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1 Introduction

This paper surveys, unifies, and extends a number of results on induction
and computability in the context of an algebraic approach to the
semantics of programming. The close relationship between computability,
induction, and initiality is emphasized.

Highlights of this paper include: a software engincering moltivation for
the initial algebra approach to data abstraction; a review of many-sorted
general algebra, including rules for equational deduction that are sound
and complete; simple ‘inductive’ characterizations of initiality (including
generalized Peano axioms); constructions for both initial and final (i.c.,
minimal) algebra realizations of abstract softwarec modules; and a dctailed
introduction to computable algebras and their relationship to initiality;
finality, and rewrite rules, showing in particular how Gédel numberings
arise from initiality, and how equationally defined equality relates to both
theorem proving by ‘inductionless induction’ and computability. The
latter permits us to give a purely algebraic characterization of comput-
able algebras: an algebra is computable ifT it is a reduct of an initial model
of a finite equational equahty presentation.

2 Abstract data types and programming methodology

Data abstraction enjoys considcrable popularity. It is widely
recognized as an important technique for structuring programs, perhaps
even more useflul than structuring programs by flow of control as in
traditional flow charts or more modern data flow diagrams. Data
abstraction has been advocated, for example, by Juckson [48] (though he
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does not use the phrase ‘data abstraction’), and is discussed more formally
by Guttag [38], Liskov & Zilles [62], Goguen, Thatcher, Wagner &
Wright [37] and many others. The basic idea seems to have first surfaced
in the *class’ concept of the Simula programming language of Dabhl,
Myhrhaug & Nygaard [21]. Similar constructs appear in many later lan-
guages with names like ‘form’, ‘module’, ‘cluster’, ‘object’, ‘capsule’,
‘domain’, ‘package’, ‘type’, ‘bundle’, and even ‘category’. (The names of the
languages involved are Icft as an excrcise to the interested reader.) This
paper favors the more generic term module.

2.1 What is data abstraction?

The methodological use of ADTs in programming is to suggest
(or better, to require) grouping together in one module all the basic
functions that manipulate one (or more) sort of data, and then ‘hiding’ the
representation, in the sense that only the functions defined in that module
can actually sec the representation. Thus, any agent wishing to manipulate
this data can only do so by calling the functions provided by the module.
This technique is called data encapsulation, and such a module is often
called a data abstraction; the advantage is to localize the effects of changing
representation in an especially clear and simple way. It is often claimed
(and we also belicve) that this approach [acilitates rcading, writling,
specifying, designing, modifying, maintaining, and reasoning aboul
programs. '

2.2 Abstract machines

Much confusion can be avoided by distinguishing sharply
between (concrete or abstract) data types that are just algebras, and
(concrete or abslracl) machines that in addition may have internal states.t
A typical data type'is that of the integers; there are certain values, namely
intcgers, and certain operations upon them., While it is possible and
fruitful to investigate abstract machines with the techniques of abstract
data types, quite different concepts and techniques arc also important,
such as reachability, observability, and minimality. Abstract data types are

t This distinction is somclimes indicated with the words ‘immutable’ and
‘mutable’, indicating that data items (such as the integer 3) are ideal and
‘timeless’, while the behavior of a machine can vary with time; see {33] for a
formal treatment.
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useful for understanding the type systems of programming languages,
especially when they permit user-defined types as in ALGOL 68 [87], and
for deciding the correctness of data representations. Abstract machines are
uscful for understanding the specification and implementation of software
modules, in roughly the sense of Parnas [74], and as used in the HDM
methodology [61] and in CLU ([63]. The fact that many common
examples can be viewcd from cither perspective contributes to the
potential confusion.

There is, for instance, the rather pointless controversy aboul whether final
or initial algebra semantics is ‘best’. For abstract machines, it is bekaviour
that matters. Machines that represent and manipulate their internal states
differently (i.e., are nonisomorphic as data types) can still have the samc
behavior [26]. A softwarc module can usually be realized in many different
ways; among these, the final one uses as little storage as possible for
internal states, while the initial one has no sharing at all for storage of
states [33]. Because the space efficiency of the final realization can greatly
reduce its time efficiency, there are many cases where the pragmatically
correct choice of data representation is neither initial nor final, but rather
something betwcen. A good example is the list structure of LISP, which is
often implemented by giving a unique cell to each atom, but not to ecach
list structure. QLISP can be secn as an experiment with the *hashcons’
final realization of list structure; it was found to run too slowly for many
applications. Abstract Prolog machines also now tend 1o replicate
information rather than to share it, and are therefore closer to an initial
realization than to a final realization [90]. In summary, initial rcalizations
arc appropriate in casc all behavior is visible behavior; final realizations
may be appropriate in case there are hidden internal states, but often the

mosl practical realizations, although neither initial nor final, arc rather
close to being initial.

2.3 What good is algebra?

The basic argument for an algebraic approach is both simple and
compcelling. A soltware module has exactly the same structurc as an
algebra: the various sorts of data involved (including states, if any) form
sets, and the operations of interest are functioris among these sets (Scction
3 precisely defines this sense of algebra). This argument is reinforced by the
powerful, general and appropriate tools that modern algebra provides. It
is also reinforced by the remarkable fact (to be discussed later in this
paper, together with other important characterizations) that any comput-
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able algebra can be specified as an initial algebra for a finite number of
cquations (after adding perhaps a finite number of auxiliary functions);
this shows the general applicability of finitary algebraic specifications in
compuler scicnce.

