condition. One 
example of such a data abstraction is that of all the finite SETs of integers 
with the functions of union, singleton, and epsilon (i.e., 'clement of). The 
trouble is that union obeys commutative, associative. and idempotent 
laws. · · · .. 

There are also, many caset ~Ilere one ~flnts. to add some .',uxiliary 
functions to a given data abstraction. for example. an emptiness test to 
SET. These auxiliary functions might be defined by some equations in 
terms of the previously given functions. This subsection generalizes the 
preccding subsection to permit equations. (However. the 'no confusion' 
condition is deferred to Section 4.4.) 

Fix an S-sorted signature 1:. Now given an S-sorted set X disjoint (rom 
L, let us think of the elements of X, (for s in S) as variable syl1lbols ofsort s, 
and let us fonn a new S-sortcd signature l:{X) by defining 1:(X).l.• ­
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1:,\.'. u X. and L(X )..,.. for \v ~ A.. We can now fonn the r(X)­

algebra TJ:(x) and moreover;"we can regard it as a 1:-algcbra, denoted
 
TJ:(X),. by simply 'forgetting'· the vHriablc symbols. t We now define a 1:­


equation to be a triple (X, 11, 12), where X is a finite S-indexcu sct and
 I, 

t 1, t2 are in TJ:(X)••• Given a l:-algebra A, let us now define un a.~.~;o,",.elJt 
t 

~ 

from X to A to be a mapping f X --. A. Notice thut a 1:-algebra A togcthcr ~ 
# 
.~ 

with an assignment from X to A determines a I:(X) structure on A (just .:, 
'j 
,

use the assignment to extend the interpretation function of A). "hen there 
is a unique l:(X)-homomorphism from TJ:(x) to A, i.e., a unique I:­
homomorphism TJ:(X) -. A extendingf; let us denote itf~. We no\v say 
that a l:-algebra A satisfies the l:-equation (X, t J, 12) iff for every 
assignmentfiX -+ A, we have thatf"(tl) =!~(t2). i 

I 

Unfortunately, there is a subtle difficulty with the way that equations " • 

are defined in most of the literature (e.g., in Goguen, Thatcher & W&lgner J 
•[36]). As shown in Section 3.4, to get a deductive system that is sound I, 

~}
and complete, it is necessary to explicitly declare the variables that are 
used in each equation. Hence our notation (X, t 1, 12); we shall also use 
the perhaps more easily read form 

(VX) tl = t2. 

or to make the variables explicit, 

(Vxl: sl)(Vx2: 52) ... (Vxn: 511) t 1 = t2, 

where X. = (xi I si = s). We shall even allow the familiar notation II 
when the variable d<:clarat~on~ are known or obvious. 

= 12 

Given a set E of :E-equations, let us say thut a 1:-algebna A Stlli.Vies Eiff 
A satisfies each equation in E; in that case, let us' call A a (1:, ~ ):ulgcbra; \ye 
also call (1:, E) an equational preselltation. The variCI y of E is thc class of 
all (1:, E)-algebras. The following generalization of Thcorcln 9 says that 
there always are initial (1:, E)-algebras; it is proved in Section 4.3.3. 

Theorem 1J. For any signature L and set E of I:-equations, there is nn 
initial (1:, E)-algebra. 0 

From the definition of satisfaction it follows e&lsily thut the class of all 
(1:, E)-algebras is closed under isomorphisms. Thus, the four relnarks at 
the end of Section 4.1 apply as well to the present context where equations 
are allowed. 

t Thai is, by restricting the interpretation runction for TIC'" fronl I:(X) 10 t; in 
general, Ihe algebra rcsulling from such a rcslriclion of un ulgebra A to a 
subsignaturc 1: is called a r.·r~duc' and is denoted Alt. 
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4.3 Equatiollal dedl,lclioll 

Given a set ~f equations,'the sOlilldlJ~sS of (one-sorted) equational 
logic asserts that applying a certain set of rules for deducing new equations 
always yields equations that are satisfied by any algebra satisfying the 
given equations. Similarly, cOII,pleteIJess asserts that every equation 
satisfied by nil ulgebras satisfying the given equations can be deduced 
using these rules. These two properties together ianply that, for the class of 
all algebras satisfying a given set of equations, the naodel tlleoretic notion 
of an equation being satisfied by all algebras in the class coincides with the 
proo! tl.coretic notion of the equation being derivable from the given 
equations by the rules of equational deduction. Such a theorem was first 
given for the one-sorted case by Birkhoff [15]; see also Tarski [82]. 
Ilowever, neither I-Jiggins [39] nor DirkhofT & Lipson [16] gave rules for 
equational deduction in their treatments of the many-sorted case. The first 
completeness theorem for many-sorted equational logic was given by 
Dcnabou [2] using a categorical approach, which does not involve explicit 
rules of deduction. Explicit rules are given in Section 4.3.2 below; 
soundness and completeness are treated in Section 4.3.3. 

In general, the literature on ADTs has simply applied the ordinary rules 
of one-sorted equational deduction to the many-sorted case. But this is not 
sound. A first correction of the one-sorted rules by introducing explicit 
quantifi~rs yields a systcln which, although sound, is flot.complete; further 
rules arc nceded for lhe uddilion and deletion of quantifiers. 

4,J. / A" ullsoulld dCl/uctio/1 

l"he following eX31npJe demonstrates the unsoundness of using 
the usual one-sorted rules for anany-sorted deduction. Let 1: be the 
signature with sort set {a, b}, and with 1:1,. = {T, F}, 1:.,. == {.,}. 1:.... ­
{&, +}. La,. = {FOO}, and 1:..." = 0 for all other u, v. (Although we 
inlend ·b' to suggest ·Doolean', 1:-algebras need not have as elements ofsort 
b exaclly the truth-values T and F; indeed, it may help to think ofT and F 
ns two arbitrary symbols that mayor may not happen to denote the same 
clclnent in nn algebra.) Finully, let E consist of the following seven 
equations, where A, B are variables of sorts a, b, respectively 

IT = F 
-,F=T 
B+-,BI:IT 
n & -,n = F 
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B&B=B
 
B+B=B
 
FOO(A) = • FOO(A). l

Boolean algebra gives the first six equations. The rules of one-sorted .1 
equational deduction now give r 

·t 
'\T == FOO(A) + • FOO(A) = FOO(A) + FOO(A) t 

== FOO(A)	 1. 

.. FOO(A) & FOO(A) == FOO(A) & -, FOO(A)	 \ 
== F. 

If these rules of ded~ction ~er~ sound, then lhe equation T = F should 
hold in every I-algebra satisfying E. But there is a l:-algcbra DAR 
satisfying E where this is not S<l: BAR.. = 0; DAR. = {T, fi'}; 'FOa is' the 
empty function; and all the boolean functions are as expected. Thcrefore 
these rules are not sound. This example evolved from one suggcstcd by 
Gerard Huet, who first pointed out to us the unsoundncss of the ordinary ~ 

!rules of deduction in the many-sorted case; it is intcnded to suggest how 
unsoundness might arise in practical examples such as paranlcterized 
abstract data type definitions. 

4.3.2 The rules of deduction 

The first step toward correcting this situation has already been 
taken: equations must have all variables explicitly declared with their 
sorts, yielding what can be thought of as equations with explicit 
quantifiers. But, if the old one-sorted rules of deduction are modified in 
this way. the resulting system is not co",plele. Two new rules arc needed to 
add and delete the quantifiers. 

Given a signature 1: and a set ()f l:-equations; the following are the rules 
for deriving equations: 

(I)	 Reflexivity. Each equation 

(VX)t=t 

is dcrivable. 
(2)	 SymltJetry. If
 

(VX)t = t'
 
is derivable, then so is
 

(VX)t' = t. 
(3)	 Transitivity. If the equations 

lf(VX)t == ,', (VX)I' = t

Juitiality, inductiolJ, and cOlnputability 

are derivable, then so is 

(VX)I = t". 

(4) Silbstltutivity.	 If • 

(VX)II == 12 

of sort s is derivable, if x e X is of sort s', and if 

(V Y)ul == u2 

of sort s' is derivable, then so is 
(VZ)vl == 1)2, 

w~lere Z == (X - {x}) u Y, vi == tj(x +- .uj) fpr. j = 1. 2, ~n" 
'tj(x.- Ilj)' denotes the result of substituting uj for x in IJ.' 

The following two rules complcle '(he system: · 

(5) Abstraction.	 If 

(VX)t := I' 

is derivable, if y is a variable of sort sand y is not in X, then 

(VX \..( {y}t = I' 

is also derivable. (This rule also applied if X := 0. where there are 
originally no variables, and one is added.) 

(6)	 Concretioll. Let us say that a sort s is void in a signature ~ iff 
TIl' == 0. Now, if 

(VX)t :::z t' 
is derivable, if x E X, does not appear in either t or t ' , and if s is 
non-void, then 

(VX	 - {x})t -= I' 

is also derivnblc. 

4.3.3 Soundlless, cOII.pleleness, alld ;1I;tlality theorems 

This subsection gives the basic soundness and completeness 
propprties for the rules of equational deduction given in Section 4.3.2 
Although the ·ordina..ry' rules .of, deduction. are not .in general.,Jound 
(Section 4.3.1). it turns out that for many.examples of interest they arc 

t	 This notion of substitution enn be made precise by ulinglhe same machinery 
that was used to define equational satisfaction in Section 4.2. Let I bo • E-term 
with variables from X, i.e. IE Tr.(X). lei x E X. and let II E Tt<Z). where 
Z - (X - (x})v Y. Now define): X -. T1(Z) byf(y) - y if y" x, andf(x) - ... 
Then'-: Tt(X) .... Tt(Z) is the unique l:.homomorphism extending); and we 
define ,(x .- u) -I" (I). 
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both sound and complete; for example, it will suffice for there to be a 
constant term of each sort. However, there arc important examples not 
having constants of some sort$, such as the theory of partia"y ordered sets. 
or many common parameterized ADTs. Theorem 14 below gives a simple 
necessary and sufficient condition under which the ordinary rules arc both 
sound and complete. 

TI,eorem J2. SoulJdness. Given a set E of l:-equations, if an equation is 
deducible from E using rules (1)-(6), then it is satisfied by every l:-algebra 
satisfying E. 

The proof, which is a straightforward but ledious check of the soundness 
of each rule separately, may be found in the appendix. It is interesting to 
notice that only this result, and not completeness, is needed to prove 
existence of initial algebras fo~ the equational case, which we restate as 

TI,eoren. JJ. For any signature I: and set E of l:-equations, there is a 
(1:, E)·algebra T I •E that is a quotient of TI such that for any other (1:, E)­

,. algebra A, there is a unique I:-homomorphisrn from Tr..E. to A. 

Proof. Let Q£, also denoted Q for short below, be the following I:. 
cODgruence on TE• .", 

.tQt' iff (V0)1 = I' is- derivable from E using rules (1 )-(6) of 
Section 4.3.2. 

Rules (1)-(3) give that Q is an cquivulencc relation. We now show 
substitutivity. Given u in l:w,J with w = 51 ••. SII, the equation 

(VX)a(x), ... , XII) = a(xl' ... , xn) 

holds by rule (I), with X containing xi of sort si for i = I, ... , II. Dy II 

applications of rule (4), assuming thilt tiQt'; for; = I, II., II, we no\y get 

(V0)u(tl, II., In) = a(t'I,. "' I'll), 

and therefore a(tl, II., tn)Qa(t'l, "" I'll) as desired. 

Now let Tr..£ = TI/Q. We first show that Tr..E is a (1:, E)-algebr&l, i.c., TI .£ 

satisfies each equation (\I X) t = I' in E. Say X has elelncnts x I, ... , .lll and 
consider a map f X -+ TE•E sending xi to [Ii] in Tr..E' This nlap can be 
factored as q 0 g, where q: Tr. -+ TItE is the quotient nnd g: J'( -t Tr. sends xi 
to til By initiality of Tr..(X), we have/# = (/0 II". Then what we have to 
show is that/"(I) = /*(1') or, equivalently, g"(t)Qg'(t'). Out (see footnote, 
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S~clion ,. 4.1) g"(t) = t(xl +- tl, ... , XII +-. til) . and g#(t~).:: 

t'(x I +- t I, "" XII +- til). Moreover, the equation 

(V0)'(~1 ~ tl, •.. ,XII ~ i-II) = l'(xl·~ tl~ •.• ,x" +- til) 

,I is deducible using rule (1) in the form 

(V0)ti 1::1 tl, 
f 
t for I == I •... , II, and II successive applications of rule (4). Thus.J#(t) ­
i 

/'(t') as desired. 
~ We now prove that Tr.,s is initial. Let A be a (l:,E)-algebra. By the 

soundness of rules (1)-(6), A satisfies all equations ('10) t - t' deducible 
froln the equations in E using these rules. By the definition of satisfaction, 
this 11leanS that 1a(1) /1(1'), for (V0) t == I' any such equation. where CI 

I,: Tr. -+ A is the unique hOlnomorphism. In olher words, we have that 
Q ~ Q", and hence, by Proposition 6, there is a unique l:-homomorphism 
II: T ItE -t A such thalli 0 q = II. where q: Tr. -+ Tr.,E is the natural quotient 
Inap. All that is now left is to prove uniqueness of U. Any u': Tr. 

9 
E ... A must 

.1" satisfy.,' 0 q = I. since TI is initial for all l:-algebras; therefore the 
" uniqueness condition of Proposition 6 gives the desired result. 0 

This construction of the initial (1:, E)-algebra, Tr.,. as a quotient of the 
tcrm algebra by the congruence Q£ generated by equational deduction 
rroan E, is the natural generalization of TJ:, to the case where there arc 
equations. We now state the completeness of our rules of equational 
ded~ction; the proof has. been exiled to the appendix. 

TI,eorelll J3. COII",/etelless. Given a set E of ~-equations, then every 11 
equation satisfied by all the algebras in the variety of E .is derivable from E 

:\ using the rules (I) to (6) above. 

We next give necessary and sufficient conditions for the ordinary rules of 
equational deduction to yield the same derived equations as the rules of 
Section 4.3.2. Recall that a sort s is void in 1: iff TJ:,.. aI 0. By an ordinary 
equation of sort s over 1: is meant an expression of the form t =" where t 
and c' are both l:-terms of sort s. Such an equation is satisfied in a given ~­
algebra A iff all the equulions of the form (V X) t z= t' are satisfied in A. 
provided that X includes all the variables occurring in t and t'. By the 
ort/illnry rules o/equatiulle" declllctioll we mean the variants of rules (1) to 
(4) ubove obtained by elinlinating quantifiers. Then, for a given signature 
r, we say that tlae soundness aflel co",pletelJe5S theorems hold in ordinary 
fornl iff for any set E of l:·cquations (with quantifiers), an ordinary 
equation is satisfied by all algebras satisfying E iff it is derivable using the 
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ordinary rules of equational deduction. Let E{x: s} denote the new 
signature constructed from 1: by adding a new constant x of sort s. 

Theorem 14. The soundness and completeness theorems hold in ordinary 
form for a signature L iff for all sorts s, s' of L, s' is non-void in the 
signature :E{x:s}..	 0 

The proof of this result may be found in [32], where necessury and 
sufficient conditions for the quotient of Tr. by the L-congrucnce generated 
by the ordinary rules of deduction to be an initial algebra arc ulso given. 

4.4 Equivalel1ts of ill;t;ality 

Some reseurchers have felt the initiality condition, that 'there 
exists a unique homomorphism', is too abstract to be of interest (e.g., 
Cartwright [19]). Yet there are equivalent properties having nothing to do 
with category theory. This subsection states a number of these, and in 
particular some generalized Peano axioms. 

We now generalize the 'no junk, no confusion' conditions to the case :, 
where there may be equations. A (I:, E)-algebra A has 110 confusio" relative ~! I 

to the set E of L-equations if and only if the unique L-homonlorphism 
II: TI •E -+ A is injective. We now give a corresponding charactcrizlltion of 
no junk, and then show that these properties cOfnpletely churacterize the 
ADT of initial (1:, E)-algebras. I 

Proposition 15. A (L, E)-algebra A has no junk if und only if the unique 1:­
homomorphism Tr..E: ..... A is surjective. Moreover, A is isonlorphic to TI.E: 
if and only if it has no junk and no confusion relative to E. 

Proof. By definition,. A has no junk iff TI -+ A is surjective, and we know 
from lhe proof of Theorem JJ lhal Tr. ...... Tu is surjective; therefore (by 
Proposition 3), A has no junk iff TI,E -+ A is surjective. Then II: TI,E -+ A 
is bijective if and only if it is surjective and injective. 0 

We now give more concrete equivalents of these conditions, first showing 
that structural induction [17] is equivalent to the 'no junk' condition, i.e., 
to reachability. 

luitiality, induction, allel cOI1.putability 

})roposilioll /6. The following are equivalent for a 1:-algebra A: 

(I)	 A is reachable, i.e., the unique IJ: Tr. ..... A is surjective; 
(2)	 A has no proper 1:-subalgebras; 
(3)	 Structural i,lduct;OII. If P = (P, Is in S) is an S-sorted subset of A 

such that 
a. for each constant (1 in 1: of sort s, (1 is in P" and 
b. for each function symbol a of arHy sl ... sn and sort s, if pi is in 

P" for I =: I, ... , n, then a(pl, •..• ptl) is in P,.
 
then P = A.
 

Proof. We first show that (I) implies (2): if A is· reachable and P is a'proper 
L-subnlgebra of A, then IJ-I(P) is also a proper l:-subalgebra of Tr.. which 
is irnpossible by Proposition 4. 

To show that (2) implies (3), it suffices to note that the conditions (3a) 
and (3b) say exactly thai J) is a 1:-sub&llgebra of A. 