Three different algebraic approaches to ADTs emerged in 1975: Zilles
[91] gave an abstract of some results to appear in his Ph.D. thesis; Guttag
[38] complcted his dissertation; and ADJ (Goguen, Thatcher, Wagner &
Wright [37]) sketched their initial algebra approach. Zilles [92] suggested
a ncw kind of algebra, called *data algebra’, bascd on the notation of Cohn
{20]; Zilles® use of free algcbras esscatially corresponds to ADJ’s use of
initiality. Guttag’s work introduced the important ideas of ‘consistency’
and ‘sufficicnt complcteness’ later lormalized by others, and opened up the
study of modules with states, i.c., abstract machines. ADJ, using initiality
and the algcbraic notation of Goguen [29], were able to formalize the
ADT concepts entirely rigorously within standard many-sorted general
algebra. Strangely cnough, Zilles' work, though motivated by CLU
‘clusters’, actually treated ADTs rather than abstract machines. Each of
these thre¢ approaches has subscquently been followed up by its
originators, as well as by many others, and today there is a vast literature
on the subject. Parnas [74], Milner [71] and Hoare [41] were important
carly theorctical influences in this development. All three approaches
recognize that a concrete data type is a many-sorted algebra.! The
algebraic approach to abstract data types (any of the three versions) goes
beyond this in that onc gives some equations that the functions ought to
salisly, and then restricts attention to models where they do. The initial
algebra approach produces a ‘standard’ modecl that is defined uniquely up
to renaming data items, namecly ‘the’ initial algebra for the given signature
and cquations. What is magic about this is that a set of equations that the
opcralions are supposed to salisfy actually defines the data; there is no
necd to (alk about how the data is represented.

There arc many different ways to precisely define data abstraction (see
Scction 4); a (airly simple one (from Burstall & Goguen [18]) is as follows:
assume that we are given a concrete data type and that we can tell whether
or not two concrete data items in it represent the same abstract data item;
call the two concrele data items equivalent in that case. (Thus, an abstract
data item is an equivalence class of concrete data items; for example, 1, 01,
and 00! arc three different concrete data items representing the same
abstract data item, namely the abstract integer ‘one’.) Given a signature of
symbols for opcrations and constants, and a set of equations using the

't 1tis not clear where this insight originated. The earliest work we know is
Gogucn [27].
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symbols from it, call a data representation standard if and only if it has the
following two propertics:

1. No junk: Every data item can bc constructed using only the
constants and operations in the signaturc. (A data item that
cannot be so constructed is ‘junk’.)

2. No confusion: Two data items are equivalent il and only if they
can be proved equal using the equations. (Two data items that arc
equivalent but cannot be proved so from the given cquations arc
said to be ‘confused’)) .

Scction 4 shows that these two conditions define an algebra uniquely up to
renaming of its data items. It also shows that ‘no junk’ is‘equivalent to
structural induction over the signature, and that the two conditions
together are equivalent to the ‘unique homomorphism’ condition usually
called ‘initiality’. Thus, a model is initial if and only i[ it has the minimal
number of data items (none that cannot be constructed from those that are
given) and satisfies the minimal number of ground equations (none that do
not follow from those that arc given).

3 Many-sorted algebra

So-called ‘general’ (or ‘universal’) algebra was cstablished by
BirkhofT [15] in order to subsume many basic aspects of particular
algebraic systems into a singlc framework. This work involved only onc
sort of data, proving the existence ol initial algebras as well as giving many
other basic resulls. It was later generalized to many sorts by Higgins (39],
by Birkhofl & Lipson [16], and by Bcnabou [2] following the morc

- abstract approach of Lawvere [59]. '

A simpler notation for many-sorted algebra that is now often used in
computer scicnce was introduced by Goguen [29]. It uscs indexed (or
sorted) sets, defined as follows: let S be a set (of sorts), then an S-indexed
(or S-sorted) set A is just a family of component scts A, for cach index s in
S. If A and B are both S-indexed sets, then a mapping of S-indexed sets (also
called an S-sorted function) f: A — B is an S-indexed family of funclions

(Jfo A; = Bs|sin S).

We now apply this to many-sorted general algebra: An S-sorted signature
Zisan S* x S-sorted family (T, |win S* sinS);oin I, ,is a function
symbol of arity w and sort s; the arity of a function symbol expresscs what
sorts of data it expects to sce as inputs and in what order; and the sort of a
function symbol expresses the sort of data it returns. A constant symbol of
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sort s has arity the empty string 4; i.c,, it is a member of I,,. Signatures
formalize the notion of a (strongly typed) collection of functions available
to the uscr of an abstraction. For example, we might have S = {stack, nat,
bool} I,.4 suee = {POP}, T, 000 = {EMPTY)}, Z, 14 mat e = {PUSH} and
so on, for a stack-of-naturals abstraction.

Then a Z-algebra A consists of an S-indexed family (A,|sin S) of
carrier scts, and for cach function symbol ¢ in I,,, an actual function
a(o): A¥ — A, where A” = A,; x:** x A,,whenw = sl...sn(whenw = 1,
then A* is a onc-point sct). Notice that « is an S*'x S-indexed family

Aysi Ly = [AY = A,] - . -

of interpretation mappings for the function symbols in I, each a.,
interpreting o in I,,, as a [unction to A, from A*. (Here [A — B] denotes
the set of all functions from A to B.) It is usual to write o for a(0) if the
algebra in question is clear from context, and it is often convenient to write
a, if it is not.

According to current practice in abstract algebra, one should define not
just some structure of intcrest, but also functions that preserve that
structure. We do this as follows: a Z-homomorphism from a Z-algebra A to

another B is an S-indexed function f A — B that ‘preserves the function
symbols in I’ in the sensc that

J(o(al,...,an)) = o(f(al),..., f(an)),

or more preciscly, that

Sa(o)al, ..., an)) = Ba)(fu(al),..., filan)),
where 1 is the interpretation mapping for B, where w = sl ... sn, for ai in
Ay and o in Z,,,. For conslants, i.e., for w = 4, the condition becomes
Si«(a)) = fi(a).
These equations are called the homomorphism condition.
We can now dcfine the central concept of this paper.

Definition 1. A Z-algebra Ais initial in a class € of L-algebras jfand only jf
A belongs to € and for cach I-algebra C in € there is onc and only Z-
homomorphism from 4 to C. a

Onc common casc is that € is the class of all Z-algebras; another is that €
is the class of all Z-algebrus that satisfy some set E of equations; then € is

called the variety of E. In general, the class € will not be mentioned when it
is clear from context.

Perhaps the most basic fact about initial algebras is that any two are
*abstractly the same’, in that they differ only in the representations given to
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their elements. This is formalized using the following concept: A I-
isomorphism is a Z-homomorphism fsuch that each component [unction f;
is bijective. Then isomorphic Z-algebras are ‘abstractly the samc’; this is
the essence of the word abstract in both the phrases ‘abstract algebra’ and
‘abstract data type’. Indced, one of the main idcas of abstract algebra is to
study algebras (such as groups and vector spaces) indecpendently of how
their elements happen to be represented. The [ollowing states this basic
property of initial algebras; it can be proved using the propertics given in
Proposition 3 below.

Proposition 2. Let A be initial in a class € of L-algebras; then an algebra
A’ is initial in € iff A and A’ are Z-isomorphic. In fact, there is then a
unique isomorphism from A4 to A'. a

The existence of initial algebras is discussed in the next section. We now
turn to some basic properties of homomorphisms.

Proposition 3. Let T be an S-sorted signature, and let 4, B, and C be X-
algebras.

(1) Given IZ-homomorphisms f A — B and g: B —» C, their compo-
sition, go f: A = C defined by (go f),=(g,°f,), is also a I-
homomorphism.

(2) The S-indexed function 1, defined by (1,), = 15, is a Z-homomor-
phism B — B called the identity at B, morcover, lgo f = f and
g e 1p = g whencver these compositions are dcfined. (The nota-
tion idy may also be used occasionally.)

(3) Givenf:4A -+ Band g: B — A,ifg o f = 1 4then g is surjective and
J is injective.

(4) A Z-homomorphism f: A — B is a Z-isomorphism if and only il
there is another Z-homomorphism g: B —+ A such that fo gy = I,
and fo g = 14 this g is unique if it exists, and is called the inverse
of f, denoted f~'. Morcover, (f '), = (f;) ™", the indexcd family
of inverse functions (i.e., converse relations) to f, for cach s in S.

(5) If fo g is surjective, then [ is surjective. '

(6) If fog is injective, then g is injective.

Proof. These are left as exercises in the use of the dcfinitions; the
arguments are genetally sct-theorelic. O

Yo

)

P e e o
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A I-subalgebra B of a I-algebra A is an S-indexed family of subsets (B,)
= B € A that is closed under the operations in I, i.c,, such that for any ¢
inZ,,withw=sl...sn,a(al,...,an)isin B,ifaie Byfori=1,...,n. A
Z-subalgebra of A is essentially the same thing as an injective Z-
homomorphism g: B — A, since such a B is isomorphic to its image in A. A
subalgebra of A4 is proper il it is not equal to A; this corresponds to an
injcctive homomorphism that is not an isomorphism.

Proposition 4. Il A is initial in a class € of Z-algebras, then A has no
proper subalgebras in €.

Proof. Assume that P isin € and j: P — A is an injective Z-homomorph-
ism. By initiality of A, there is also a homomorphism h: 4 — P. Then
joh:A — Ais also a Z-homomorphism, and since there is only one such
from A to A, namely the identity on A, we have jeh =1, By (3) of
Proposition 3 this implies that J is surjective, therefore bijective, and thus
not proper. : ' a
If i A— Bis a L-homomorphism and C is a Z-subalgebra of B, then
S YC), the inverse image of C under f, defined by (f~'(C)), =
{a in A,|f(a) in C,}, is a Z-subalgebra of A. Notice that if C is proper
and f is surjective, then f~!(C) is also proper.

3.1 Quotients

This subsection says everything you always wanted to know
about quoticats; moreover, it proves that it has told you everything in the
sensc that the properties given actually characterize quotients.

The quoticnl of a set A by an equivalence relation Q on A (identilying
somc clemenls of A with others) is formed by considering the Q-
cquivalence classes (the sets of mutually Q-equivalent clements of A) as the
clements of a new set A/Q. Now supposc that 4 is a Z-algebra. Unless
applying an opcration in I to cquivalent elements of A4 yields elements that
arc again cquivalent, A's Z-algebra structure cannot be inherited by 4/Q.
This moltivates the lollowing discussion.