Finally, to show that (3) implies (1), suppose that IJ is not surjective. 
Then its image is a proper subalgebra P of A, i.e., is a subset P of A 
satisfying (3a) and (3b). 0 

We now treat the Cilse where there are no equations. 

Propos;t ;011 J7. A is an initial 1:-algebra if and o~ly if it satisfies the 
following gelleralized Peallo aX;OIJls: 

(I)	 I f a and a' are distinct function symbols in 1: of the same sort s, 
then the images of the functions that they denote on A are disjoint 
subsets of A,. 

(2)	 Each a in 1: denotes nn injective function on A. 
(3)	 Slrllclliral illduction. If P == (P, Is in S) is an S-sorted subset of A 

such that 
a. for each constant (1 in 1: of sort s. a is in P,. and 
b. for each function symbol a of arity sl. .. .slI,and sort s, if pi is.in 

P" for ,I == 1•... , II tJ1e~ o(pl, ••.• P!1) i~ in P,. 
then P == A. 

])roo/. Assume that A is initial. Then by Theorem 9 and Proposition 2, A 
is isomorphic to Tt ; so let us assume that A is Tt . Then axioms (1) and (2) 
above follow from the construction of Tr. in Theorem 9. Next, axiom (3) 
holds by the previous Proposition. 

For the converse, assume that A is a l:-algebra satisfying axioms (I), (2) 
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and (3). Then the previous Proposition tells us that the unique L­
homomorphism 11: Tr. -+ A is surjective. We will be done if we prove that 1, 
is also injective. i.e., if we prove that 11(1) = lI(t') for I, " in Tt ., implies that 
t = t!. We will prove this by induction on n = max{depth(l), depth(t')}, 
where depth{t) is the depth of t as a tree. For n = 0, t and I' are constants 
in l:A.J and what we want follows from axioln (I). Now suppose t,l' E Tr..J 
such that max{depth(t), depth(t')} = II + I, and assume (without loss of 
generality) that depth(t) = " + 1 and t = a(t I, ... , tk) for k > O. l"hen 
lI(t) = (fA(JJ{t 1)•.. .,/'{lk», and by axiom (I), " must be of the form 
a{t' •• ...• t'k) for some t'l •... , I'k in A. Then axiom (2) implies lhat 

11(11) =h(t';) for i = I, ... t k. 

Because each ti and t'; has depth less than or equal to '1, the inductive 
hypothesis gives us that 

. ti = t'; for j = 1•••• t k, 

and hence that t = t', as desired. 0 

It follows from the above proof that for reachable algebrns, the first two 
generalized Peano axioms in Proposition 17 are equivalent to 'absolutely 
no confusion'. This equivalence fails for nonreachable algebras, because 

· the operations may fail to be injective outside the imnge of 7"r.. 
We now further generalize th.~ Peano axioms .to include c.quations. 

Tlleore",18. Let L be an S-sorted signature, let A be a l:-algebra, and let J~ 

be a set of l:-equations. If t is a L-term (Le., a 'ground' terln, containing no 
variables), let [I] denote the resull of evaluating 1 in A. Then A is initial 
among all 1:-algebras that satisfy E if anti only if 

(I)	 [I] = [t'] in A if and only if the equation (V0) I = I' CUll be 
proved from equations in E using the laws of many-sortcd 
equational deduction given in Section 4.3.2. 

(2)	 Structural i"ductioll. If P is an S-indcxed fumily of subsets I'. of A 
such that: 
a. for each constant a in 1: of sort s, [a] is in P, and 
b. for each function sylnbol a in L of arHy sl ... Inl and sort s, if ai 

is in P,1 for i = 1•. "" II, then a(Cll • ••. , all) is in P, 
then P = A. 

Proof. We have only to show that.for a reachable,1:-ulgebra At axiom (I) is
 
. 'equivalent to 'no confusion" i.e., to injectivily of the unique II: TI •l -+ A. If
 

,. is injective, then A is isomorphic to TIlr. and TItF. SHlisfics uxioln (I) by
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construction. Conversely, suppose that A is reachable and satisfies axiom 
(I). Let/. T1 -+ A be the unique l:-hornonlorphism. Then A is isomorphic 
to T1/Q, and axiom (I) says that Q, = Q£ the congruence generated by 
thc rules of equational deduction from E. Therefore A is isomorphic to 
7r./Qt; = TI •l which is inilial; thus, 11 must have been an isomorphism. 0 

'rhis proof shows that if the second axiom (which is equivalent to t no 
junk t

) is satisfied, then the first axioln is equivalent to 'no confusion'. Thus, 
when E =0, the first condition above is equivalent to axioms (1) and (2) 
of Proposition 17. Theorem 18 may not have been formally stated before. 
but the intuition behind it is part of the folklore. 

5 Abstract Inacbines 

Recall that cl"ta types are algebras, whereas II.acldlles have 
intcrnnl slates and use techniques and concepts from automaton theory. 
such as reachabilily, observability, and minimality. Abstract data types are 
uscf~1 for understanding the type systems of programming languages; .. 
especially when they perlnit user-defined types_ ~s it} ALGOL 68 [B7]. 
Abstract machines are useful for u·~d~rstanding the specification and im­
plclnenlalion of software modules, for example. as in the HDM metho­
dology of [61]. Il is a serious error to assume that there is little or no 
difference belween these two enterprises. This error has led. for cxample. to 
thinking that the appropriate definition of 'implementation' for software 
modules is given by the algcbrllic nolion of isomorphism, and has also 
led to the ruther pointless controversy about whether final or initial 
algebra sClnantics is ultimately 'the best approach'. For abstract machines. 
it is their bellavior that matters. Muchines that are different (Le., non­
isolnorphic) as duta types can still have the samc behavior. Thus. a 
soft ware nlodule can in general be realized in many different ways. 

Consider for in;;tancc the theory of autolJ.ata. It has three sorts. input.
 
state, uno output. and operalors
 

_e_: input, input -+ input
 
A: input
 
So= stute
 
'Iext: input, state ~ state
 
(Jul: Slate -+ output
 

plus some obvious equulions lhat Inake input a monoid and lIext a 
Inonoid action. An ClIlIUIJlClIOIi is then an algebra on this signature, 
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satisfying those equations. An autonlaton becolnes &1 /J/llck box when we 
consider the sorts input and output as the only visible sorts. We can then 
observe the automation's behaviour by feeding it inputs and observing 
the corresponding outputs. More generally, we are allowed to evaluate in 
our automaton a,lI exprf!Ssi(JllS willi visible sorls, such as oUI(lIexl(n. c, 
next(b, so»), or A.. a • b but 110t internal states, i.e., not expressions of 
sort stale, such as next(a. b, so). Two automata witti" same input and 
output scts have the san,e behavior, i.e., nre indistinguishable us 'black 
boxes" if and only if all expressions with visible sort have the sanlC value in 
both. 

All this generalizes for an arbitrary signature 1: and a subset Vs; S ofsorts 
declared as v;sible sorts. Let M be a 1:-algebra (we usc M to stress that, by 
specifying which sorts are visible, we are looking at M as &l machine) we 
shall make more precise what we mean by 'evaluating an expression with 
visible sort' in M. Let My denote the V-sorted set (M... I v E V); then the 
expressions in question are the clements of Tr.(M If )1" for each visible sort v. 
There is an evaluation map CM that computes the rcsult of evaluating any 
such expression in M, namely the unique I:(M y)-hornomorphisrll to M 
(M can be viewed as a I:(M If)-algcbra by adding the clements of AJ v 

as constants). We then say that two I:-ulgebras, Al and M', nre 
(V- )bellaviorally identical, or that they have the sanae (V- )belulv;or iff 

(i) My = M'l', and 
(ii) £",(t) = £",,(1) for each t in Tr,(M If)... with v in V. 

For 1: an arbitrary signature, the usual notions of autonluton thcory 
generalize to machines, Le. to I:-algcbras \vith a given set of visible sorts. 
For exumplc, every autonluton behavior udlnits an i"i,;a1 re&llization, 
which is initial among all 3lftomata that have that behavior; therc is also a 
"lilli"ull or filial realization, having the property of jill"lity, dual to 
initiality, among all reachuble reCllizCltions of thut belta vior. The initial 
realization identifies as few states as possible; the millirnal realization 
identifies internal slales as much as possible while retaining the same 
behavior; thus it uses as few states as possible. The reader may consult [33] 
for more powerful generalizations of classical automaton theory results 
(e.g., [28]) to machines; see also [89] and [25]. llere, we construct initial 
and final realizations of a machine's behavior using definitions which, 
though not fully general, suffice to present the main results with a 
minimum of technical machinery. 

The initiality and finality theorems for machines use the notion of a 
strong V-homomorphism between two V-behavior&llly idcntical machincs. 
This is exactly a I:-homomorphisln that leaves unchanged all elenlcnts of 

111;1 ialit y, i"clllct ;011, llllli co",plltability 

external sort. For M and M ' V-behaviorally identical, this can be 
formulated by saying thatt M -. M' is a strong V-/lomomorpllism ifffis a 
'f.(M v)-hotnomorphism. 

Theorel1' 19. Let 1: be an S-sorted signature, V s; S a set of visible sorts, . .. ,. .. 
and M a I:-algebra. Then there is an algebra I(M) behaviorally identical 10 

M, called the ill it it" realization of the behavior of M. such that for any 1:­
algebra M ' behaviorally identical to M there is a unique strong v­
honlolnorphism I,: I(M) -+ M'. 

l'rooJ. I(M) is nn S-sorted subsct of Tr.(M 1'). Specifically, define I(M) to be 
the (S-sorted) set of V-irreducible terms in Tt(M v), where a term t is v­
irreducible iff any subterm I' of visiblc sort 11 is an element of M., i.e., iff 

t = t l(y 4- t') for I' of sort v E V implies t' EM•• 

In particular, for each visible sort IJ E V, we have l(M). == M p' The 
opcrutions of I(M) nre defined as follows: the constants for visible sorts are 
those of 1.1, and for other sorts the constant symbols in the signature. If 
(J E 1:J1 ... J"•• t and if t, E I(M)J' for i = 1, ... , II, then the value of the 
operat ion 0(1 I, ••• , til) is either the clclnent £.,(a(t 11 ••• , t,,» eM. if the sort s 
is visible, or else if s is not visible, the term a(t h ••• , til) e Tr.(M y)" which is 
itself V-irreducible since all its subterms t I, ••• , t. are V-irreducible. 

From this definition it is clear that M and I(M) arc behaviorally 
identical. Moreover, I(M) -= l(M') for any M' (V-)behaviorally identical 
to AI, i.e., I(M) does not depend on the representative M, but only on its 
behavior. 

Note also that there is a unique surjective I:(My)-homomorphism 
tICAl): TI(A-f 1') -. /(1.1-). Thus the uniqueness part of the" theorem ·is·proved. 
since there is at Inost one l:(M If)-hoillomorphism (i.e., a unique strong V­
honlornorphism) between I(M) und any M' behaviorally identical to M. 
To prove the existence part, for any M ' that is (V-)behaviorally identical 
to M. define the function 11: I(M) -. M' by II(t) = £Af,(t). We will be done if 
we show that 

(*) II 0 tICAl) = £AI· 

since then, by Proposition 6, II is a r.(Mv)-homomorphism, i.e., a strong V­
hOlnolnorphism, as desired. Notice that £,(,,)(t) = t for each t e l(M); this 
follows from structural induction over the operations in I(M). Thus for II a 
visible sort. (.) follows from M ' and I(M) both V-behaviorally identical to 
1.-1. For sa nonvisiblc sort, note that any tcrm t E Tr.(M .,), can be written as 

I = I' (x 1 .- t I, ... , :<II .- IIJ) 
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..	 with I'(X I .- £I(M)(ll), .•. , XII +- £,(M)(/II» V-irreducible (just luke II, ... , '"
 
the largest subterms with visible sorts occurring in I). This finishes the
 
proof, after establishing (by structural induction and the ho.nonlorphic
 
property of £M') that for any l:-algcbra M' and 1 as above, the following
 

I ..

equality holds	 "'t
':!~j' 

(••) £M,(I) = £M,(t'(xl 4- £~f'(t I), ... , XII +- £),,(tll»),	 
'ftJ 

:~:~
since then we get 

'~~f;f 
h(£I(M)(I» = h(£l(u)(t'(xl .- cl(M)(tl), .•• , XII +- CI(M)(/II»»	 ~.~ 

(by (*.»	 \¥~, 
~' 
:,'i~= h(I'(x1 4- £,(M)(I I), , XII +- £1(~1)(tll») 
~"~ ~ 
~~,.= £~I'(t'(X I 4- £,(M)(I I), , XII +- £/(~,)(III») It~ 

.{~l~'(by definition of II)	 ,f1~I

,:..fl.
= £M'(l) (by (*.) and behavioral equivalence). 0	 ,I~~ 

"~~~ 

;I~The final realization theorem restricts attention to reachable machines. A
 
I:-algebra M is call,ed V-reachable, or a V-reachable machine, if the }~


,.	 evaluation map eM: Tr.(M v) -+ M is surjective. Int uitively this corresponds ~;f. 
to not having internal stales that cannol be built up from the constants "'f, 

'!l~
and the visible values by repeated operations. Note that J(fly/) above is V­,':i~ 

.1\;~reachable by construction. The construction of the final realization t.,;, 
'~~identifies any two internal stat'es that cannot be distinguished CIS different ~ .. 

Il
from the visible s'orts, i.e., thal are (V-)observably equal.	 :~,:.t 

,~t: 
.~. 

TI,eoreln 20. For 1: an S-sorted signature, V £; S a set of visible sorts, and 
'J~
,,';MaL-algebra, there is a V-reachuble algebra N(M) thal is V-behaviorally 

identical to M, called thefilltll (or Neroi/e) realization of the behavior of M, '.
,

;~ I~such that for any V-reachable algebra A-I' behaviorally illentical 10 A-l 
It,t;

there is a unique strong V-homomorphism q: M' -+ N(M).	 ".:. 
'1:,
.,'. 

" ~.Proof. Define N(M) to be lhe quotient of I(AI) by the following 
~~}:

congruence ner: for visible sorls v, IncrIII' iff I = t'; for s not in V, tllcrJI' iff ..,•., 
~ ffor each tcrm tiE Tr.(M v u {Y})II with y a variable of sorl s, v E V, one has 
" "• £I(M)(t I(Y +- I) = £,(M,(t 1(y +- I'» 

Then ncr is a l:-congruence, and (after the trivial identificulion of each ~~ . 
t EM" with the one-element equivalence cluss {I}) it also follows froln the
 
construction that N(M) is behaviorally idenlic&llto J(M), thus, also to M.
 
By initiality of I(M), any slrong V-homomorphislll 'I: M' -+ N(A/), for Af'
 
V-reachable and behaviorally identical to M must satisfy q 0 I, = p,
 

for h: l(M) -+ M' and p: I(M) --+ N(A;I) the unique strong V­

homomorphisms. £M' surjective and C~I' = " 0 £I(~I) ianply 11 is surjective.
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Thus by Proposition 6, q exists and is unique iff the congruence Q. 
ussociated to 11 is contained in nero Let I, I' e l(M), be two terms such that 
11(1) = ',(1') but (I, t') is not in ncr,. Then there is a term 'I E Tr'<M v u (y})" 
for sonle v E V, such that 

CI(~I)(1 I (y +- I» :F £,(AI)(I I (y +- t'» EM". 
Since £Af' = I. 0 £,(A') and 11 11 is the identity on M tI this inequality becomes 

CM·(t I (y +- I» :;:. £~,·(t I (y +- t'» eM". 
which in turn can be expressed us 

~ ~I·(t I (y 4- t» 'I: ~ M·(t 1(y f- t'» E M p 

for Ju ': TI(M') -+ M' the unique l:(M')-homomorphism. since 6",. ex­
tends C~'·. Using the homomorphic property of ~u, and reasoning by 
structural induction on t 1 as in (**) of the previous theorem. this 
inequality can be expressed as 

~AI·(II(Y .- ~~,.(I») :;:. ~~I'(t .(Y +- b~,,(t'») eM.,. 
This is the contradiction we seek, since 

«5,.,.(t) = £~,.(t) = 1,(1) = "(1') = £~,.(t') = bA1,(t'). 0 

We fiJlish this section by giving a precise definition of an abstract nlacldne. 
Two data types are '~bstrnctly ,th~ same' iff .they are Asomorphj~" Two 
machines are 'abstractly the saine' iff their be/laviors are isomorphic. i.e.• 
itT (up to a possible change of representation) any expressions with visible 
sort give the sanle result in both. Notice thal, both for data lypes and for 
Illachines, 'nbstract' nleans (independent of the representation', but in the 
case of Inachines this can happen without the machines being isomorphic 
algebras; only their behaviors have to be isomorphic. In [33] behaviors 
are actually algebras and the phrusc 'isomorphic behavior·, has the usual 
algebraic sense. In this paper we give an equivalent definition that does not 
require explicitly defining beh&1viors as algebras, but captures the intuition 
of visible expressions giving 'the silmc' result. 

Dej;lIi1ioll 2J. For l: a signature and V a set of visible sorts. one says 
that two machines M and M' are V-bellaviorally eqldualellt, or that they 
ha vc ;sa",orpille bel.avlars, iff there is a V-sorted bijection ex: M v ... M'v 
such that for each 1 in Tr.(M v)" with v in V one has 

cx([~,(t» = £AI,(a" (I», 

\vhcre ex 11 is the unique l:.(M v)-homomorphism induced by the map 
Al v .!+ M'., .!+ TI(M'.,), with '1 the inclusion.· 0 
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• It is easy to check that behavioral equivalence is an equivalence relation. 
..	 Thus we can now define an aBstract Illaclline'(or abstract "Iodule) as an 

equivalence class of machines modulo behavioral equivalence. It is also 
easy to check that if M and M' are behaviorally equivalent then 

. (i) Their initial realizatians l(M) and l(M') are l:-isolnorphic. 
(ii) Their final realizations N(M) and N(M') are l:-isolnorphic. 