Once again the notation of indexed scts makes it easy to go from the
one-sorted case jo the many-soricd case. Let A be an S-indexed set. Then
an (S-indexed, or S-sorted) equivalence relation on A is just an S-indexed.
family {Q,is’e S}, where Q, is an equivalence relation on A, (ie.,
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Qs S A, x A, is a reflexive, transitive and symmelric relation). If, in
addition, 4 is a Z-algebra, where I is an S-sorted signature, then we call Q
a Z-congruence relation provided that the following substitutivity condition
holds:

for each g€ X,,, with w=sl1...sn, and each ai,d'i € A4,, i aiQ,a'i, then
o(al,...,an)Q,e(d'l, ..., a'n).

For example, suppose that $= {nat, bool}, 4,,, = w (the natural numbers)
and Ay, = {T, F}; suppose also that I, ,,, = {T,F}, I, ., = {0}, Zont. aat
= {inc}, L. supes = {0dd}, and I,,, = & otherwise. Finally, supposc that
these operation symbols have their usual interpretations in 4, with odd(n)
= T il nis odd and odd(n) = F il nis even. Now define an S-sorted relation
Q8 on A by: nQ8,,n" iff n — n’ is divisible by 8; and bQ8,, b’ iff b = b'". Then
the reader may verily that this is indeed a T-congruence on A. Another Z-
congruence on 4, Q2, is given by nQ2,,n' ilf n — »’ is divisible by 2, with
Q24 = Q840
A very general way that congruences arise is given by the following.

Proposition 5. Let X be an S-sorted signalture, let 4 and B be L-algebras,
and let i: A - B be a Z-homomorphism. Then defining aQ, ,a' ilf h,(a) =

h(a’), for each s € S and a, a' € A4,, yields a Z-congrucnce on A, denoted Q,
and called the kernel of h,

Proof. Substitutivity follows from the homomorphism condition for
h: h,(ai) = hy(a'i) implies a(h,(al),..., hi(an)) = a(h,(a'l), ..., ha(a'n))
and therefore h,(o(al, ..., an)) = h(o(a'l, ..., a'n)). ()]

We now introduce the quotient algebra construction. Given a X-algebra A
and a X-congruence Q on 4, define A/Q to have carriers (A/Q), = A,/Q, Tor
s € §. Now letting [a] denote.the Q-equivalence class of a in A, define the
eflect of g € ,,, on A/Q by o([al],..., [an]) = [o(al,..., an)].

Substitutivity guarantees ‘that this is well-defincd: if—[a}] = [a'l] for
I=1,...,n then [o(al,...,an)] = [o(a'l, ..., a'n)]. Therclore A/Q isa Z-
algebra.

For example, using S = {nat, bool} with I and A4 as above, 4/08 is the
natural numbers modulo 8, and A4/Q2 is the natural numbers modulo 2,
each with an oddness predicate.

Given a Z-algebra A with a Z-congrucnce Q on il, there is a natural
quotient L-homomorphism q: A — A/Q defined to send a€ 4, to (a] in
(A/Q),. Substitutivity gives the homomorphism property of . Notice that
q is surjective.

T i,

-t 1Y
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We arc now ready to say everything (about the quotient construction).
The following says, intuitively, that a quotient, a surjective homomorph-
ism, and a function satisflying two cerlain properties (called ‘universal’), are
three different ways of looking at the same situation.

Proposition 6. Let f: A —» A’ be a Z-homomorphism. Then the following
arc cquivalent propcrlics‘off: )
(1) There is an isomorphism u: A/Q, — A’ such that ueq =/ for
q: A = A/Q, the natural quoticnt function (sending a to [a]).
(2) [ is surjective.
(3) If h: A — B is a Z-homomorphism, then
a. There exists a function u: A’ = B such that ue f = h (i.c, the
diagram of Figure 14.1 commutes) if 0, < 0,.!
b. Il such a function u exists, then it is unique, and is a X-
homomorphism.

Proof. We first show that (1) implies (2): since q is surjective and u is an
isomorphism, f is also surjective.

We next show that (2) implics (3a): first supposc that @, < Q,. Then we
can define a function u: A" -+ B such that the diagram of Figure 1|
commutes by u(a’) = h(a), where f(a) = a’; such an a exists since f is
surjective. This is well-defined, because f(al) = f(a2) = a', implies h(al)
= li(a2), so that-u(f(al)) = u(f(a2)). Conversely, if there is a function u
such that Figyre | commutes, then we have that f(al) = f(a2) implics
u(f(al)) = u(f(a2)) implics h(al) = h(a2), i.c, Q; < Q.

Assuming (2), we now show (3b), i.e., that u salisfying (3a) is unique, and
is a Z-homomorphism. First uniqueness. If u': 4’ — B will, Wef=h, ll.\cp

u(’f(a)) = h{a) = u'(f(a)) for cach f(a) in A".

Fig. 14.1. Universal property of the quotient
— B

h
A
”
/ U
A

.

t The gencral notion of S-indcxed sets tells us that this means (Q,), & (Qa), for
cuch s in S.



470 J. Meseguer, J. A. Goguen

Next we show the homomorphism property for u. For constants this is
clear (since h and f are homomorphisms) from commutativity of the
diagram. Suppose that g is in Z,,, with w = sl...sn; then whal we have to
show is that u(a(al’, ..., an’)) = a(u(al’), ..., u(an’)) for ai’ € A’,. Now, let
u(ai’) be given by h(ai), where ai is such that f(ai) = ai’. Further, let a’ =
a(al’,...,an’) and let a =o(al,...,an). Then f(a) = o(f(al),...,f(an))
because [ is a homomorphism, so f(a) = o(al’, ..., an’) = a'. Therefore,
u(a’) = h(a). Then what we have to show is that h(a) = a(h(al), ..., h(an));
but this follows because h is a homomorphism.