Indeed, if one defines a V-homo"10rpIJis,"f. M -+ M' as a ~-homolnorph-
,ism such that/II is bijective for each v in V, Theorcnls 19 and 20 still hold 
after changing 'behaviorally identical' by 'behaviorally equivalent'. and 
'strong V-homomorphism' by 'V-homomorphisnl'. Note finally that the 
concept of abstract machine generalizes that of abstract data type since in 
the case where all the sorts are visible two machines arc behaviorally 
equivalent iff they are 1:-isomorphic, i.e., abstract machines become 
abstract data types when all sorts are visi ble. 

The most common use of final realizations N(M) is to take as M the 
initial (1:, E)-algebra, for E a set of equations, and then to take the final 
realization of its behavior, called the final algebra specified by (E, E). We 
shall denote this algebra by NI,E. This is the idea in [38], latcr formalized 
by Wand [89]. Note that TI,E and NI,E both specify 'lie sa",e abstract 
machine; note also that I(Tt,E) is in general not isomorphic to TIlE but 
there is a surjective strong V-homomorphism 1(Tt .l ) -+ Tt,E;' 

6 Iniliality and computability 

This section. is a SlJrvey of results from a rather widely scattered 
literature on computable algebras, initiality, and finality. including work 
by Malcev, Rabin, and Bergstra and Tucker. We stress tire fundamental 
role played by the categories of: (1) recursive sets and recursive functions; 
and (2) recursive algebras and recursive homomorphisms. The latter 
category inherits appropriate versions of basic universal algebra construc­
tions such as quotients and free algebras; this helps in establishing facts 
about computable algebras. Our exposition also includes an introduction 
to rewrite rules, and a discussion of equality enrichments and their relation 
to both computability and 'inductionless induction' theorenl proving. One 
new result is an intuitively appealing characterization of conlputable 
algebras using only algebraic concepts; this can be secn as a purely 
algebraic formulation of a Church-like thesis. 
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6. J Recursive sets alJd recursive /ulJctions 

We assume that the reader is familiar with the intuitive notion of 
an (cffectively) co,,,pldable total (or partial) function on the natural 
numbers; this is a function for which there is an algorithm to compute its 
values. Church's tlles;3 identifies this intuiti~e notion ..of a computable 
function with the precise mathematical notion of a recursive function. 
Recursive functions can be defined in several equivalent ways, such as 
hunbda dcfinabilily, Turing machines, and primitive recursion with the IJ­
operator, using 0, the successor function and the projections, where, for 
P(x) n predicate on the natural numbers, the p-notation JlX[P(x)] stands 
for 'the smallest x such that P(x)'. 

Unless otherwise stated, by a recursive functionJon the set w of natural 
nUlnbers we will mean a total function f. Cl) -+ co that is recursive. A 
recursive set is a subset U ~ CJ) such that its characteristic function 
Xu: W -+ w is recursive, i.e., such that there is an algorithm to decide 
whether '1 E U. The following is a useful technical tool in studying 
recursive sets. 

Le""na 22. Each nonempty recursive set U can be expressed as the image 
of a recursive retract. i.e., of a recursive function q: co -+ w such that 
q 0 q = q. 

Proof. Let Ito be the smallest clement of the nonempty set U. i.e., let 
'10 == Jlz[Xu{z) == 1]. Then qu: w -+ w as given by the A-expression 

AX. if x E U then x else '10,. .	 . . . .. 
satisfics qu(w) = U, and is a retract, i.e., qu oqu == qUe 

Conversely, if q is a (recursiVe) retract; 'then its nonempty·· image 
U = q(w) has a recursive characteristic function given by 

All. if II = q(,I) then 1 else O. 0 

A recursive/unctloll/. U -+ V between two recursive sets is a total function 
from U to V that is equal to the restriction of a recursive function on the 
natural numbers; i.e., there is a recursive/o: w -+ w such that the diagram 
in Figure 14.3 commutes (where the vertical arrows denote set inclusions). 
Under these conditions, we say that/is the restriction of/o, and lhatfO 
ex' elltls f. 

Lcnlllia 23. Recursive sets and recursive functions are the objects and 
arrows, respectively, of a category that we shall denote REC. 
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•	 Proof. Since the identity function 1..., on the natural nunlbers is recursive 
and restricts to the identity function lu for each recursive set U, it is clear 
that the identity axiom is satisfied. To see that the composition g ofof two 
recursive functions f and g is recursive, consider the diagram and notice 
that the rectangle obtained by 'pasting' the two smaller rectangles also 
commutes. Now, gO 0 f O is recursive, since it is well ..known that the 
composition of two recursive functions on w gives another recursive 
function (this is intuitively obvious, since from an algorithm to computcfO 
and another to compute gO we can obtain one to compute gO 0 fO.) This 
shows that 9 of is recursive. 0 

Given a recursive fO: CJJ -+ wand recursive sets U, V, it may not be 
decidable whether or notlO restricts to a function from U to V. I~owever, if 
V is noncmpty, the function q., 0 fO will always so restrict, since V is the 
image of qy. This provides a fully general method (when V is noncnlpty) 
for explicitly presenting a recursive function between recursive sets U, V, 
namely as a recursive function on w followed by the retract 'Iv; for it is 
straightforward to check that if fO restricts to f, then so does q., 0 fOe 

Note also that our ~efinitic;>no.fa recursive function}: U -+ V bcl\yeen two 
recursive sets captures all computable total functions from U to V. For iff 
is effectively computable and if U is nonempty,' then the function f C) llu is 
recursive on CJ) (by Church's thesis) and extendsf(here qu is understood to 
have U as its target). Hence, i~ the sequel we will sometinles define a 
function with domain U by giving its algorithm, without explicitly 
mentioning its extension. 

Len,",a 24. An arrow f. U -+ V in REC is an isolnorphism iff it is bijective. 

Proof. Since the arrows of REC are functions, it is clear that Clny 
isomorphism is a bijection. Conversely, if the recursive function f is 
bijective. then its inverse function f- 1 is also recursive, as shown by the 
expression Ax. Jlz[z E U and !(z) = x]. 0 

Fig. 14.3. Definition of recursive function 
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An isomorphislnt U -+ V in REC will be called a recursive isoIJlorpIJis"., 
and then U and V are said to be recursively ison.orplJic. (Note that this 
notion of recursive isomorphism is differe'Jt from the standard one in 
recursion theory.) 

Lelluuo 25. Each infinite recursive set U is recursively isomorphic to 00; 
each finite recursive set U, say with card(U) = ",, is recursively isomorphic 
to the set [".] 1: {x E W Ix < ",} of the first III natural numbers. 

Prouf. If U is empty, then U = [0]. If U is a nonempty. the function from 
U to w given by the expression A.x. card{y E U I y < x} defines a recursive 
isonlorphislll of U with w if U is infinite, or with [nl] if card(U) == III. 

D 

This proof is not constructive, since we may not be able to decide the 
cardinality of U from an algoritlun to cOlnpute its characteristic function 
(sec [80] 5.1, S.XV). 

'A recursive equivalence relatioll on a recursive'set U· is' an equivalence 
relation Q on U ~uch that it' ~haracteris1ic function Xu: w2 

':-:t W is 
recursive, i.e., such that we can decide when two elements are Q-equivalent. 
The equivalence relation Q, associated to a recursive functionfi U -+ V is 
clearly recursive (since xQ, y ifT!(x) = fey»~. Conversely, given a recursive 
equivalence relation Qon U, it is an easy exercise to see that we can define 
11 recursive retract Pa: U -+ U that induces Q, using the expression: 
AX. J(z[(z, x) E Q]. The retract Po picks a canonical representative for each 
equivalence class modulo Q, namely the smallest element of the class, and 
so the set Pu( U) is in bijective correspondence with the set of equivalence 
classes U/Q. Since PA( U) is a recursive sel and Pa: U -+ Pu(U) is a recursive 
surjection, this provides a notion of quotient within the category REC 
(replacing 'equivalence class' by 'canonical representative'). Of course. 
Po: U -t Pa( U) also has Q as its induced congruence; moreover. the 

, Fig. 14.4. Associativity of recursive function composition 
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(recursive) inclusion j: Pa( U) -+ U is a right inverse to Po. i.eo. 1'(1 0 j = 
l,.o(v). More generally, for any surjective recursive function f. V -+ V we 
can find a recursive right inverse 9 (a 'choice function') such that! 0 g = Iv. 
One such 9 is given by the expression A.x. IlZ[Z E U and/Cz) = x]. There is a 
lemma of quotients for recursive functions entirely analgggus to the one 
for homomorphisms in Pro·position 6. . 

Proposition 26. Lett U -+ V be recursive function. Then the following are 
equivalent properties off. 

(1) There	 is a recursive isomorphism u: Po,(V) -+ V such that 
u 0 Po/ ==f. 

(2) / is surjective. 
(3)	 If II: U -+ A is a (not necessarily recursive) function to a set A, 

then 

a.	 There exists a function II: V -+ A such that u o! = Ja (i.e., the 
diagram in Figure 14.5 commutes) iff Q, £; Q,.. 

b.	 If such a function II exists, then it is unique. Moreover, if A and 
II are recursive, then so is u. 

Proof. We first show that (1) implies (2): since Pa, is surjective and II is an 
isomorphism, I is also surjective. 

We next show that (2) implies (3b): let 9 be' a recursive right inverse forf. 
For any u such that u 0 I = II we have 

u o/= uo(/og)o/= (lI og)of. 

Sincef is surjective, this shows that II = 11 00; thus II is uniq ue, ;and is also 
recursive if II is. 

Assuming (2), we now show (3a). In fact, we will show that (I. 00) 0/= 11 
iff QJ' S; Q,. Again letting 9 be a recursive right inverse for f,f(y(f(x») = 
I(x) gives us that xQ,g(j(x». Then Q, £; Q,. inlplies that lI(g(f(x» = 

hex) for all x in U. Conversely, if there is an x in V such thatf(x) = f(y). 
but h(x) " h(y), then we have Ir(g(f(x») 11:1 Ia(g(f(y») and thus 
h:#:{hog)of. 

Fig.	 14.5. Universal property of the quotient 
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Finally, we show that (3) irnplies (1): since Pal and/induce the same 
recursive equivalence relation and since Pal is a retract, the restriction 
/': Po,( U) -+ V of/satisfies!' 0 Pal =land also is injective. To see thatf' is 
surjective, let v: V -+ Pa( V) be the unique recursive' function such tbat 
~ 0/= Po,. We then have I =../',9 Pal = I' RV oJ. which by (3b). shows 
1., =/'ov; thusf':Pa/(U) -+ J'is surjective.	 0 

A slight variant of the above concept of a recursive function between two 
recursive sets is the concept of a recursive function of several variables: we 
say that t U I x··· x U1 -. V is a recursive /1I11ction ofk variables (where 
V I, ••• , V., V are recursive sets) if/is the restriction of a (total) recunive 
functionfo: wl -+ w. The same remarks made about recursive functions of 
one variable apply now, ,nutal;S "ultalldis. to functions of several variablcs, 
and show that they capture the concept of 'effectively computable total 
function of several variables' between recursive sets. Such functions of 
several variables are used for algebraic operations in the following 
subsection on recursive algebras. 

6.2 Recursive algebras 

This subsection introduces the category of recursive algebras (their 
carriers are re~ursive sets and their operations are recursive functions) and 
recursive hOll1omorphisms. The reason for being interested in recursive 
algebras will be seen better in the next subsection on computable algebras, 
which shows that several natural definitions of 'computable' for general 
algebras are equivalent to being isomorphic,to a rccursive algebra. Here 
we will see that the category of recursive algebras has initial algebras and, 
more generally, that any recursive set generates a free recursive algebra. 
We also look at quotients and congruences of recursive algebras. 

Unless otl.er\vise stated, ill tlris and tl.e/allowing subsections, all slgllatures 
are assII/lied finite, I.e., "Iey I.Qve a jillite nUIJ.ber ofsorts and afinite number 
0/ operators and constants. 

Defillitioll 27. A L-algebra U is recursive if its carrier scts U. arc all 
recursive sets and its operations are all recursive functions of the 
appropriate number of variables. A recursive I:.-homomorphlsm f. U -+ V 
between two recursive algebras is a homomorphism such thath: U. -+ V. 
is recursive for each sort s. 0 
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Recursive algebras and recursive hOlnonlorphisms form a category 
RALG I . This follows immediately from the fact that both REC and the 
category ALGI of ordinary I:-algebras and their L-homomorphisms are 
themsclves categories. 

A recursive I:.-col1gruence on a recursive algebra U is a congruence Q on 
U such that Q, is a recursive equivalence relation for each sort s. The 
congruence QI associated to a recursive homomorphism f. U -+ V is 
clearly recursive. For Qa recursive congruence on V,let us define tlu(V) us 
the algebra with carrier qo,(U,) for ench sort s, with operntions defined by 

a(n., ... , nt) = Qa,(C1(n., ... , nt», 

and with constants the images of those in U under the (naps Pu Then, 
I 

there is a recursive homomorphism Po = (PfJ,): U -+ Pu(V) that satisfies 
the expected property of a quotient. 

Propos;li01J 28. Let fi U '-+ V be a recursive L-homomorphism. Then the 
following are equivalent prop'crties of f. 

(1) There	 is a recursive I:-isoillorphism II: PfJ,( U) -+ V such that 

u 0 Pal = J. 
(2)	 f is surjective. 
(3)	 If II: U -+ A is a homomorphism to a (not necessarily recursive) L­

algebra A, then 
a.	 there exists a homomorphism II: V -+ A such that II 0 f = /a (i.e., 

the diagram in Figure 14.6 commutes) iff Q, ~ Q". 
b.	 If such a function u cxists, then it is uniquc. Besidcs, if A and I. 

are recursive, then so is 11. 

Proof. Put together Proposition 6 nnd Proposition 26. o 

Recall that if X is an S-sorted sct, then L(X) dcnotcs thc signature 
obtained by adjoining the elements of X as constants to the signature L, 
and Tt(X) denotes the corresponding initial algebra, also called thcJree L­
algebra on X. If A is a l:-algebra und if X is un S-sortcd set contained in A, 

Fig.	 14.6. Universal property of the quotient 
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then the ilnagc of Tr.(X) by the unique honlolnorphism to A (considered as 
n L(X)-ulgcbra in the obvious way) is called the (I:.-)subalgebra of A 
generated by X. The theoreln that follows uses this simple result: 

Lell,,"a 29. Let Y s; X be an inclusion of S-sorled sets. Then the ~­
subalgcbra of Tt(X) generated by Y is an initial I:.(Y)-algebra. 

/'ro(Jf. Since &111 initial algebras are isomorphic up to a unique isomorph­
ism, we can assume that TI(X) and TI ( Y) are algebras of terms. By the 
conslruction of tc'rnl algebras, we then have an inclusion Tt(Y) S; Tt(X), 
\vhich is a r( Y)-homoillorphism; thus, its ianage is initial, since it is Tt ( Y) 
itself. 0 

We can now prove lhe nlain rcsult of this section, namely that the category 
RALGs: has initial algebras. and more generally, has initiall:(U)-algebras 
for each recursive S-sor~ed set U; .i.e" there are .recursive .free l:-algcbras. 
This result is inlplicit in [67], Theorem 4.1.1 (that paper, together with 
[78], inaugurated the systematic study of computable universal algebras). 
Note that the theorem below stales the initiality property (expressed in 
tcrnlS of 'universal arrows') not only for the category RALG t but also for 
the category ALGI. 

7"},eorell' 10. For each recursive S-sorted set U there is a recursive ~­
algebra Gt(U) (G for Godc1!) and a recursive S-sorted function 
'Iu: U -+ Gt ( V) such lhat for each l:-algebra A and S-sorted function 
f U -+ A there is a unique L-hoillomorphismj": Gt(U) -. A such that the 
diagram in Figure 14.7 commutes. If A and/are recursive, then so is'-. 

/Jroo/. Let (I) denote the S-sorted set with (I), = w for each sort s. We will 
define a recursive I:-algebra structure on (J) in such a way that the initial 
;algebras we are looking for will appear as subalgebras of (I). The algebraic 

Fig.	 14.1. Universal property of a free algebra 
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structure on (A) is defined by means of an assignment of prime nUlnbers to 
the constants and operation symbols of the signature l:: each constant (J is 
assigned a prime number p(a);' and each operation symbol of arity s• ... s, 

is assigned a sequence Pl(a) . .'. p,,(a) of prime numbers. We assulne that all 
the prime numbers are distinct, i.e., that no operators (or constants) have 
any primes in common, and that the primes in each sequence are distinct. 
We also assume that the prime 2 docs not occur alnong theln. The 
recursive l:-algebra structure of 00 is defined as follows: the constant (J is 
the number p(a); if the operation symbol a has arity SI ••• s" then the 
corresponding operation is the primitive recursive function 

A.nl, ... , nk. pl(a)"1 ... p,,(a)"". 

Now consider the primitive recursive function '1: w -+ w defined by All. 2". 
This gives an S-sorted function '1: (A) -+ 00 having all components equal to 

". 
We claim that the subalgebra' of (A) generated by 11(00), which we denote 

by GJ:(ro}, is an initial ~«(l)-algebra. This follows easily by checking the 
Peano axioms of Proposition 17 for GI(oo): The axiom (3) (structural 
induction) is clearly satisfied since, by definition, this algebra has been 
obtained as the image of an initiall:(ro)-algcbra. Axioln (2) (injectivity of 
the operations) is satisfied by the algebra w. by the unique factorization 
theorem of arithmetic; thus, the operations are a /orl;or; injective when 
restricted to a subalgebra. To check axiom (I), notice that 0 docs not 
belong to any of the sorts of Gt(oo), since it is not in '1(00) and all the 
operations return values different frorn O. Since the prime sequences of 
each operation symbol are distinct, again by the prinlc factorization 
theorem, their images cann?t have any va~ue in comITlQl1. The only 
exception would be 

1 = Pi 0 
•• • Pt0

, 

which has already been ruled out. 
Since every recursive set is a subset of cu, every S-sorted recursive sct is 

similarly an S-sorted subset of w. Since we have shown that GI(w) is an 
initial ~(C1)-algebra, Lemma 29 gives that Gt ( U), defined as the subalgebra 
of (l) generated by '1(U), is an inithll l:( U )-nlgebra for each recursive S­

sorted set U. To finish the proof, we still have to show that 

(i) the Gt ( U), are recursive sets, and 
(ii) the induced homomorphism / ~ is recursive if/is. 

Here is the decision algorithm for Gt ( U): for each integer I. of sort s. factor 
n into its prime factors, 

n = Pa"I ... pt"'. 
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If k = 1 and PI = 2, then ,. belongs to Gt(U), iff nl belongs to U,; 
otherwise II belongs to Gt(U), iff there is an operation a of sort sand 
arity '5a ••• s, such that· (after eventual reordering of the primes) 
Pa ::z Pa(a), ..•• P, ~ p,(a) and each exponent nj belongs to Gt(U),j:·· 

The algorithm for /- in terms of a recursive}: U -. A is given by 

/6(2") =/(11); and 
/6(Pl(0)"1 )( ... )( Pl(a)"l) == 0(/*('11)' .. .,f~(n,,». 0 

Note thut the prinlcs in the above theorem could have been chosen in an 
I 

,1 inifinte nurnber of different ways, as long as they satisfy the conditions of 
I being distinct and being different fronl a fixed prime (it was 2 above). More 
1 generally, it is clear that one could define other recursive functions for the i . ,	 operations a that would still guarantee the Peano axioms for an algebra 

generated as in the proof. The particular representation chosen does nol 
nluch matter; what docs Inatter is that there is a/ree recursive 'E.-algebra/or 
each recursive S-sorlecl set. 

This suggests the concept of a Godel numbering for a free algebra, which 
nUlnbers the elements of the free algebra in such a way that their images 
form a recursive free algebra isomorphic to the original one. By the 

'I initinlity of free algebras, it is enough to number the generators, i.e., to give 
~ a function '1: X -+ U to the recursive algebra that provides the numbering. 

We would ulso like to require that lhe map" is somehow ·computable·, but 
since X is not a set of numbers but an arbitrary S-sorted collection of 
countable sets, the besl we can do is require that the image 'I(X) is the 
ilnage of a' recursive function, i.e., is a recursively 'enumerable set. 

Dejiuilloll J J. A set Y s;; w is recursively ellullierable if it is either empty or 
the image of a total recursive function}: w -. 00. Similarly, a set Y s; w' is 
recursively elu""erable if it is either empty or of the form 

y = {(/I(n), ...,ll(II» III e w} for some fl' ...,It total recursive 
functions. · 0 

Dejill;t;oll 32. Let X be a countable S-sorted set (i.e., each component of X 
is finite or counlably infinite). Then a Godel prese,.,allon for X is an S­
sorted function 'I: X -+ U to a recursive l:-algebra U such that ,,(X.) is a 
recursively enulnerable set for each sort s in S and, in addition, " is a 
universal map in the sense that for each S-sortedfi X -. A to an algebra A 

there is a unique hOlnomorphisrn I': U -. A such that f* 0 " - f. The 
induced isomorphism from the term algebra, TI(X) -+ U, is called the 
Gc)cJel IIIlIUberiIJO presented by '1· 0 
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As a corollary of Theoreln 30 we have 

Len,nla 33. If ,,:·X -. U and b: X -. Vare two Godel presentations, then 
U and V are recursively isomorphic 1:-algebras. 

Proof. U and V will be recursively isomorphic if we show that both arc 
recursively isomorphic to GI(card(X», where card(X) is the S-sorted 
recursive set defined by: card(X). = [",] if card(X,) = ,", and card(X), 
== w if X. is countably infinite. Since ,,(X) and ~(X) arc recursively 
enumerable S-sorted sets, by combining Proposition 26 and Lernrna 25, 
there are injective S-sorted recursive functions '11: card(X) -+ U and 
~l: card(X) -+ V with images ,,(X) and ~(X) respectively. Then Theorenl 
30 shows that there are bijective recursive 1: homomorphisms from 
GJ:(card(X» to both U and V. By Lemma 24 these two homomorphisms 
arc recursive isomorphisms. · 0 

Note that with X = 0, Lemma 33 gives 

Lemma 34. Any two Godcl numberings of an initial I:-algebra 7I have 
recursively isomorphic target algebras; in particular, any such algebra is 
recursively isomorphic to the algebra Gt = G1(0). 0 

We leave the proof of the following lemma as an exercise (hint: use the fact 
that the generators of GI(card(X» form an S-sorled recursive set). 

Le,",na 35. The image 'leX) of a Gadel presentation '1: X -. U is an S­
sorted recursive set. 0 

6.3 Computable algebras 

This subsection shows the equivalence of three different defi­
nitions for the computable algebra notion. Since each definition is fairly 
natural and general, their equivalence can be seen as supporting a 
'Church's thesis' for effeclively computable algebras. We also look &It 
c9mpulable minimal algebras (which are computable quoticnts of the 
initial algebra), .showing ttH~t uny conlpulable algebra cun be seen as a 
computable minimal algebra if hidden functions are ullowed. Our 
presentation is based upon the work of Malcev, n..bin. and Bergstrn & 
Tucker. 
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Traditional mathematical practice considers an algebra effectively 
cOlnputable iff it has a 'decidable word problem', meaning that it can be I 
presented as a quotient of a free algebra in such a way that one can decide 
in a finite number of steps whether or not two terms represent the same 
clement of the quotient algebra (this is called the word problem). 

Definition 36. The word problelJl is decidable for a L-algebra A iff there is a 
countable S-sorted set X, a Godel presentation 'I: X -+ V, and an S-sorled 
function f. X -. A such that: 

(i) The unique homomorphismf#: U -. A induced bylis surjective; 
. ~ and 

I 

(ii) the congruence Q,. on U is recursive. 

By Lemma 33, the choice of Godel presentation is immaterial, so what 
really does'lnaUcr is the mapt X -+ A. called the generarin'g map. We th~n 

say that the map f 4ecides the y<prd problem Jor A.. .• , 0 

TI,eorell. 37. The following are equivalent for a 1:-algebra A: 

(i) The word problelll for A is decidable. 
(ii) There is a recursive l:-algebra U and a surjective homomorphism 

a: U -+ A (called a coordi,ult;zal;oll of A) such that Q. is recursive. 
(iii) A is isolnorphic to a recursive I:-algebra. 

Proof 
(i) => (ii). Follows directly from the definition of decidable word problem. 
(ii) => (iii). ny Proposition 28, the algebra A is isomorphic to the quotient 
algebra l'aJ U). 
(iii) => (i). Let U be a recursive algebra with p: U -. A an isomorphism. 
Take as generating map the map p ilself, and as Godel presentation the 
map 'Iu: U -. GI(U) in Theorem 30. The identity map l u: U -. U induces 
a unique surjective recursive l:-homomorphism £u: GE(U) -. V. Since Pis 
an isomorphism we have Q_-cu == Qcu and this is a recursive congruencc. 
This shows that the word problem for A can be decided by the map 
fJ: U -+ A. 0 

We can now define a cOII,pultlble l:-algcbra to be an algebra that satisfies 
any of the cquivulent conditions in the theorem above. For a ji,litely 
!/elu!rtl,etl l:-ulgebra - i.e., a l:-algebra such that there is uji"ite S-sOrted set 
X and a gencr~iting map X --+ A, i.e.• a rnap such that the induced 
hOlllolllorphismJ# froln the initiall:(X )-algebra is surjective - condition 
(i) takes a st ronger forn1: 
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Lemlna 38. Let A'be a finitely generated algebra. If the word problem for 
A is decidable, then it can ..be decided by WJy gcncraliAg ·map t X -. A 
(with X finite). 

Proof. By the above theorem, A is isomorphic to a recursive algebra. say 
U with isomorphism p: A -. U. Lett X --. A be a generating nlap (with X 
finite) and let }': X -+ card(X) be an arbitrary bijection. We will take as 
our Godel presentation the map 'lcard(X) 0 y: X -+ Gt(card(X ». "he Illap 
pofoy-l: card(X) -+ U is recursive, since for each sort s with card(X). 
= [m] and m > 0, this map is given by the algorithm: A.x. if x = 0 then 
P(/(y - I (0») else ... else if x == "' - I then P(f(y - I (II' - I») else 
P(/(y-l(/n - 1)). Thus by Theorem 30. this map induces a recursive 
homomorphism (fJ %y-I)': GI(card(X» -+ U which, by uniqueness, 
satisfies (p%y-I)' = po(foy-l)'. Thus it is surjective, since (foy-l)' 
is so by hypothesis. Now since P is an isomorphism, one has Q(/.7)" = 
Q(le/.7)- recursive, as desired. 0 

Minimal algebras, i.e., algebras such that their unique hOlnomorphism 
from the initial algebra is surjective. are a particular kind of finitely 
generated algebra. As a corollary of the lemma just proved, and recalling 
Lemma 34, we obtain: 

LenJma 39. A minimal1:-algebra A is computable iff Q"A is a cornputable 
congruence on Gr. where IIA : Gr, -+ A is the unique honlomorphism. The 
same holds after replacing Gt by any other Godcl nunlbering of the initial 
l:-algebra. 0 

This subsection concludes by showing that with hidden functions one can 
reduce the study of computable nlgebras to that of 11linilnal conlputablc 
algebras. This uses the following notion: 

Definition 40. Given a signature 1:, another signature E' (perhaps with 
more sorts) is called an ellrielllllelit of 1: if L w•• ~ L w •• for all \v in S· and s in 
S; this may be written I: ~ 1:/. The enrichment is callcd fillite if each 
1:'W.' - 1:w•• is finite. For 1:' an enrichnlent of 1:, a 1:-algcbra A is called the 
l:-reduct of a :E'-algebra A', written A'it =s A, if the carriers of A and A' 
coincide, and the operations froln the signctturc 1: are the same for A' as for 
A; A' is also called an enriclll1Jent of A. Similarly. a presentation (}:', E') is 
an enr;clll"elll of another presentation (L, E) if 1: ~ 1:' and E ~ E'; the 

In;l ;£1lit y, iuduct ;011, aud colt,putability 503 

enrichment is called finite if both (1:' - l:) and E' - E are finite. An 
enrichment 1: ~ 1:' or (1:, E) ~ (I:':·E') is called w;t1.out new sorts i('l: and 
1:' have the same sort sets. 0 

Lell"ua 4J. For any S-sorted computable l:-algcbra A there is a finite 
enrichment 1:' of 1: without new sorls by at mosl card(S) constants and 
card(S) unary function sy.nbols such that there is a minimal computable 
E/-algebra A' which has A as its L-reduct. 

Proof. To get l:' from l:, add a constant zero and a unary operation 
symbol slice: s -+ s for each sort s in S such that A. is none~pty. Usina 
Lemma 25, we can show lhat A is recursively isomorphic to a recursive 
algebra C with carrier card(A). If card(A). == ro, we make zero == 0, and 
slice the successor function; if cartl(A), = [II'], n. > 0, we make zero - 0, 
and slice the function AX. if X < na - 1 tben x + 1 else n. - I, which is 
cleurly recursive. Each of these constants and operations can then be 
transported to A via the bijection underlying its I:-isomorphism with C. 
Together with the original l:-operations this gives the desired minimal 
conlputable I:'-algebra structure A' with reduct A. 0 

6.4' Tile po\ver of specificatioll techniques: initial algebra sen.antic! 

Let 1: l?e a signature and E a collection of 1:-cqu8tions. A 1:­
algebra A is said to have an i,llt;al algebra specification by means of the 
prcscntution (t, E) iff A is an initial (L, E)-algebra. The specification is 
calledjillittlry if both 1: and E are finite. As we have already seen in Section 
4, this provides a specification method whereby certain abstract data types 
can be defined, and certain concrete data types can be shown to belong to 
the class of a so-defined abstract data type. For computer science 
purposes, a specification method should be considered adequate (or 
po\verful ellougll) if all cOlnputable algebras can be specified with iL This 
section will show the adequacy of finitary initial abstract data type 
specifications with hidden functions, i.e., of finite enrichments without new 
sorts.t Lemma 41 already shows that every computable algebra has an 
cnriclll11ent that is minimal on the enriched signature. This reduces the 

t More gcnerally, one coulf.l require IJlCcifiability or all StnllCompulab'e .lacbr•• 
(see Definition 61 in Section 6.6) as in Dergstra &. Tuckcr [83]. who show Iha. 
finilary initial algebra specifications are also adequate to specify the larler clau 
or scnlicomputablc algcbrus if hidden sorts arc allowed. 
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adequacy problem to the spccifiability of minimal cOlnputablc algebrlls 
with hidden functions. 

The adequacy question for initial algebra senluntics was rilised by 
Majstcr [65], who gave an example of a cOlnputable concrete data type (a 
traversable stack) for which no finitary initial algebra specification existed 
without the introduction of hidden functions (i.e.• without enriching thc 
signature). Majster [66] also gave an explicit definition for COlllputublc 
concrete data types, and suggcsted (p. 123) using Kleenc's nornlal form 
theorem to obtain a positive answcr to the atlequacy problern for initial 
algebra semantics with hidden functions. The answer along these lines 
canle from Bergstra & Tucker [13]•. who' undertook a rigorous &lnd 
beautiful systematization of the cOlnputability of abstr.lct data Iypes in a 
rich series of papers. This section will concenlrate on the adequacy 
problem for initial algebra s~.mantics. 

. We begin with a simple example (adapted from [84]) of a recursive 
minimal algebra U which has no finitary initial algebra specification 
without hidden functions. 

The signature of U is shown in Figure 14.8: Uaa• = wand V••,. is the set 
of even natural numbers union the number I. The constant 0 is interpreted 
as the number 0; the constant odd is interpreted as the number I. The 
operation red is the recursive function AX. if X is-even ahcn x else I, and the 
operation s is the successor function. 

Lemma 42. No finitary initial algebra specification is possible for U. 

Proof. First note that since U... = wand the only operation of sortl1ua is s, 
there can be no nontrivial equations of sort nat in any such specification 
and the only possible equations have 10 be of sort evcn; lhe only terans of 
that sort are: odd. and red(s"(O» and red(s"(x» for n ~ 0 (using the usual 

Fig. 14.8. Signature of the algebra U 
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conventions that sO(x) = x and S"i-I(X) = s(s"(x»). No equations of the 
fonn 

retl(1'(x» = retl(s'"(x» 

are possible for III different froln II. since we get a contradiction by 
instantiating x to 0 if,1 is evcn, or to I if II is odd. Thus we conclude that all 
equations in E involve ground lernls. and are of the form 

red(s"(O» = otld 

or 

red (1'(0» == reel (s'"(0». 

To show that no (finitary) initial algebra specification is possible, let E be 
one. and let ,,,0 be the first odd number strictly larger than any of the 
exponents II. "' from the equations in E. Then the equation S-°(O) = odd 
holds in U, but 'there is no' WCly to deduce it from the equations in E with 
the rules of equational <Seduction. . .0· .... 0 

The following enrichmcnt permits a (finitary) equational specification of 
U: add operation symbols even: nal -+ nat. and cO,ld: nat nat nat -t nat, 
for the recursive functions AX. if x is-even then 0 else I, and lx, y, z. if x =0 
then J' else z, respectively. Thatcher. Wagner & Wright [83] show that this 
enrichment of U has the following equational initial algebra specification: 

evell(O) = 0
 
evell(s(O» =5(0)
 

evell(s(s(x») == evell(x)
 
COlltl (0. Y. z) == y
 
COUll (S(X), y, Z) = Z
 

reJ(x) = cOlld(evell(X), rCtl(x). odt/).
 

They &llso show that U has a (finitary) conditionalt initial algebra 
specification with the two conditional equations 

red(s(O» = odd 
red(x) -= odd ~ red(s(s(x») == odd, 

thus showing thut condilional specifications are stricl1y more powerful 
lhun equational specifications if hidden functions are not allowed. 

Wc shall now stille the theorClll of [13] that gives the definitive answer 
to ~he udc~l~acy question for finitary initial algc.bra spec;ifications. The.. 
theorenl is stated for Ininimal algebras but, as proved in the previous 
subsection, this is not a rcstrictioii when hidden funciions are allowed. We 
do not give details of the proof (see the original paper), but just sketch the 
flu,in lines of their argunlcnl. 

t Sec di~ussi()n before Definition 64 in Section 6.6. 
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TlJeorell,43. Let A be a mi~imal computable l:-algebra. Then there is a 
finite enrichment }:' of }: without new sorts and a finite family of L'­
equations E such that A is isomorphic to the l:-reduct of the initial (1:', E)­
algebra. 