Finally, we show that (3) implies (1): since g: A — A/Q, is surjcctive and
we have proved that (2) implies (3), we know that q satisfics (3), with the
equation u o g = hrather than ue f = h. Hence, taking i = fin (3), we get
a unique Z-homomorphism wu: A/Q, — A’ such that ueq =/ Wec now
need only show that this is an isomorphism. Using (3a) and (3b) for f, with
now h = ¢, we also obtain a’unique Z-homomorphism u’: A’ - A/Q, such
that u’s f = q. We now use (3) for g withh = g also: g = u'o f = (' o) 0 g,
and also 14, ° q = g; therefore (3b) gives u' o u = 140, Similarly, we use
(3) for f with h = f; then the unique homomorphism is surely 1 .; but also,
(uou)of=uoq=fso therefore uou' = 1,. Thus u is an isomorphism.

a

For example, let §, X, and 4 be as in the examples above, lct Q be 08 and
let B = A/Q2 with f the natural quoticnt -homomorphism A4 — A/Q8.
Then u sends (n modulo 8) to (n modulo 2) and prescrves oddnecss.
Define the image f(A) of A under f: A —» B to have carriers f(A),
= f(A,) and operations a(f,(al),..., fi(an)) = fi(o(al,...,an)) for
g€X,, withw=sl...sn, and for o € T,, define dra = f(04). Then we
can apply Proposition 6 to show that f(A) is I-isomorphic to A/Q,.

4 Abstract data types

This section applies the concepts of Scction 3 to data abstraction.
Separatc subsections consider the case where no equaltions are nceded, and
then the use of equations in defining ADTs. Other subscctions discuss
c¢quational deduction and give scveral equivalent characterizations of
initiality, including a generalized Peano characterization.

We sct the stage for what follows by defining the basic concept of an
abstract data type. We have already said that a data representation is a -
algebra. Now notice that the relation of isomorphism is an equivalence
relation on the class of all Z-algebras: any algebra is isomorphic to itself; if

B S W S ST S PO s
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A is isomorphic to B, then B is isomorphic to 4; and if 4 is isomorphic to B
and B is isomorphic to C, then A is isomorphic to C. An isomorphism class
is an equivalence class of L-algebras under the equivalence relation of
isomorphism, that is, it is a maximal class of Z-algebras, each of which is
isomorphic to all the others.

Definition 7. An abstract data type is an isomorphism class of Z-algebras,
for some signature I, called the signature of the abstract data type. [

This definition docs not address the issue of computability; however, we
will sce later that algebraic methods can also be used for this.

Initiality provides a particularly elegant way of defining abstract data
types. Let us say that a class € of Z-algebras is closed under isomorphism il
for each 4 membet of &, if B i§ Ziisomorphic to ‘4, then B is in' €. The
[ollowing is a direct corollary of Proposition 2:

Proposition 8. Let € be a class of XZ-algebras that is closed under
isomorphism and has an initial algebra. Then the class of all algebras that
are initial in € is an isomorphism class. a

Thus, to define an abstract data type, all we have to do is give a class € of
I-algebras that is closed under isomorphism and has an initial algebra;
then its class of initial algebras will be an abstract data type. Two following
subscctions consider, respectively, the case where € is the class of all Z-
algebras, and the class of all Z-algebras satisfying a set E of Z-equations.

4.1 Data types without equations

Pcrhaps the most important and familiar abstract data type is the
non-negative integers; let us denote this data type N. It can be very simply
characterized as a standard algebra (i.c., no junk and no confusion, as in
Section 2.3) with signature having only one sort, namely nat, one constant
0 of sort nat, with one unary function symbol inc: nat — nat, and with no
cquations. (Of course inc(n) represents the ‘increment’ of n, that is, n + 1.)
Speaking informally, the ‘no confusion’ condition says-that each distinct
term inc(inc(...(0)...)) denotes a different number; and the ‘no junk’
condition says that all numbers are defined by such terms.

The ‘initiality’ property characterizes the natural numbers more simply
but more abstractly by saying that there is one and only one homomorph-
ism from N (o any other algebra with the same signature. The natural
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numbers were first characterized in this way by Lawvere [60]; a proof of
equivalence with the usual Peano axioms can be found.in MacLanc &
Birk hoff [64], pages 67-70. This is gencralized in Scction 4.4 below.

Natural numbers can be denoted in many different ways; cach different
data representation gives a different algebra, but they are all initial and all
isomorphic; in fact, therc is a unique isomorphism from any onc to any
other. The isomorphisms simply give the translations among these
representations.

All this generalizes. For any signature X, there are many initial Z-
algebras, with the property that there is one and only one Z-homomorph-
ism from it to any other Z-algebra; but, any two are Z-isomorphic, and
thus are abstractly the same. We' mention two familiar data representa-
tions that give initial algebras. In the first, the carrier of sort s consists of
all the well-formed Z-terms of sort s. For the natural number signalture,
these are just the expressions

0, inc(0), inc(inc(0)), inc(inc(inc(0))), .. ..
Such an algebra is called a term algebra (or sometimes a word algebra)
because it consists of all the Z-terms (or words).!