."
Ii

Sketc/l of 'lie proof. For simplicity, we will reason in the one-sorted casco 
By Lemma 25, we can replace A either by w if A is infinite, or by [II'] if A is 
finite. The finite case is straightforward, and reduces in essence to giving a 
table for the operations of A. So we are left with w, a few numbers 
corresponding to constants, and a finite collection of (total) recursive 
functions/.... .,f" each having an appropriate number of argulnents. The 
key observation is the following theorem about the graph of a partial 

;tI,recursive function:	 , 
,I 

Theorem 44 ([68], Thm. 6.~.1). A function is partial recursive iff its graph ".j 

is recursively enumerable. 0 f 
, I 
-, 
;1

For any recursively enumerable set one can actually find a pr;",i,;ve .'j 

recursive function having that set as its image ([67], Thm. 4.2.1). As a 
consequence, for each of the functions f. w· -+ W, therc are prirnitivc 
recursive functions II It ••• t "., 0: w -+ w such that the graph off is the set: 

{(h 1(n), •.• : 1I.(n), 0(11» I '1 E w}. 
This suggests specifying the functions J by equations of the "form 

(i) j(IJ.(x), ... , h.(x» = g(x), 

but, of course, we have to specify also the primitive recursive functions
 
hit ... ,h'n g. This is not difficult, since prinlitive recursive functions are
 
defined equationally in the following way: for 9 primitive recursive, there is
 
a sequence of (primitive recursive) auxiliary functions 0, s, 0., ... ,0'" = 9
 
such that each 9, .. 1 in the sequence is defined equationally in tenus of
 

i: 
Iprevious functions in the sequence by a pair of equations	 I 

(ii)	 9,+ 1(0. xl, ... , xq) = lll(xl, ... , xq) . I 

\ I (iii) 0,+ 1(s(y), xl, ... , xk) = OJ(Y, xl, ... , xq, 0,+ l(Y, xl, ... , xq». " l 

Thus. the following enricillnent 1:' of the original signature allows ! t 
. I

everything to be equationally specified: add function symbols for 0, 5 ~ 

(successor), and the primitive recursive functions 11 It .•• t 11., 9 associatcd to 
, I 

each operation); add also function synlbols 0 ..... ,0"'-1 for the auxiliary ~I 

functions of each primitive rccursive function g. Let E bc the collcction of 
equations of type (i), (ii), (iii), together with an equation 

(iv) q 4 = s"q(O) 
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for each constant (1, -of the original signature that waS interpreted by the 
integer " •. The original algebra is then a reduct of the initial (1:'. E)­
algebra. 0 

Sec [8] for a difTerent proof of this result in a beautiful theorem that settles 
in one blow the adequacy question for both initial and final (in the 
Bergstrn und Tucker sense) algebra semantics, and also gives a bound on 
the nUfllbcr or hidden functions required that is linear in the number of 
sorts; see Section 6.6. Still another proof of the above theorem follows 
from Bergstra and Tucker's rewrite rule characterization of computable 
algebras, discussed in the next subsection. 

6..5 Re,vr;'e rilles 

There are close connections between general algebra and rewrite 
rules. One connection is that equations can be seen as two-way rewriting 
systems. Another is that rewrite rules provide computationally effective 
representations for objects that are more abstractly defined by equations 
plus initilliity. 

A l:-equation (VX) t = I' such that each variable occurring in its 
left-hand- side t also occurs in its right-hand side t', can'bc used as a rewri'e 
rule as follows: a term 10 can be rewritten to a term t 1 if to contains a 
subternl that is a substitution fil,stance of th~ iefl-hand side t and t 1 is the 
rcsult of replacing that subtcrm by the corresponding substitution instance 
of the right-hand side I'; this is often indicated with the notation t~ -+ t l' 
Rc\vriting gives a unidirectional version of equational deduction (compare 
the above with the substitutivity rule). Under mild conditions on a set E of 
1:-cquatiolls, every term can be rewritten to a unique- canonical form. This 
nlC&lllS that the initial (L, E)-algebra is then computable, since we can 
decide the word problem by rewriting and then comparing canonical 
forills. A rcnlarkable theorem of [6] shows the converse: any (minimal) 
cOlnpuhlble ulgebra is the reduct of the initial algebra specified by a finite 
enrichment without new sorts. whose equations regarded as rewrite rules 
give canonic'al forms for the equivalence classes (the minimality restriction 
can be removed by Lemlna 41). 

In this way, rewrite rules provide an operational semantics for all 
conlput&lble algcbrus. Thc evaluation of an expression is its canonical form 
aftcr rewriting, and equality of terms is decided by identity of their 
canonical fOflllS. This point of view is the basis for the language OOJ [34, 
35]. 
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•	 This subsection gives the basic definitions and properlies of rewrite 
rules, and discusses their relationship to initial algebras, ending with the 
theorem of Dergstra and Tucker mentioned above. For Inorc on rewrite 
rules, [42] is admirable and complete, and [45] is an excellent survey thut 
is consistent with an algebraic approach. 

Given a term I E Tt(X), the finite set of variables occurriuy in I, denoted 
vars(t) is the smallest S-sorted set Z contained in X such thal I E TL(Z). 

That vars(t) is well defined is intuitively obvious, and is forlnally clear ufler 
noticing that: (i) there is always a finite X' ~ X such thut I E 1i:(X '); and 
(ii) if t is TJ:( Y) and in TJ:(Z), then t is in Tt ( Yn Z). We will suy thut an 
equation (VX) t = t' is usable as a rewrite rule if t has all the variables that 
I' has (i.e.• vars(c') S;; vars(I» and in addition, the quantified variables 
include only those occurring in I (Le., X = vars(t». If these two conditions 
are satisfied, we can omit the quantifier without introducing any 

·	 ambiguity. Usable equations su'pport term rewriting. For exulnple, the 
equation x + s(y) = s(x + y) c~n be used to rewrite the term (.~(x) + 
s(z» + (y + (s(x) + s(z») to (s(x) + s(z» + (y + s(s(x) + z» by malching 
the left-hand side x + s(y) with the second occurrence of the sublerm 
sex) + s(z). Now the formal definition. 

Definition 45. A I1latclling of a term t with a subtcrm of another tCrln 
to E TJ:(Z) is a pair (f, v) with/an assiylJlllelJtf vars(l) -+ Tt(Z) and with 
v E (TJ:(Z U {y}) - Tr.(Z» a term having exuctly one occurrence of the 
variable y (Le., there is no v' with vars(v') = Z U {II, \v}, "~'\', &lnd 
v == v'(u +- y,lY +- y» such that to = v(y +- /#(t».t A set l~ of usable 
equations defines a binary relation -+ x on lhe tenn nlgebra 1'1(X), C6lllcd 
one slep (E-)rewritillg, as follows: for any two tcrms 10 and t, we have 
to -+ xC 1 iff there is an equation I = I' in E such thai I matches a subtenn of 
to by (f, II) (i.e., to = v(y +- f# (I») and also I. = v(y +-f' (t'». 0 

Notice that to --+x 11 iff to -+.,.rs(l.t tl. This is because, if the rewriting wus 
obtained by a matching (f, v) of the right-hand side of a usable equation 

.•t = t', then the image or the homomorphism f~ is always contained in 
Tt(vars(t 1», and vars(t 1) ~ vars(to) since vllrs(l') ~ vars(l) by hypothesis. 
As a consequence, the relation -+ x restricts well to terlll algebnls with 
fewer variables, i.e., 

-+ x IT1(Y) = -+y 

whenever y ~ X, and we can therefore drop subscripts on -+. Out unless 

t This includes the case in which the ternl v is the vllriable )', i.e., the suh.cran 
matched is 10 itself. 
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otherwise specified, the rest of our discussion will assume the rewriting 
rehltion -+ is restricted to the initial algebra Tt ; this restriction involves no 
loss of generality since, for any X, TI(X) is the initiall:(X)-algebra. and all 
the results we discuss specialize to terlns with variables by taking l:(X) as 
the original signature. In this subsection, signatures are not assumed finite. 

Let .!. denote the reflexive-transitive closure of the one step rewriting 
relation nssociatcd to a set of USilblc equations E; i.e., t .!. t' iff either t t'1:1 

or there is &\ finite sequence of one-step rewrilings beginning with t and 
ending with I': 

I -+ I I -+ ••• Ii; -+ I'. 

We call ..!. the re,,'riliIiO relation associated with E. Also we let'!' dcnotc 
the snlullcst equivalence relation containing -+. This equivalence relation 
is easily described in terms of yet another relation t, defined as follows: 
I t ·1' iff there is a term I" such that t .!. t" and I' .!. t".· . 

LeIJ"na 46. The equivalence relation:" is the transitive closure of the 
relation t, In other words, t :... t' ilT there is a sequence t ttl t ... t t. t t' as 
shown in Figure 14.9. 

Proo! It is clear that the relation t contains -+ and is contained in :.., 
since the same conditions hold for ~, and:'" is symmetric and transitive. 
'''hus, the transitive closure t is also contained in :.., since:" is transitive. 
So, we have only to show thal this transitive closure is reflexivc and 
symlnetric. Oul both these follow froln t being reflexive and symmetric. 

o 

Lell""" 47. The relation:" is a l:-congrucnce on Tr.. 

I)roof. We have to show that for each operation C1 E 1: and for all pairs 
I, :... I,' for I ~ ; ~ II (of the appropriate arity), one has 
0(1" ... , 'ft)':'" a(I,', ...• 'ft'). The key observation is that if a term t matches 
a subtenn of anolher term t', then il also matches the same subterm for any 

,	 Fig. 14.9. The equivalence :.. 

" - '2 ,,\'/,1
\/ \1 
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- term t" that has t' itself as· a subterm. As a conscq uence, if t. -+ t 2 then 
l(y 4- I.) -+ t(y +- '2) for any t E Tt{{y}). Hence the scque11c~ 

11 tt ll t ... ttlkttl'·· . 

yields another sequence 

a(th ... , til) t a(t. It ••• , til) t ... t a{ll', t 2•... , I,,). 

Consequently, we get 

a(t., ... t tIl) :.. a(t 1,', '2, ... , til) :.. ••. :... aCt .', .•. , tIl')' 

as desired. 0 

We can now prove the central property of the rewriting relation [30]. 

Theorem 48. Let -+ be the one-step rewriting associated with a set E of 
usable equations. Then the algebra TI :" is the initial (L, E)-algebra. 

Proof. By Theorem 11, we know that the initial (1:, E)-algebra is TJQF. 
with tQ£( iff (V0)t = t' can be de~uced from E by the rules of 
equational deduction. Whenever I. -+ 12 holds. there is ,lI1 

.. equation (VX) t.' = 12' in E:a term VE TJ:({Y}), and a nlap! X -+ T1 

such that I, = v(y +- f'(I,'» for i = 1,2. Consequently, (V0)!"(I.') 

= f'(12') can be deduced by card(U. X,) applications of the substitutivity 
rule. and t 1Q£12 can be obtaine.9 by one more application of that rule. This 
shows that (-+) ~ Q£ which by the renexivity, symmetry and transitivity 
rules of deduction~ shows that:'" S; Q£. SO we will be done if we show that 
Tr/:'" satisfies the equations in E. Let (V X) I = t' be any such 
equation. Oy definition of -. we then have thntfll'(l) -+ /"(1') for each Inap 
f. X -+ TE and hence the equation holds in TrJ:". 0 

This shows that for constructing initial algebras, the unidirectional 
deduction provided by the rewriting relation is as good as the usual 
equational deduction (sec also [88]), but it docs not show any cOlnputa· 
tional advantage of rewrite rules. In fact, it cannot do this, since the 
theorem applies to any set E of (usable) equations. and it is well known 
[40] that there are (finitary) initial algebra spccifications (1:, E) with 
undecidable word problems; nothing can be done in those cases to solve 
the word problem, regardless of the kind of deduction used. 

We will soon see that if the rewrite rules satisfy two natural conditions 
then the word problem is decidable, and can be decided by rewriting. We 
will also see that this method is fully general: any minimal algebra \vilh &l 

decidable word problem is the reduct of the initial algebra specified by u 
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\ finite enrichment without new sorts and a finite set of usable equations 
\ whose rewriting relation decides it. 

Defillition 49. Let E be a set of usable equations and let -+ be its one-step 
rewriting relation. Then a term 10 is a 'Jorlllaljor"l relative to -+ if it cannot 
be further rewrittcn; i.e., if there is no t 1 such that to -+ t 1- The relation -t 
is called ,ern.illcltillg if there is no infinite sequence of rewritings 

10 -+ t. -+ - •• -+ I. -+ · _.­

Notice thut if a system is terminating, then every term rewrites to a (not 
necessarily unique) normal form (called 'a normal form of ttl after a finite 
nunlbcr of rcwrilings. 0 

An example of non-termination is given by the commutativity law for 
addition, which yields infinite rewrilings like 

3+2-+2+3 ... ···-+3+2-+2+3 ..... ···. 

Silnilarly, un equation of the form x =: a(x) gives an infinite rewriting 

(10 -+ 0(00) -+ ••• -+ (111(00) ...... 

for a constant 00. Intuitively, for, -+ to be terminating, the 'size' of terms 
should decrease after. rewriting, for sOlne notion of 'size' suited to the 
problem at hand. 

Defi,~it;()11 50. Let E be, a set of usable equations and let -+ be its 
corresponding one step rewriting relation. Then -+ is c~lIed cOlljll4,ent (or 
Claurcl,-Ro:.ser) if for each (erln ·'0 'and each p~ir of rewritings to .!. '. and 
to .!. 12 we have that 11 t 12, i.e., that 11 and '2 rewrite to a common term f3· 

o 

Fig. 14.10. The Church-Rosser property , 

;'0\. 
'. 12

\
.\ /.I 

" 
71,eore", 5/ (after [31 ]). Let 1: be a finite signature, and let E be a finite set 
of us"ble I:-equalions such that the corresponding one step rewriting 
relation -+ is terminating &tnd connuent. Then: 
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(i)	 Each terln t has a unique normal form, denoted [I]. For each 
pair of terms. t. t', one has t·:" I' iff [t] = [t']. 

(ii)	 The initial (1:. E)-algebra is computuble. 
(iii) The (S-sorled) set of normal forms, denoted CanJ:.E with constllnts 

[0] and operations 0([1 1]•...• (tn ]) = [o(t •• ... , I,,») is nn initial 
(1:, E)-algebra, called the canonical tern. algebra ilssociated to E. 

Proof. Doth (ii) and (iii) follow from (i), since rewriting provides an 
algorithm to decide the word problern in the initiul (1:. E)-algebra; by 
Church's thesis this algorithm<·corresponds to a recursive congrucnce 011 

Gt and this is our form,,1 definition for dccidability of the word problclll; 
thus we get (ii). Again using (i), Canr..£ is isomorphic by construction to the 
initial algebra 1r..E formed by the equivalence classes of tcrans. '·hc 
isomorphism is the map can: [I] -. [t], where [t] is the E-equivalence 
class of t; this gives (iii). 

Now let us prove (i). Since -. is tcnninating. each ternl t has at least one 
normal form 'I; suppose it has a second normal fornl t 2• Dy connucnce 
there is a I) such that both II and '2 rewrite to IJ. Since 11 and '2 arc 
normal forms. this can only happen if II = I) = '2. If (I) = [I']. then 
t :.. t'. That I :... t' implies [t] = [t'] follows by induction on the length 
of the sequence 1 t ... t I', using confluence; this is left to the readcr. 0 

Given a set of equations, if we cun show that they are lcrnlin&aling "flU 
connuent, then by the above theorem, we have solvcd the word problcln 
for its initial algebra. For recent methods to establish tCflnin&ation of a sct 
of rewrite rules see [76, 22, 52. 23]. We will now discuss rllcthods to 
establish connuence. The idea is to reduce conflucnce to a silnplcr 
condition of 'local confluence' which is decidable, providing tcrmination 
holds (this can be relaxed, as explained below). 

Definition .52. Let E be a set of equations and let -+ be its corresponding 
·	 one-step rewriting relation. Thc'n -. is locally cOllfluell1 if for each tCrln 10 

and each pair of one-step rew~jtings 10 -+ t l , '0---' 12 wc ha~e·(hat/. t '2. 

o 

The following result is originally due to Newman [73]; a silnple proof by 
'Noetherian induction' can be found in [42]. Although this result can be 
stated very generally for an abstract relation, we specialize it lo rewriting 
systems. 
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/>roposit;oll 53. Let -+ be a terminating rewriting relation associated to a 
set E of equations. Then -. is confluent if and only if it is locally confluent. 

o 

Thc Knuth-Bendix algorithm tests for local confluence of a set of 
equations, and can also be used to attempt completing a nonconOuent set 
of equations into an equivalent set of (locally) confluent equations. What 

),	 follows is an informal introduction to the main ideas and extensions oCthis 
nlgorittun; technical details can be found in the cited references. 

. Let X be a fixed S-sortcd set with an infinite number oCvariablcs ofeach 
sort, and consider the rewriting relation -+ on Tt(X). Huet [42] has shown 
that local connucncc· of the re'wr'iting relation -+ is 'decidable' 'by the 
Knuth-Dcndix algorithm provided that the relation is terminating. The 
idea is that any pair of one step rcwritings either can trivially be shown to 
rc\vritc to a COlllffion term, or else is a spccialized instance of a finite set of 
'rnost gener&l)' pairs of one step rewritings, called 'critical pairs', that can be, 
obtnine<.l by 'superposing' pairs of equations in E in a 'most general' way. 
Since the relation is assumed lerlninating, we can decide local confluence 

I 

(hence connuence) sirnply by comparing Ilorlnal forms for each side of the
j pair. The Knuth-Bendix algorithrll [55] finds all the critical pairs of a set 

of equations. For example, if E contains the equations 

o(t(x, y), z) = Ji(X, y, z) 

t(x, 'I(Y» == I\(Y, x) 

then (O(K(y, x», z); p(x, '/(Y), z» is a critical pair. Even if a set of 
equations does not give a confluent rewriting relation, in many common 
Cilses it can be replaced semiautomatically by an equivalent one that does, 
using the Knuth and Uendix algorithm. The idea is to choose a good 
oricntation for the nonnal fornls of each critical pair that does not have a 
comlnon rewriting, and iteratc the algorithm until this does not happen 
anYlllore. Unfortunately, this process may nol stop. 