In the second representation, the carrier of sort s consists of all the well-
formed Z-trees with root of sort s; these can be scen as the parsce trees of a
grammar G(Z) associated Lo Z. For example, a I-tree for X the signature
for vector spaces is given in Figurc 14.2; the corresponding X-term s
0 + (ae 0).

We now make this precise, beginning with an inductive definition of the
sets Ty, of all Z-terms* of sort s, for a given S-sorted signaturc I:

" (1) £,, € Ty, for cach s-in S; and

N\

0 Fig. 14.2. A Z-tree

t More exactly, these might be called Z-ground terms, to distinguish them from
terms thal may contain variable symbols; in compuler scicnce, terms cither with
or without variables are called expressions.

1 For Ty to satisly the initiality property, terms should be unambiguous; a sul-
ficient condition for this is to requirc L, ,n L., = & whenever fength (w) =

length (w') and (w, 5) % (', ). This can always be ensurcd replacing E by

Z*, where ', , = £, , x {(w, $)}, and we will assume throughout that tcrms are

always built from such a disambiguated signature whenever £ is ambiguous,
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(2) o(tl,...;tn)isin Ty, forcach g in L, ,.,and each tiin Ty, for
i=1,...,n

We next show that the S-indexed family Ty = (T%,, | sin §) is a Z-algebra,
by defining the interpretation a(o) of ¢ in I, , to be the symbol ¢ in T (it
is in Ty by (1)); and dcfining the interpretation a(s) of ¢ in IZ,, for
u# A, tosend (tl,...,tn) in (Ty)" to the term o(tl,..., tn) in Ty, (it is in
Ty by (2)).

Two diffcrent clements of Ty never represent the same abstract data
item; this ‘absolutely no confusion’ condition is defined precisely a little
later. (These algebras arc somctimes called ‘absolutely free on zero
gencerators'.) The following very basic result just says that Ty is an inilial Z-
algebra.

Theorem 9. Ty is initial in the class of all Z-algebras, i.e., for each Z-
algebra A, there is one and only one Z-homomorphism Ty — A.

Proof. First notice that Ty is by definition a countable union
Iy = k”) T!;"l
of S-sorted subscts
Y= (Z.,|s€8),
TPV =T u{otl,...,tn) |6 €Ly s and tie(T¥), for
i= l,'..., nand sl,...,sneS*}|seS). The proof is by induclion.g‘n n.
Uniqueness: Suppose that h, ;' Ty — A are two homomorphisms. Then
they coincide on T{% because they preserve the constants:
(i) o) =0a =l a),
and assuming that they coincide on T§" they coincide on 7§"*!), because
the homomorphism property and the induction hypothesis give
i) h(o(tl, ..., ) = a(h(t1),..., h(tn)) = a(W’(11), ..., W (tn))
= I'(a(t], ..., tn)).
Thus, they coincide on all of Ty as desired.

Existence: Again by induction, we can define h on T{°! by (i), and on

71" * Y by (ii), assuming h already dcfined on 71", Thus h is defined on all g
T

We now introduce additional basic concepts. A data representation 4 has
absolutely no confusion if and only if the unique Z-homomorphism
h: Ty — Ais injective (i.e., cach h, is injective), and a data representation A

[ .o
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has no junk ifTh: Ty — A is surjective (i.c., each h, is surjective). A Z-algebra
having no junk is sometimes called reachable, prime, or minimal. Proposi-
tion 8 says that for a given I, the initial Z-algebras are an abstract data
lype; moreover, because an isomorphism is surjective, this ADT (i.c., cach
member of it) has no junk, and because an isomorphism is injcctive, it has
absolutely no confusion. In fact, these properties characterize this ADT.

.Proposition 10. A X-algebra A is isomorphic to T if and only if it has no
junk and absolutely no confusion.

.Pr.ooji The unique Z-homomorphism h: Ty - A is bijective if and only if it
is surjective and injective. O

It may now be worth emphasizing certain points:

1. Notice that we have not defined the abstract data type for a given
signalture (i.c., syntax)  to be T; rather, we have let I plus the
Propcny of initiality define the ADT as an abstract algebra, that
is, as an isomorphism class of algebras. For example, there will be
one data representation that uscs Z-trecs, and another that uscs
Z-terms. Approaches that work in terms of onc particular modcl
arc sometimes called ‘abstract model’ approaches. However, we
do not believe that the word ‘abstract’ is really appropriate for
such approaches (the term ‘constructive’ is uscd by Cartwright
[19]). Even if one does prefer such an approach, many-sorted
general algebra is still a powerful and relevant tool, because such
a model actually is a many-sorted algebra! Of course, one can
define an ADT by giving a particular data representation (as a
representative of the isomorphism class); the point is then that the
class (i.e, the ADT) does not depend upon the choice of
representative.

2. We have defined not just the data items of an ADT, but also a
complete set of constructors for them; in fact, these constructors
define the data items ‘abstractly’, that is, uniqucly up to change of
representation.

3. We can speak of ‘the’ initial algebra for a given signature, because
any two are isomorphic, and because we really want to talk about
the ADT, that is, about the whole class of isomorphic algebras.