Thc Knuth-Bendix algorithrn has been extended to handle special cases, 

Fig. 14.11.	 The local confluence properly..	 ,. .. . 
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such as a commutative equation, that give a nontcrnlinating rewriting 
relation. The idea is to split the equations in E into ~, set of 'rewriting' rules 
£. and a set of 'equivalence' rules £2 and then to consider \vnys of 
rewriting with E1 '.nodulo E2'. Three basic papers arc: [58,75,42]. For thc 
present state of the art see [49, 50]. The nonterminating case requires in 
addition a complete unification algorithm for thc 'equivulence' equations 
E2 to compute 'complete scts of critical pairs' modulo the equivalence. 
Such algorithms are known for various special cuses such as cOlnnlulativ­
ity [77] and associativity-commutativity [81]. General 111cthods for 
building such algorithms are studied in [46, 51]. 

We now conclude this section with the theorem of [6] showing the 
converse, that any computable (lllinilnal, but we know this is no loss of 
generality) algebra has an initial algebra specification by a finite enrich­
ment without new sorts of its signature and a finite nunlber of equations 
that yield a terminating and confluent rewriting systcrn. As bcfore, details 
of the proof are not given, but the main lines of the argunlcnt are sketched. 

TlreorelJ154. Let I: be a finite signature and A a minilllal r-algcbra. The 
following are equivalent: 

(i)	 A is computable. 
(ii)	 There is a finite enrichment without new sorts l:' of L and a finite 

set E of usable equations such that induced rewriting relation -+ is 
I· terminating and confluent, and A is isomorphic to die 1:-reduct of 

the canonical term algebra Cant· .E. 

Ske'ch of the proof. Theorcm 51 shows that (ii) => (i). 

To see that (i) => (ii)t we consider the one-sorted CHSC for sirnplicily. A 
ca~ be taken to be w or [m]. The finite case is easy, since for any finite 
algebra the tables of their operations provide a ternlinating and connucnt 
rewriting relation. Thus, we need only consider A with cHrrier w, a finite 
collection of numbers for the constants and a finite collection of (total) 
recursive functions fit ... ,il each having the appropriute nunlber of 
arguments. We use a fundamental result in the theory of recursive func­
tions, Kleene's enumeration theorenl: 

TI.eoreln 55 ([68], Thm. 6.2.1). Evcry partial recursive function 
f(x., ...• x,,) can be written in the (orin 

f(Xl •••• , XII) = lefi(JlZ[F(xa, ... , XII' z) = 0]), 

where left is the (primitive rccu·rsive) Jeft projection function for the Cantor 
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diagonal cnulneration of w 2• caul: w 2 
-+ w. i.e., le!t(calu(II, n.» = 'I, and F 

is a primitive .recursive function depending on f. 0 

We can appl, this theorcln to each operation): w" -+ CJJ of our algebra, and 
definc two auxiliary primitive recursive functions 11, 9 by the equations 

lI(z, XI' ••• t x,,) = lefi(llz' ~ z[z' = z or F(Xl' ••• ' XII' z') = 0]), 
u(z, x .. ... , x,,) == if 3z' ~ Z[F(.~h •.. , X"' z) == 0] then 0 else I, 

and nn auxiliary recursive function t defined by the equations 

(i)	 I(Z, X.. ••• , X", 0) = I.(z, x It •••• XII) 

(i i) I (z, X It ••• , x"' y + 1) = t(z + I, x It ••• , x". g(z + I, XII •••• x.». 
It is thcn easy to check thut f cun be defined by the equation 

(iii) !(XIt ...• x,,) = t(O,x" ...• x", I). 

The enriched signature L' is obtained by adding the following function 
sylnbols: 0; the successor function s; the functions g,lI, t for each operation 
f; and function synlbols for each of the primitive recursive functions 
01, ... , 0"., '11, ... , 11",- needed to define each 9 and Ia from 0 and s by 
primitive recursion for each operationj: The equations in E are as follows: 

(I)	 The equations defining each g, 11, and their auxiliary functions g, . 
and 11) by prilllitive recursion for each f. 

(2)	 !he equations (i)-(ii) for each j: 
(3)	 An equation aq = s"·(0) for each constant aq of the original 

signature 'which was int~tpreted by"the number IIq. ... 

One must then verify that this specification induces a terminating and 
confluent rewriting relation that has w as its canonical term algebra. This 
is done in two steps, with the following lemmas: 

LeIJulIa 56. If t is a terminating term for (1:'. E) (i.e., if there is no infinite
 
sequence of rewritings beginning with t), then t has a unique normal form
 
of the form s"(O). 0
 

Le"""a 57. The relation -+ associated to (1:', E) is terminating. 0 

The proof of the last )enllna uscs induction on the depth of terms and case 
analysis. Note that connuence follows from termination by the existence of 
a unique normal form for cnch tcnn. .. 0 

6.6 Tile power of specification teclllJiques: filial algebra semantics 

To examine the relationship bctween final algebra semantics and 
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computability, it is reasonable to restrict attention to rnachines (i.e., 
algebras) that have cOlnputable bel,avior, since this is clearly nccessary for a 
conlputable realization of that behavior to exist. By 'computable behuvior' 
we mean that the word problem is solvable for the visible sorts. 1·lere is the 
definition. 

Definition 58. For 1: a finite signature and Va subset of sorts, &l E-ulgebra 
M has a COluputable. V-behavior iff there is a V-sorted rccursive set IV und a 
V-sorted map f. W -+ M such that the induced hornomorphism 
f-: Gt ( W) -+ M is surjective"in each compon'cnt f# p witfi V'E J/, and the 
equivalence relation (Q/.)., is recursive for each v E V. 0 

Since Gr. ~ GI(W) for any W, if M is a nlinimal E-algcbra, then lhe above 
definition can be rephrased by saying that M has a cOlnputable v­
behavior iff (Q ..)., is a recursive equivalence relation for cach v E V, for 
h: Gr. --. M the unique homonlorphism. Note also that this definition is 
stable under isomorphism: if M has a computable behavior so docs any M' 
isomorphic to M. 

The following theorem of Dcrgstra & Meyer [5] shows lhat every 
computable behavior is effectively realizable by the initial rcalization. 

Tlleoreln 59. Let M be an algebra with a computublc V-behavior, for V a 
subset of its sorts. Then the initial realization J(M) is a computablc 
algebra. 

Proof. If f. W -+ M shows that M has a computable behnvior, then by 
Proposition 26 we can find· recursive sets' Ulland recursive retracts 
p,,: Gt ( W) -+ U., such thatfill ., = Ou 0 p., with g.,: U II -+ Atl., bijective for each 
v in V. Since computability of un algebra is a concept stuble under 
ispmorphism, without loss o[..gencnllily we may assunle tlHlt the bijection 
0: U -+ My is the identity. I~ec"ll lhul l(M) was constructed HS thc J/­
sorted subset of Tr.(U) forlned by the V-irreduciblc tcrlus. Noticc that 
there is an algorithm to decide if a lenn I is irreduciblc: just cxalnine nil 
proper subtcrms of t and see if there is one of external sort different frolll a 
constant in U. Consequently, I(M) is in bijective correspondence \vith &lll 

S-sorted recursive subset by the uniquc isomorphism of Gt ( U) with 1't ( U) 
as 1:(U )-algebras, since this latcr isoillorphism is given by an algoritlull, 
and we can then use Church's thesis. Using this bijection nnd again by 
Church's thesis, each operation of J(M) corresponds to a recursive 
function for the image, i.e., J(M) is a cOlnpulablc nlgcbrH, since, for (J with 
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non visible sort, the algorithm to compute u is the same as the one to 
computc (1 in Tt(U), and, for a with visible sort, the algorithm to compute 
0(11, to t, til) is as follows: (i) compute al, ... , an, the Godel numbers of 
'1, . to. flJ, in Gt ( U); then the result is p.,(a(a 1, ... , all». 0 

As a corollary to this theorem, we next show that (V-reachable) algebras 
with conlputable behavior are always nlinimal in a finite enrichment 
without new sorts of their original signature. Recall that an algebra is V· 
re:lchnble: for V a set of sorls, iff the evuluation map e'M: 'Tr.(M y) -+ Ai is 
surjective; thus any·mininlal l:-&tlgcbra is V-rcacha·ble, but a V-rea·chable 
algebra need not at all be IniniJnal. 

LellUIID 60. For L a finite signature, let ~I be a V-reachable l:-algebra with 
n computable V-behavior. Then there is an enrichment without new sorts 
1:' of 1: by at nlost IVI constants and IVI function symbols, and a minimal 
I:'-algebra lvi' with a computable V-behavior (as a L'-algebra) such that 
M'h:=M. 

Proof. Uy Theorem 59, l(M) is conlputable; therefore, it is isomorphic to a 
rccursive nUlnbcr algebra U, which we may assume for each sort s has 
either U. = w (if U. is infinite), or U, = [II] for some integer II (if U. is 
finite). For cach visible sort v such that U., is nonenlpty, we can pick 0 e U. 
as a constnnt and a recursive function s: U" -+ U" that is the ordinary 
successor function when U., is infinite, or the truncuted successor function, 

AX. if x < II - I Ihen x + 1 else II - 1, 

when U" = [II]. This Inakes U into a recursive l:'-algebra, U', for the 
signature obtuincd by adding n constant 0 and a successor function s to 
each visible sort IJ with Up nonclnpty. Using the bijection between I(M) 
nntl U, we can thcn makc I(M) into a computable l:'·algebra, I(M)', and, 
since, I(AJ)., = kl., for each visible sort V, this also makes M into a};'· 
algebru A1'. . ' . 

(Incidentally, I(M)' is the initial realization of M'.) M' is the algebra we 
Wtlnt; since I(M)' is gencrated by Mv as a l:-algebra. then J(M)' is a 
Inininllli l:'-algcbril, and so is M' for the saine reason. The unique 1:'. 
hOlllolnorphisnl I,: Gr.' -+ M' factors through the quotient J(M)' -+ M' 
and 1("")' is comput&lblc, so M' has a computable V-behavior. as desired. 

o 
Ucfore considering the relationship between final algebra semantics and 
cOlnputability, we define sClnicomputablc and cosclnicomputablc 
algebras. 
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Definition 61. For 1: a finite S-sorted signature, a L-ulgebra A is 
senJicolnputable (respectively coseI11;cOII,plltable) if there arc an S-sorted 
recursive set Wand an S-sorted map f. IV -+ A such that the induced 
homomorphism/': G1:(W) -+ A is surjective and the congruence Q,~ is a 
recursively enumerable set (respectively its complement GIl - Q,_ is a 
recursively enumerable set). 0 

Thus, A semicomputable means that the word problenl for A is 
senlidecidable, i.e., there is an algorithm that assigns the value I to (I, ,') ifT 
/#(,) = /'(1'), but may not stop if/'(t) ~ /'(1'). Similarly, A cosemicom­
pUlable means that the word problem for A is cose",;eJec;e/tlble, i.e., there 
is an algorithm that assigns the vulue 0 to (It t') iff/I (I) :F J~ (I'), but Illay 
not stop if /*(1) = /#(l'). Thus, an nlgebra. is computable iff it is both 
semicomputable and cosenlicomputable. Note that since G[ £; Gt ( JV) for 
any W, in the case where A is a minimal L-algebra, the above C4ln be 
rephrased by saying that A is semicomputable (respectively coscmicorn­
putable) iff the congruence Q" associated to the unique homomorphism 
II: Gr. -+ A is recursively enumerable (respectively its complelncnt is 
recursively enumerable). Note also that the choice of the Godel nunlbering 
Gt(U) is immaterial, since it can be replaced by -any other recursively 
isomorphic to it. 

We have already pointed out that there are finitary initiul algebra 
specificalions with undecidable word problems [40] (however, they are 
semidecidable.)We now show that the final realization N(M) of an M with 
computable behavior is always coselnicolnpulable, and we give lutcr an 
example of an N(M) that is undecidable. 

TI,eorem 62. For 1: a finite signature, and Va subset of sorts, if an algebra 
M has a compulable V-behavior, then its final realization N(A1) is 
coscmicomputable. 

Proof. Since M has a computable V-behavior, there is a homolnorphism 
II: Gt ( W) -+ M surjective on the sorts in V, with (Q,.)., recursive for each v 
in V. Reasoning as in the proof of Theorem 59 there are recursive retracts 
p,,;. Gt ( W)., -+ Ulland bijections g.,: U., -+ M., with g., 0 p., := 11.,. Since being 
cosemicomputable is stable under isomorphism, we may assume without 
loss of generality that the V-sorted bijection g: U -+ My is the identity. We 
can then replace the above II "try the homomorphism tA': Gt(U) -t A1 for 
the purposes of the cOlnput~.bility of the bel,"vior. Indecd,..considcr the 
diagram of Figure 14.12, which shows e,., = II oj~. Since the inclusion 
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j: U -+ G[ is a recursive function, j# is a recursive homomorphism by 
Theorem 30, and thus (Q.,,)., is recursive for each v in V. Note that, by the 
identification U = Mv we have (t,,,)., = P., 0 j *.,. Thus, (eM)" is recursive for 
each v in V. Let I and I' be two terms in Gt(U). We will be done if we 
exhibit a scmidecision procedure for £N(M)(t) #: £NCM)(t') or equivalently for 
failure of £ICA,)(I)ncr£'C_O(t'). By definition of ner, this means that there is a v 
in V and a term u in Tt(U u {y})., such that (identifying Tt(U) with 

Gt(U», 

CICAf)(U(Y +- £UA,){t») ~ £ICM)(U(Y +- £I(A.){t'»). 

As in the proof of Theoreln 1~, this inequality can be rewritten as 

CI(Af)(II(Y +- I» ~ £I(A')(U(Y +- I'». 
Since J(M) is behaviorally idcnticHI to M this, in turn, can be written as 

(.) £A'(U(y +- £I(,.,)(t») ¥- £AI(Il(Y +- £/CAI){t'»), 

llerc then is the semidecision procedure: (i) number all the terms of 
Tt(U u {y})., for each u. in V in a 'diagonalized' way, i.e., ul of sort 
vI, ... t III' of sort VII, '~II + 1 of ~or.l vi, etc.; a~d then (~D compu\~.J·) for 
each term II = UII (note that (CM)" is recursive); if there is a u giving an 
inequality, it will be found in a finite number of steps. 0 

At the end of Section 5 we pointed out that the most usual final 
realizations are those beha viorally equivalent to an initial algebra Tr..,; for 
E a set of equations, i.e., the behavior (for V a subset of sorts) is specified 
using initial algebra semantics, and lhen the final realization Nt.1: of that 
behavior is considered. This algebra is called the jinal algebra specified by 
(1:, E) relative to the visible sorts V, or the final (E, E)-algebra relative to 
v. We 11lso nlentioned that Tr..1i need not coincide with the initial 
realization I(Tt.,J, which does not have to satisfy E, but thal there is a 
surjective strong V-holnomorphism from l(Tt ,£) to Tt,~. Thus even if the 

Fig. 14.-12 
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initial (1:, E)-algebra is not computable, there is a computable realization, 
l(Tr.,E). of its behavior, provided the behavior itself is computable. 

Note also that we have proved that any V-reachable algebra 1.1 with a 
computable behavior is the l:-reduct of a minimal algebra M' with a 
computable behavior for a finite enrichment without new sorts }:' of its 

..	 signature. Thus, it is natural to ask for a comp~tational characterization of 
the class of machines having finitary final algebra specifications. We slate 
below a conjecture on such a characterization, in a sense a converse to the 
la~t theorem. Call the V-behavior of an algebra M 11011"";1 if there is a v in 
V such that M., ~as more th,\n one elelncnt. 

COlljecture. For 1: a finite signature and V a subset of visible sorts. the 
following are equivalent for a minimal algebra M with nonunit cOlnput­
able V-behavior: 

(i)	 M is cosemicomputable. 
(ii)	 There is a finite enrichment without new sorts 1:' of L, and a finite 

set E of equations such that M is isolnorphic to the reduct Nt'.r.lt 
of the final (1:', E)-algebra. 0 

We now give an example (inspired by [9]) of a final algebra \vith a 
computable behavior that is cosemicompulable but is not computable. 
The signature 1: is given in Figure 14.13. 

There are no equations of sort fun; the equations of sort nat arc the usual 
primitive recursive definitions of addition. +, truncated difference. ~ (Le., 
'1 .:.. nl = if n > m then n - nl else 0), mUltiplication. _, the test for II ~ O. 

and "lin (i.e., "lill(n) == if 11 = 0 then 0 else 1), plus the following equations: 
O[nl,. ,., n14] = 0
 
1[11 1, ...• '1 J4] = 1
 
xi[nl .. ..., n14] = IIi (for I ~ i ~ 14) 
5(f)[nl •...• 1114] == s(/[III, ... , 1114]) 
</1	 +/2)[n,l, ... , 11,14],=/1[111, ...• 1114] + /2[111, ...• 1114] 
(f 1 .:.. /2)['11, · · ., 1114] =s / I [" 1, , 1114] .:.. /2 [III, ... , 1114J 
(/1 e/2)[nl, ... , nI4].·=/l[1I1, , 1114] e/2[1I1, ..-., 1114] 
nlill(!)[nl, ... , 1114] = ,,1111(/[111, "., nI4]). 

For E the above equations, (TI,E),. = (Tt ),., and (TI .E)••• can be 
identified with w. These equations evaluate each expression in the 
variables xl, ..., XII, to its result in CJ) after binding each xi to the value Iii. 

Thus. it is clear that Tt,E is computable; in particular, il has a computable 
behavior for V = {nal}. (Incidentally, TI,E is the inithlt realization of its 
own behavior, since no nontrivial equations of sort fun cun be deduced 
from E.) 
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Another very natural (1:, E)-algebra is n with 0 ... = wand 0,. =r 

[ClJ 
14 

-+ co], set of all functions of 14 variables on the natural numbers. 
The operation -[---t ... , _] is function evalualion. i.e., f[1I1, ••• , n14] 1:11 

f(lIl t ••• ,1I14); the operations s. +, ..:.., e, and mil1 are interpreted as 
usual on co, and for the sorl fun are interpreted as acting on the value of 
each function, i.e., are defined by the above equations; 0 and 1 arc the 
constant functions with values 0 and 1 respectively, and xl is the ith 
projection function, Le., is defined by the equation Xi[III, ••• , n14] = 111 
above. '·hcrc is then n unique homomorphism II: Tr.,E -+ n. and letting Ot 
denole the image subalgebra under this homomorphism. we obtain a 
minimal algebra behaviorally identical to Tt,s. We claim thot 0t is the 
final (1:, E)-algebra. To see this, note that if 0t were not final, there would 
be two functions! 1 :F /2, with corresponding expressions t 1. t2, such that 
for each II in Tt(wu {y})••• one would have 

I:TL1 (II(y +- tl» = £TL.(U(Y'- 12». 

In particular. one would have 11[111••.. , n14] = 12[nl,.,., nI4], for each 
111 ••••• 1114 E W 14

, in contradiction lo/i :1=/2. 
Dy Matijasevlc's theorem [69, 70], 0t is not computable. Define an w­

pulylloll.;al expression (in 14 variables) to be a {nal}-irreducible term' of 
sort fun in Tt,l such that the operations":'" and min do not occur in' (i.e., 
nn expression on the variables xl, ... , xl4 involving +. _, and natural 
nunlbers as coefficients). Malijascvic's theorem can be formulated as 
follows: 

TI,corelll 63. A set U s; co is recursively enumerable iff there arc w­
polynomial expressions I, I' e 1r..£ such that for each n in co 

II E U iff 3".2, ... , 11114 E c.o such thot t[n, n12, .•• , m14] ­
1'[11, ,,12•... , 11114] in Tr.,E. 0 

Fig, 14.13. The signature of an example 
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It is a basic fact of recursive function theory that there are nonrccursive 
recursively enumerable sets. and that thc cOlnplcments of such sets are also 
not recursively enumerable. Let U be such a set. Dy Mutijascvic's theorenl 
there are w-polynomials, t, t' such that for each number ". II E W - U iff 

(.) Vm2•... , nl14 E W 

t[n. nI2•...• m14] ~ 1'[11. 1112••••• m14] in TIIS ' 

Let 'II be the w-polynomial obtained by replacing each occurrence of x 1 in 
I by s"(0). It is easy to see that for each nil •...• 11114 in w one has 

' ..[1111. "" n114] = t[lI. IJ12, ••• , ,,114] in TI,E-' 

Define t'" similarly from t'. Then condition (.) can be rephrased as 

(••) h(mill(t" -=- I'll) + (t'" ..:.. til») = I in 0I. 

where h: Tr..E -+ Or. i.s the unique homomorphism. If 0t were conlputablc, 
we could decide for each n the word problem (••), i.e.• we could decide 
n e CJ) - V. which is impossible. ' - " 

This example shows the strong computational difference bctween 
intensional and extensional notions of function. Functions in i,ue,ls;onal 
form (i.e., understood as rules of computation) are amenable to finitary 
specification by initial algebra semantics, whereas functions considered 
extensionally (i.e. identified as equal jf they give the same result for all 
values) lead to cosemicomputable data types with a final algebra 
specification. The above example illustrated this for arithmetic ex­
pressions, but we could have chosen an entire progranlming language 
instead. 

We now discuss a different notion of final algebra, due to ncrgslra and 
Tucker. who have established a nUlnbcr of important lhcorcrns for this 
notion. We shall call their notion nT-final to avoid confusion, since the 
two notions are not equivalent; their intuition is also different, since there 
is no notion of visible sorts or of the behavior associated with a DT-final 
algebra (no sorts playa privileged role). Rather. their intuition is one of 
logical consistency. Before giving the definition, we will say a few words 
about cOIJditlonal equations. i.e., equations of the form 

(VX) t 1 = t'l & ... & til = 1'" => I = I'. 
An algebra A satisfies such an equation iff for any assignment f. X -. A 
su~h that the conditions hold~. the consequence also holds. Then A is a 
(1:. E)-algebra, for E a set of <;onditional l:-cquations, iII A satisfies each 
equation in E; and a (1:, E)-algebra is initial iff there is a unique 1:­
homomorphism from it to any other fE, E)-algebra. Sound and conlplete 
many-sorted rules of deduction for conditional equations are given in 
[33]. These rules of deduction give the set E· of all (ordinary) equations 
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that are satisfied by all (1:. E)-algebras, for E a given set of conditional 
equations. [33] also shows that A is an initial (1:. E)-algebra iff A is an 
initial (1:, E ·)-nlgcbra. Thus. Tr..£. is also initial for the class of all algebras 
satisfying E. Similarly. by the filial (1:. E)-algebra Nr. B (for Va subset of 
sorts), we mea~"the final realization N(Tr..£) of the V-~havior of the initial 
algebra Tr.,E. We are now ready to define BT-final algebras. 

Definitioll 64. Given a signature 1: and a set E of conditional equations, a 
DT-fillul-(r,. E) algebra. if it exists, is a minimal (~t E)-algebra F such that, 
if 1,: Tt -t F is the unique homomorphism. then the following hold: 

(i)	 Q,.:I: Tr. 2 (i.e.• F is nol the 'unit' algebra). 
(ii) If	 11(1) ¥: h(t'), then Tr.. £ v (cve)l- ") is the unit algebra. i.e. it has 

exactly one point of sort s if (TJ:), is nonempiy.· . 0 

Thus. the nT-final algebra is the algebra obtained by imposing on T~. all 
the equations t = I' such that there is a nonunit minimal (1:, E u {t 1:& t'}}­
algebra, i.e., all equations that in a certain sense are not 'inconsistent' with 
the equations E. In general such a process. although well-defined. may 
yield an algebra that is the unit algebra. For example, with the natural 
nunlbers, the equations 2 == 0 and 3 == 0 have nonunit models. but the two 
together collapse all the natural numbers to one point. But, when they do 
exist, any two BT-final algebras arc isomorphic and can be characterized 
as the final object of the category with objects minimal (1:. E)-algebras 
(with exclusion of the unit algebras) and morphisms the l:-homomorph­
isms. Thus. all the final BT-algebras, if they exist. form an abstract data 
type. and we talk of the nT-final (1:. E)-algebra. 

Ilere is the theorem of [9] characterizing cosemicomputable algebras; 
their proof uses Matijascvic's theorem. 

TIJcorel1165. Let A be a minimal l:-algebra (~ finite and one-sorted). Then 
the following are equivalent: 

(i)	 A is cosemicomputable. 
(ii)	 A is the l:-reduct of a BT-final (1:', E)-algebra. for ~' an 

enrichment without new sorts of 1: by at most Shidden functions, 
and E a set of ai most 15 + 11:1 conditional equations.

I, •••• 

The same holds for A a minimal !-algebra when 1: is finite and many-
sorted. making the appropriate modifications on the bounds for the 
number of hidden functions and conditional equations. 0 

We conclude this section with a very nice theorem of Bcrgstra & Tucker 
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[8] showing the simultaneous adequacy of initial and nT-final algebra 
semantics to specify computable algebras, and giving a bound on the 
number of hidden functions and equations required. This bound depends 
only on the number of sorts and not on the size of the signature L. 

Theoreln 66. Let A be a minimal1:-algebra, and II the number of sorts of 
its signature 1:. Then the following are equivalent: 

(i)	 A is computable. 
(ii)	 A is the I-reduct of an algebra that is both initial and DT-final for 

(1:', E) an enrichment without new sorts having at most 3(11 + 1) 
hidden functions and 2(n + 1) new equations. 0 

The proof of this theorem also makes essential use of Matijasevic's
 
theorem. The original algebra is 'rigidified' by introducing new operations
 
that act as injections (with corresponding retractions) of each sort into a
 
highest cardinality sort. Identification of any two elements after this
 
enrichment produces the unit algebra. Further enrichment, use of
 

· Matijasevic's theorem, and an elegant tfolding' of equations using
 
conditionals give the required result and bounds. 

6.7 Equality enriclllnents, conlputability and illduclionless ilJductioll 

Whatever other operations an abstract data type rnay have, 
programming intuition strongly suggests that it can be given equality 
oPerations that tell whether ~r not two abstract data itclns arc the sanle; 
intuition also suggests that these operations will be equationally definable 
[31]. This subsection gives a formal justification to this intuition by 
showing that a data type is computable if and only if its equality can be 
axiomatized with a finite number ofequations. This can be secn as a purely 
algebraic formulation of a Church-like thesis. that the intuitive nolion of 
computability agrees with certain algebraic concepts. The equational 
axiomatization of equality is also closely rclated to the recent theorem­
proving method called tinductionlcss induction', which uses purely 
equational reasoning (in the form of rewrite-rules) to prove theorenls valid 
in an initial algebra that would normally have to be proved by induction. 
We explain the basic facts about the satisfaction of equations in initial 
algebras and about inductionless induction, and give pointers to further 
developments in this area. This subsection drops the implicit assumption 
of finiteness for signatures. 
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Intuitively, we seek to enrich a given dala type with equality predicates. 
i.e., operations =.: ss -+ newbool for each sort s, where newbool is a new 
sort with constants true and false, we also want to ax;on.atlze those 
operations by giving new equations such that. for an)' two ground tchi\s 
I. I'. one can proye (t E t') D.Jr«e (respecti~ely .false). iff t and. t' can 
(respectively cannot) be proved equal in our original data type by the rules 
ofequational deduction, and, of course, one cannot prove true ~ lalse. For 
instance the equations 

(x e x) c: true 
(0 == s(x» a= false 
(s(x) == 0) = false 
(s(x) == s(y» a: (x == y). 

give such an axiomatization for the natural numbers. 
We also desire that the new equations should have no effect on the old 

sorts. This property is meaningful for any enrichment, a'nd corresponds to 
sufficient completeness plus consistency in Guttag's terminology; it is 
weaker than 'persistence' since it is only stated for the initial algebra. 

Defillitio/l 67. Given an enrichment (1:', E') of (1:, E), there is a unique 1:­
homomorphism I,: TE,E -. Tt ·,,;,11:. Then this enrichment is protected iff I. 
is an isomorphism. 0 

We give now the definition of an 'equational equality presentation'; the 
definition is meaningful even without explicitly giving a subpresentation 
that it enriches by equality. In case this is explicit, th~ equational equality 
presentation is called an tequality enrichment' of the given 
subprcsentation, 

Defillitioll 68. Lei L - be a signature that contains a sort newbool with 
constants trlle and false, and for each sort S:F ncwbool an operation 
=,: 55 -+ newbool; let E- be a set of l:--equations. Then (~-, £-) is an 
equcltiollal equality presentatioll iff it satisfies the following conditions: 

(1)	 Equational equality. For each sort s '#- newbool in 1:- and each t, I' 
in (T[.).: 
a.	 The equation (V0) (t == t') = true is provable from E - if 

and only if (V0) t = I' is provable from E·. 
b.	 The equation (V0) (I == I') = false is provable from E - if 

and only if (V0) I = t' is not provable from E - . 
(2)	 Consistency. It is not provable from E - that (V0) true =­

false for sort ncwbool. 
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In addition, if there is a subpresentalion (1:, E) with sorts those of 1: except 
newbool and such that the enrichment (1:, E) ~ (E -, E-) is protected, then 
we will call (E-, E-) an equality enricillnent of (E, E). Note that by having 
a protected enrichment, the equational equality condition is then equiva­
lent to the following: 

(I') Equational equality'. For each sort s of I: and each t. I' in TI ••: 

a.	 The equation (V0) (I == 
and only if (V0) 1 = I' 

b.	 The equation (V0) (I == 
and only if (V0)·' = t' 

t' ) := true is provable from E - if 
is provable from E. 

t') = false is provable fronl E - if 
is not provable from E. 

In other words, the equality predicate in the enrichment is characterized 
by equational deduction in the original subspecification. 0 

In general, the p~operty of an.enrichment being protected requires careful 
analysis. However, for the case of equality enrichments there is a silnple 
sufficient condition that applies to all reasonable situations that appear in 
practice: 

Lemma 69. Let (1:, E) ~ (1:', E') be an enrichment such that: there is only 
one sort So in 1:' and not in 1:; the operations and constants in 1:' that are 
not in 1: all have sort so; and the equations in E' that are not in E all have 
sort So. Then the enrichment is protected.. 

Proof. For each sort s :I: So we have Tt ,. = Tr:,. and. by inspecting the 
rules of many-sorled equational deduction, it is easy to check that since 
there arc no operations of sort different from So which have So as an 
argument, the equations in E' and not in E have no effect whatsoever on 
terms or sort different from So. 0 

A close connection exists among initial, final and BT-final algebras for 
equational equality presentations. 

Lemma 70. Let (~-. E-) be an equational equality presentation. Then: 

(1)	 Taking V ='{newbool} 'as the set of visible sorts, the initial and the 
final (1: - , E- )-algebr~s coincide. 

(2) Assuming that	 (Tt·.£·).,,~ = ([true], [false]) and adding to 
E - the conditional equation 
V{x, r} Irue =false ~ x = ~ 

for	 each sort different from ncwbool to form an enrichment 
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(1: -, E -'),	 the initial (1: -, E -)-algebra and the BT-final 
(1: -, E -)- algebra coincide. 

Proof. To prove (I), assume [I] = [I'] in the final algebra but [I] ~ [t,] in 
the initial algebra. This gives [true] = [t == t] == [t == t'] -= [false] in the 
final algebra, a contradiction. 

To prove (2), first note that (Tt -,£-) vacuously satisfies the conditional 
equation of(2). i.e., it is also initial (1:-, E-')-algebra. We will be done if we 
show that the only proper quotient, A, of Tr.-.E- that satisfies E· is the 
unit algebra. Indeed, for such an A, if [t] = [t'] in A and if [t] :F [I'] in the 
initial algebra, then 

(i)	 If the sort is ncwbool this means that [Irue] :a lIaise]. and hence 
, everything reduces to one point for the sort newbool. and so by the 

I I	 conditional equations, ev'erything also reduces to'one point i'~ any
I 

other noncmpty sort; i.e., A is the unit algebra. 
I 

(ii)	 For any other sort, we reason as in the proof of (I) and reduce to 
the case (i). 0 

!I	 

The following theorem characterizes the computability of an abstract 
data type in terms of equational equality and initiality. From the last 
lemma. one can obtain as immediate corollaries two similar characteriza· 
tions replacing initiality by either finality or by nT-finality. 

TI,eorel" 7J. For 1: a finite signature and a minimal 1:-algebra the 
following arc equivalent: 

(1) A is computable. 
(2)	 There is a finite enrichment 1: s;;; 1:- with only one new sort 

ncwbool and a finite set E- of E--equations such that (1:- t E-) is 
an equational equality presentation and A is l:-isomorphic to the 
reduct (Tt-.£-)It. 

(3)	 Same as (2) plus the equations E- arc confluent and terminating 
as rcwrlt~··rules.: I 

Proof. Clearly, (3) ~ (2). To sec (2) => (1), notice that we, can decid~ the 
t ; word problem for A 'by the following algorilh~~ gi~en ground ~-terms t, 

and t', start generating all the consequences of E- by the rules of many­
" . 
., 

I	 

sorted equational deduction. After a finite number of steps you either 
obtain the equation (V0) t = I' (if t = t' in A), or the 
equation (V0) (t == I') == false (if t ~ I' in A). 
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To see (1) ~ (3), we may assume without loss of generality that A is a 

recursive algebra. We take 1:-"0 the enrichment of 1: by sort ncwbool with 
constants true and·false and o·perations 5,: S5 -+ s for each old sort s. We 
extend A to a recursive l:-o-algebra A - in the obvious way: sorts and 
operations for the signature 1: are those of A, (A .)....... == to, I} with 
false = 0 and true = 1; for each sort s in 1:, (A -)•• is the function: 

A(xt y). if x == y then 1 else 0, 

which is clearly recursive. By Theorem S4 characterizing computable 
algebras by rewrite rules, we know that there is a finite enrichment without 
new sorts ~ -0 ~ 1: - and a finite set E- of usable cquations such that the 
induced rewriting relation .... is tcrminating and connucnt, nnd A - is 
isomorphic to the 1: -a-reduct of the initial algebra 1~[-. £-. As a 
consequencet A is isomorphic to the 1:-reduct of that initial algebra. To 
finish the proof we need only note that (1:., E-) is an equational equality 
specification. The consistency property is clear, and the equational 
equality property follows from the bijection between A· and TI -.£- and 
the definition of the equality predicates (A -)... 0 

We will now consider the relationship betwccn equality enrichincilts and 
the satisfaction of equations in initial algebras. This relationship, nalncly 
the reduction of satisfaction to consistency, underlies the 'inductionlcss 
induction' theorem proving method. FinallYt we brieny discuss the 
literature in this area. 

An initial (1:, E)-algebra in general satisfies more equations than just 
those deducible from E by the'rulcs of equation'al deductioll. For cXQlnplc, 
the natural numbers with zero, successor and addition arc the initial 
algebra for the following equations E: 

x+O=x 
O+x==x 
s(x) + y = s(x + y) 
x + s(y) = sex + y), 

and it is well-known that natural number addition satisfies the associative 
law 

(x + y) + z = x + (y + z). 