- Despite this interest in abstraction, it is often necessary (o name
elements of an ADT. The most convenient way to do this is oftcn
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with terms, i.c., with elements of the term algebra T3 If A is a Z-
algebra, il h: Ty — A is the unique Z-homomorphism, and ¢ is a Z-
term, then h(t) is the element of A named by t; this idea was used
above (o define ‘absolutely no conlusion’ and ‘no junk’. It may be
usclul to think of ¢ as a simple (‘straight line’) program, of 4 as a
machine that can exccute each ‘instruction’ in X, and of h(¢) as the
result of running t on A.
The term ‘finite constructability’ is used by Cartwright [19] for the
condition of no junk with a finitc signature, and he uses the term ‘unique
constructability’ for our ‘absolutely no confusion’ condition. In addition,
Cartwright [19] impdses an ‘explicit definability’ condition that we¢'will see
in Section 6 is unnccessary if the functions involved are computable. Thus,
we have here the strange case of an author who not only uses (something
exactly equivalent to a special case of) the initial algebra approach to
abstract data types without knowing it, but who actually argues in very
strong terms against using an algebraic approach to data types at alll

4.2 Data types with equations

Onc might think that for cvery abstract data type A, there is some
finite signaturc I (perhaps contained in the signature of A) such that the
abstract data items in A form a Z-algebra absolutely without confusion.
This would mean that the abstract data ilems are in one-to-one
correspondence with Z-terms (or Z-trees). Unlortunately, this cannot
always be donc; some data abstractions are inherently confused. Such data
abstractions rcquire the use of equations and of a ‘no confusion’ condition
that is morc general than the ‘absolutely no confusion’ condition. One
example of such a data abstraction is that of all the finite SETs of integers
with the functions of union, singleton, and epsilon (i.c., ‘element of"). The
trouble is that union obecys commutative, associative, and idempotent
laws. - : © .-

There are also, many cascs, where one wanlts to add some guxiliary
functions to a given data abstraction, for example, an emptiness test to
SET. These auxiliary functions might be deflined by some equations in
terms of the previously given functions. This subsection generalizes the
preceding subsection to permit equations. (However, the ‘no confusion’
condition is deferred to Scction 4.4.)

Fix an S-sorted signature £, Now given an S-sorted set X disjoint from
T, let us think of the elements of X, (for s in S) as variable symbols of sort s,
and let us form a new S-sorted signature Z(X) by defining Z(X), , =
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I,,vX, and Z(X)., for w# A We can now form the I(X)-
algebra Tyx) and moreover,"we can regard it as a Z-algcbra, denoted
Tg(X), by simply ‘forgetting’-the variable symbols.! We now define a Z-
equation to be a triple (X, t1,12), where X is a finite S-indexed sct and
t1,12 are in Tgy,,. Given a Z-algebra A, let us now define an assignment
from X to A to be amapping f: X — A. Nolice that a Z-algebra A together
with an assignment from X to A dctermines a £(X) structure on A (just
use the assignment to extend the interpretation function of A). Then there
is a unique Z(X)-homomorphism from Tyy, to A, ic, a unique X-
homomorphism Ty(X) — A extending f; let us denote it f*. We now say
that a X-algebra A satisfies the Z-equation (X, t1,12) ill for cvery
assignment f: X — A4, we have that f*(¢1) = f*(12).

Unfortunately, there is a subtle difficulty with the way that equations
are defined in most of the literature (e.g.,, in Goguen, Thatcher & Wagner
[36]). As shown in Section 3.4, to get a deductive system that is sound
and complete, it is necessary to explicitly declare the variables that arc
used in each equation. Hence our notation (X, tl, 12); we shall also use
the perhaps more easily read form

(VX) tl =12,
or to make the variables explicit,

(Vx!:s1)(Vx2:52)...(Vxn: sn)tl =12,
where X, = {xi|si = s}. We shall even allow the familiar notation (1 = 12
when the variable declarations are known or obvious.

Given a set E of I-equations, let us say that a Z-algebra A satisfies E iff
A satisfies each equation in E; in that case, let us call A a (T, E)-algebra; we
also call (I, E) an equational presentation. The variety of E is the class of
all (£, E)-algebras. The following generalization of Theorem 9 says that
there always are initial (I, E)-algebras; it is proved in Scction 4.3.3.

Theorem 11. For any signaturc T and sct E of Z-cquations, there is an
initial (Z, E)-algebra. ]

From the definition of satisfaction it follows easily that the class of all
(X, E)-algebras is closed under isomorphisms. Thus, the four remarks at

the end of Scction 4.1 apply as well to the present context where cquations
are allowed.

t That is, by restricting the interpretation function for Ty,y, from L(X) to L; in
gencral, the algebra resulting from such a restriction of an algebra A to a
subsignature I is called a E-reduct and is denoted Alg.

i % LA o
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4.3 Equational deduction

Given a set of cquations, the soundness of (one-sorted) equational
logic asserts that applying a certain set of rules for deducing new equations
always yiclds equations that are satisfied by any algebra satisfying the
given cquations. Similarly, completeness asserts that every equation
satisficd by all algebras satisfying the given equations can be deduced
using these rules. These two properties together imply that, for the class of
all algcbras satislying a given set of equations, the model theoretic notion
of an cquation being satisfied by all algebras in the class coincides with the
proof theoretic notion of the equation being derivable from the given
cquations by the rules of cquational deduction. Such a theorem was first
given for the one-sorted case by Birkhofl [15]; see also Tarski [82].
However, neither Higgins [39] nor Birkhofl & Lipson [16] gave rules for
cquational deduction in their treatments of the many-sorted case. The first
completeness theorem for many-sorted equational logic was given by
Benabou [2] using a categorical approach, which does not involve explicit
rules of deduction. Explicit rules arc given in Section 4.3.2 below;
soundness and complclencss are treated in Section 4.3.3.