However, this law is not satisfied by all the algebras that satisfy the above 
equations E. One way to see this is to first remark that the above rules are 
indeed terminating and confluent (more justification for this below), and 
they remain terminating and confluent when Tr. is replaced by Tt(X) for X 
a set of additional constants, and then give risc to a canonical term algcbra 
Canr..£(X) which is an initial (I:(X), E)-algebra; but for X = {a, b, e}, 
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CanI.£(~) does not satisfy the associativity law, since the terms (a + b) + c 
and a + (b + c) are both in canonical form~ 

Associativity of + depends on' l1~e addition'al fact th~t the natural 
numbers are initial. This must be used in any proof of associativity by 
induction. We will now establish two basic lemmas about the satisfaction 
of equations in initial algebras. 

Le"IIJ1a 72. Let (1:, E) S; (1:, E') be an enrichment by equations only. Then 
the initial algebra Tr...E satisfies the equations in E' iff the enrichment is 
protected, i.e., iff Tr..,; == Tr..,;" 

Proof. If Tr..1i = Tr..E' then Tr..£ clearly satisfies E'. Conversely, if Tr... 
satisfies E' then there is a unique homomorphism ): TE.£' -. TE••• Now 
since TI •E, certainly satisfies E S; E', there is a unique homomorphism 
q: TItE -+ TI •E•• Then) and q must be isomorphisms, since they give rise to 
endomorphismsj 0 q and q 0 j that by initiality must satisfy J 0 q = 1Tu and 
q 0 j = 1Tl.J.' Indeed, q and j are both identity functions, since again by 
initiality, q 0 ,. = II', for I., la' the unique homomorphisms from TE so that 
the congruences associated to 1J and la' are identical, i.e., TEtl: = T1:.£'. 0 

LellllJla 73. A set E" of l:-cquations holds for the initial (1:t E)-algebra iff it 
hold,S for ql(~ initial (1:', E')-algebra for every prote~te4 enrichment .. 
(1:, E) S; (1:', E'). 

Proof. If E" holds for every protected enrichment, it will in particular hold
 
for the trivial onc.
 

ConverselY,let (1:, E) S; (1:', E') be an arbitrary protected enrichment and 
let (VX) I == I' be an equation in E not satisfied by the initial (1:', E')­
algebra. This means that if X consists of variables x....., x., there is an 
nssignnlcnt fi X -+ Tr.'.,;', say !(x,) == [I,J, such that /"(1) :F /"(t'). Since 
the enrichment (1:, E) S; (1:', E') is protected. we may assume that the 
representatives tit .•• , 'II are ~-terms. This provides a similar assignment 
/0: X -+ TI.£ by /O(x,) c: [t,] from which (using protection of the enrich­
ment and the obvious factorization of/'ITJJx) as (fO)' composed with the 
isomorphism I.: Tr..£ -+ TE·,£·Ir. which follows from initiality) one sees that 
the equation ('IX) t == t' does not hold in Tr..E. 0 

We are now ready to reduce the problem of satisfaction or a set of 
equations in an initial algebra to that of consistency in an equality 
enrichment augmented by those equations: 
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TlJeorem 74. Let (1::, E) be a presentation and let (1: -, E-) be an equality 
enrichment of it. Then a set E' of :E-equations is satisfied by the initial 
(1:, E)-algebra if and only if (\10) trlle =false is not deducible from 
E- ~ E' by the rules of many-sorted equational deduction. 

Proof. If E' holds for the initial (1:, E)-algebra then, by the previous 
lemma, it also holds for the protected enrichment (1:- t E-); it then follows 
from Lemma 72 and the consistency property of the equality enrichment 
that (V0) true =false is not deducible from E - u E'. 

Conversely, suppose that an equation (\IX) t = I' in E', say of sort 
s, is not satisfied by TJ:.~; i:e., suppose that there is an assignment 
f: X	 -+ TJ: such that [/"(1)] ~ [/"(1')] in TJ:.a; then 

(i) CV0)(/#(t) 3,/#(1'» =/alse 

can be deduced from E- by the rules of many-sorted equational 
deduction. On the other hand 

(ii)	 (V0)f~(t) == 1#(1') 

can	 be deduced from E' by the rules of equational deduction, and by 
reflexivity we have 

(iii) (V{x. y}) (x =. y) == (x 5, y).
 

Hence from (ii) and substitutivity we can deduce
 

(iv) "(v{x}) (x =.,/'(1» =(x =.I'(t'».
 
Again by substitutivity and reflexivity we can then deduce that
 

(v) <V0) (/#(t) =./#(t» == (1'(1) =,I#(t'». 

Since /"(t) =,/#(t» == 'true follows from E· by the rules of deduction, 
from E·uE' and transitivity we deduce (V0)(f'(t}=',/'(t'»C& 
true, which together with (i) gives (V0) true == false, 0 

..	 This theorem provides an 'jnductionlcss' (i.e., 'purely equational) way of 
proving that an initial algebra satisfies a given equation. Several 
algorithms can help in automating most of the proof effort, turning it into 
a theorem-proving strategy. On the one hand, the Knuth-Bendix 
algorithm can attempt to find" a set of confluent equations deductively 
equivalent to a given set of equations, provided termination is satisfied; on 
the other, attempts to prove rewrite-rule termination can also be 
semiautomated [32] or even automated [52]. Here then is a possible 
strategy, using the Knuth-Bendix algorithm, to prove that a set E' of 
equations holds for the initial (1:, E)-algebra: 

(i)	 Enrich (1:, E) to a confluent and terminating equality enrichrncnt 
(1: -, E-). 

~
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(ii)	 Use Knuth-Bendix and termination methods to attempt complet­
ing E- u E' to a confluent and terminating set of equations. 

(iii)	 If somewhere in the completion process for E- u E' the 
equation (V0) Irue == false is derived, then SlOp: at least one 
of the equations in E' is not satisfied by TEe£­

(iv) If the completion process terminates with a set of confluent and 
terminating rewrite rule for which [true] ¥: [falsel, then 
the equations E' are satisfied by Tr..s. 

(v) Otherwise (i.e., if the completion process does not terminate and 
we; .could not prove (\I0) true == false from. already gon~ 

crated rules), nothing can be decided about the satisfaction of the 
equation. Nevertheless, ·If we were to ideally 'wait forever', this 
would actually give a proof that the equation holds; this is so 
because, in the limit, the set of all generated equations is conOucnt 
[43]. 

For example, consider the associativity of natural number addition. The 
set E· below is a confluent and terminating equality enrichment: 

x+O~x 

O+xax
 
s(x) + y =sex + y)
 
x + s(y) == sex +'y)
 
(x a x) = true
 
(0 Ei s(x» .. false
 
(s(x) a 0) == false
 
(s(x) Ei s(y» .. (x =y).
 

It so happens that E- union with the equation 

(x + y) + z -= x + (y + z) 

is already terminating and confluent, and is certainly consistent (i.e.• 
Irue :F false), so that associativity follows. Termination can be seen using 
the following ordering on terms: t ~ t' iff "'(t) ~ c/J(t') where t/J(O) as 

q,(lrue) = tJ>(false) = I, q,(x) = I for any variable x, and t/J(S(I» :::: tfJ(t) + I, 
4J(1 + I') = 4J(t) • 3·('"), and 4J(t == t') = 4J(t) + t!J(t') + 1. Then one 
can sec that for anyone step rewriting t -+,' induced by the equ'ations, 
"'(I') < 4>(1); hence the rules are terminating. Confluence is handled 
semiautomatically by the Knuth-Bendix algorithm, which for the above 
equations slops without producing any new rules. This is because all 
critical pairs produce the same normal form. For instance, the associativ­
ity equation and the equation x + s(y) = s(x + y) give the critical pair 
(x + (y + s(z); s«x + y) + z», both one step rewritings from (x + y). 
+ s(z), and both sides rewrite to s(x + (y + z)). We 



\ 

532	 J. Mesegller, J. A. Goguen 

actually compute all cases (see [42] for a precise definition of critical 
pair).' . /' 

The inductionless induction method is originally due-to' Musser [72]. 
Goguen [31] generalized and simplified the method, and proved Theorem 
74. Huet & Hullot [44] give a variant of the method that when certain 
conditions are satisfied by the original equations, does not require the 
introduction of an equality predicate; intuitively, if there is a subsignature 
a s; 1: or,'constructors' (with same set of sorts) such that the enrichment 
(0, 0) ~ (1:, E) is protected, i.e., such that each equivalence class [I] of 1:­

terms has a unique O-term as its representative, then we can handle 
equality implicitly, as identity between the representative a-terms. This 
idea has been extended further to the case of a protected enrichment 
(0, Eo> S; (1:, E) by Kirchner [54]; this opens generalizations of the above 
method that usc generalized Knuth-Bendix algorithms modulo 'nice' 
equations such as associativity and commutativity for proofs by induc­
tionless induction; termination methods in this context have recently been 
considered [23]. Lankford [56] discusses potential limitations of the 
inductionless induction method, and [52] gives 8 careful explanation and 
examples of the method (for the case without equality predicates). 

6.8	 Concluding rel1Jarks on abstract data type cOlllpulabi/ity 

This brier subsectio~ indicates some additional references and 
research directions in abstract data type cOlnputability; it claims neither 
exhaustion nor completeness. 

6.8.J TIle classics 

Even before the establishment of any formal notions of computa­
bility, van der Wacrdcn [85] defined 'explicitly given fields' and proved 
[86] that there was no general splitting uigorillllll applicable to all 
explicitly given fields. The subject of computable fields was further 
developed in the framework of computability theory by Frolich & 
Shepherdson [24] and later by Rabin [78], who proved that the algebraic 
closure of a computable field is also conlputable. Doth Rabin [78] and 
Malcev [67] develop equivalent versions of computable algebra for an 
arbitrary signature, as in Section 6.3, and establish the foundations of the 
subject. 
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6.8.2	 Further \vork by Bergstra, Tucker et al.I, 
(i)	 By Bergstra and Tucker, besides the references already cited, sec 

[7.10, II, 12].!	 (ii) Asveld & Tucker [1] study the computational complexity of 
abstract data types. f 

t· (iii) Bergstra, Droy, Tucker & Wirsing [14] give characterization 
theorems for hierarchical specifications and partial abstract data\ .\ types. 

(iv) Dergstra	 & Klop [3, 4] begin the subject of computability of 
parameterized abstract data types. 

6.8.2	 COlllputabili,y of partial abstract data types with equationally 
defilled dOllla;lIs 

A natural way of extending (total) data types is to consider partial 
data types with operations defined on (vectors of) values that satisfy 
equational conditions (e.g., empty(x) == false). This approach has been 
proposed in [79]. Kaphengst [53] gives 8 careful study of the computa­
bility of these data types, and 1-1 upbach [47] studies the related problem or 
computability for irnplcmentations. 
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Appendix: proofs of soundness and compleleness 

We first prove the Soundness Theorem stated in Section 4.3.3. 

" 
Proof of TI,eorelll 12. For technical reasons, it is easier to prove the 
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soundness of a set of rules equivalent to those given in Section 4.3.2. The 
new rules are (1)-(3), as before, together with: 

(4') Substitulivity-l. If 

(V Y) .ul == u2 

of sort s is derivable and if (J e 1:'1 ...'11." is an operation with sk == s. 
then so is 

(VZ) a(xl, ...• xk - 1. ul, xk + 1•... , xn) == . 
a(xl,tt.,xk- l.u2.xk + l •...• XIl), 

where Z == Yu {xl•... , xk - 1. xk + 1, ...• xn} with xj of sort sj. 

(5') Subslitutiv;ty-2. If 
(VX)·, z= I' 

is derivable and if g: X -+ Tr.( Y) is an S-sorted map, then 

(VY) g'(I) == g'(I') 

is also derivable. 

We first prove the soundness of the rules (1)-(3), (4'). (5'). and then prove 

their equivalence with the original rules (1)-(6) in a subsequent lemma. 

Soundness of rules (1}-(3) follows directly from the definition of satisfac­
tion and is left to the reader; the soundness of rules (4') and (5') remains. 
For (4'), we must show that if A is an algebra satisfying (V Y) u 1 = u2. 
then A also satisfies 

(VZ) a(x),. tt, xk - 1. ul, xk + 1•... , XII) = 

a(xl, .•.• xk - l.u2,xk + 1, ...• XIl). 

Now let f: Z -+ A be a (S-sorted) map. and consider the commuta­
tive diagram in Figure 14.14, wherej: Y -. Z is the inclusion map which 
induces the inclusion homomorphism Jill: Tt ( Y) ... 11(Z). We then have 

, • I' • 

(J (a(xl, ... , xk - I, ut. xk + I, ...• xn» 
== a(!III(xl)•...• /~(xk - 1),f lll (1I1),I*(xk + I~, .·~ •• f-(XII» 

=a(!'(xl), ...,!'(xk ­
= a(/"(xl), ...• I"(xk ­

Fig. 14.14 

J. 
TJ:(Y) - - - -- TJ:(Z) 

qy t f~z 
y .. z 

J 

(by f' a homomorphism) 
l),/IIIU III «ul»,/"(xk + I)•.. .• /III(xn» 
I). (1 0 j)'(ul)./III(xk + I), .. .•1 III (xn» 

(by)" inclusion and diagram above) 

/.------A 

1 
z= a(/"(xl)• .• .,I'(xk - 1), (1 0 j)'(u2),f'(xk + 1)•.. . ,/'(xn» 

(by hypothesis) 

:2 !'(a(x 1, ... , xk - I, u2, xk + 1, ... , xn» (reversing the steps) 

as desired. 
To see the soundness of (5'). let A satisfy (VX) t az I', let f. Y -t A 

and g: X .... Tt(y) be maps. Then the diagram of Figure 14.15 sfK)ws that 
fill 0 g" == (I' 0 g)', and so we have that 

/"(0"(1» - (/" 0 g) 111(1) .. (I' 0 g)'(I') (by hypothesis) 

:= /'(g'(I'». 
as desired. To finish the proof we need only prove 

Lenlllla 75. The rules (1)-(3), (4'), (5') are equivalent to the rules (1)-(6), 
i.e., an equation (VX) t - I' is derivable by the first set of rules from. 
set E ofequations iff it is derivable by the second set of rules from the same 
set of equations. 

Proof of Lemll,a. For the 'ir part. we must show that any equation 
derivable by the rules (4)-(6) can be derived using (1)-(3), (4'). (5'). First 

note that (5) and (6) are particular instances of (5'): for (5), take as 9 the 

inclusion X .... Xu {y} .... Tr.(X u {y}); for (6), take g: X .... Tr.(X - {x}) 
with g(x') :2 x' if x' :I: x. and g(x) == II E (TE),. For (4). reason by induction 
on n c:: max(depth(t 1), depth (12» where depth(t) J:I 0 if t is a variable or a 
constant and dcpth(a(vl, ...• vIla»~ .. I + max{depth(vl), .•. t depth(um)}. 
We leave the reader to check the case n .. O. Let n + 1 .. max{depth(tl). 
depth(12)}; say II + 1 .. depth(ll), 11 == a(vl, ••. ,vln). Then we have 

,I(x· f- ul) =z a(vl(x +- ul)•. tt, unl(x +- ul» 
- a(vl(x +- u2)• ...• Vl1I(X +- u2)} · 

since by induction hypothesis.,· (VZ) vi(x +- Itl) :::z ui(x +- u2)·· can be 
derived using (1)-(3), (4'), and (5'). Then by II. applications of (4') we have 

II: 1I(x +- u2) 
z= 12(x +- u2) (by (5'», 

as desired. 

, Fig. 14.1S 

I· /­
Tt<X) - - - --. TJ:<Y) - - - --. A 

~x1 
, 

1 
yx 
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For the 'only ir part, we must show that any equation derivable using 
rules (4') or (5') can be derived using rules (1)-(6). Rule (4') is n particular 
instance of (4) with t 1 = t2 == o(xl, ... , XII) and with x = xk. Rule (5') 
follows: (i) if X ==.0, from as many applications of the rule of abstraction 
as variables in Y; (ii) if X :I: 0, from as many applications of the rule of 
substitutivity as variables in X. 00 

Now we prove the Completeness Theorem stated in Section 4.3.3. 

Proof of Theorem 13. We have to show that if an equation 

(.) (VX)t == t' 

is satisfied by all (1:, E)-algebras, then it is derivable from E using the rules 
or deduction (1)-(6) or by the above lemma, using the equivalent rules (1)­
(3), (4'), and (5'). Assume that the equation (.) is satisfied by all (I, E)­
algebras, but is not derivable. We will reach a contradiction by considering 
the algebra Tt,E(X), defined as the quotient of Tt(X) by the congruence E' 

such that (u, v') is in E # itT (VX) U = IJ is derivable from E using the 
rules (1)-(3), (4'), a.nd (5').,Th~ fact that E" is n congruence follows trivially 
from the rules (1 )-(3) and (4'). Also Tt.£(X) is a (1:, E)-algebra, since for 
any equation (VY) u == u' in E wilh, say· Y = {yl, .:.,·y'I}, and for 
f. y ..... Tt.£(X) a map with, say f(yj) = tj, we have 

j"(u) = u(yl f- tl, ...• yll 4- III) 

== u'(yl +- t 1, ... , yl1 +- til) (by II applications of lhe rule 
(5'» 

.. /*(u'), 

as desired. By hypothesis the equation (.) holds for ull (1:, E)-algebrus but 
is not derivable. This means that [I] ~ [I'] in Tt.£(X), which contradicts 
the fact that (.) is satisfied in Tt,£(X), so in particular [I] = [I'] when we 
consider the assignment 

X	 -+ T1(X) ..... Tt,I:;(X) 

obtained by composing the inclusion of X with the quotient map from 
Tt(X) to Tt.,{X). 0 
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