In general, the literature on ADTs has simply applied the ordinary rules
of onc-sorted cquational deduction to the many-sorted case. But this is not
sound. A first correction of the one-sorted rules by introducing explicit
quantificrs yiclds a system which, although sound, is not.complete; further
rules arc needed for the addition and deletion of quantificrs.

4.3.]1  An unsound deduction

The [ollowing cxample demonstrates the unsoundness of using
the usual onc-sorted rules for many-sorted deduction. Let T be the
signature with sort set {a, b}, and with Z,, = {T,F}, Zyp = {1}, Zpos =
{&, +}, L.p = {FOO}, and Z,, = lor all other u,v. (Although we
intend ‘b’ to suggest ‘Boolean’, Z-algebras need not have as elements of sort
b cxactly the truth-values T and F; indecd, it may help to think of T and F
as two arbitrary symbols that may or may not happen to denote the same
clement in an algebra)) Finally, let E consist of the following seven
cquations, where 4, B arc variables of sorts a, b, respectively

AT=F
F=T
B+B=T

B& B=F
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B&B=DB
B+B=8B
FOO(A) = "FOO(A).
Boolean algebra gives the first six cquations. The rules of onc-sorted
equational deduction now give
T = FOO(A) + " FOO(A4) = FOO(A4) + FOO(A)
= FOO(4)
= FOO(A) & FOO(A) = FOO(A) & 1\ FOO(A)
=F.
If thesc rules of deduction were sound, then the cquation T = F should
hold in every XI-algebra satisflying E. But there is a Z-algcbra BAR
satislying E where this is not so: BAR, = &J; BAR, = {T, IF}; FOO is the
empty function; and all the boolean functions are as expected. Thercfore
these rules are not sound. This example evolved from one suggested by
Gerard Huet, who first pointed out (o us the unsoundness of the ordinary
rules of deduction in the many-sorted casc; it is intcnded to suggest how

unsoundness might arise in practical examples such as paramcterized
abstract data type definitions.

4.3.2  The rules of deduction

The first step toward correcling this situation has alrcady been
taken: equations must have all variables explicitly declarcd with their
sorts, yiclding what can be thought of as cquations with explicit
quantifiers. But, il the old one-sortcd rules of deduction arc modified in
this way, the resulting system is not complete. Two new rules are necded to
add and delete the quantifiers.

Given a signature I and a set of Z-equations; the following are the rules
for deriving equations:
(1) Reflexivity. Each equation
VX)) =t
is derivable.
(2) Symmetr y If

.

~VMXyu="r
is derivable, then so is
(VX)) =1t

(3) Transitivity. If the cquations
VX =10t, (VX)' =1"

{
!
\
i

-
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are derivable, then so is
VX))t =1

(4) Substitutivity. 1f :
(VX =12
of sort s is derivable, if x € X is of sort &', and if
VYl = u2
of sort s' is derivable, then so is
(VZ)l =12,
where Z=(X —{x))uY, vy =ti(x+uyj) for j=1, 2, and
‘tj(x + uj)’ denotes the result of substituting uj for x in ¢!

The following two tules complcle he system: ~ '

(5) Abstraction. If
VX =1t
is derivable, il y is a variable of sort s and y is not in X, then
vVXy{yp=r¢
is also derivable. (This rule also applied if X = ¢, where there are
originally no variables, and one is added.)

(6) Concretion. Let us say that a sort s is void in a signature X iff
Ty, = &. Now, il
VX =1t
is derivable, if x € X, does not appear in either ¢ or ¢, and if s is
non-void, then
VX —{x} =1
is also derivable.

4.3.3  Soundness, completeness, and initiality theorems

This subsection gives the basic soundness and completeness
propertics for the rules of equational deduction given in Section 4.3.2.
Although the ‘ordinary’ rules of deduction are not in general. sound
(Scction 4.3.1), it turns out that for many examples of interest they are

t This notion of substitution can be made precise by using the same machinery
that was used to definc equational satisfaction in Section 4.2. Let ¢ be a E-term
with variables from X, i.c. t € Te(X). Let x € X, and let u € Tx(Z), where
Z = (X — (x})w Y. Now definc f: X — Ti(Z) by f(y) = y il y v x, and f(x) = u.
Then f*: Te(X) - Ti(Z) is the unique E-homomorphism extending /, and we
define 1(x «— u) = (1),
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both sound and complete; for example, it will suflice for there to be a
constant term of each sort. However, there arc important cxamples not
having constants of some sorts, such as the theory of partiaHy ordered scts,
or many common parameterized ADTs. Theorem 14 below gives a simple

necessary and suflicient condition under which the ordinary rules arc both
sound and complete.

Theorem 12. Soundness. Given a set E of Z-equalions, il an equation is

deducible from E using rules (1)~(6), then it is satisfied by every I-algcbra
salislying E.

The proof, which is a straightforward but ledious check of the soundness
of each rule separately, may be found in the appendix. It is intcresting to
notice that only this result, and not completeness, is nceded o prove
existence of initial algebras for the equational case, which we restate as

Theorem 11. For any signature X and sct E of I-equations, there is a
(Z, E)-algebra Ty g that is a quotient of Ty such that for any other (Z, E)-
. algebra A, there is a unique -homomorphism from Ty g lo A.

Proof. Let Qg, also denoted Q for short below, be the following X-
congruence on Ty.

Q¢ i (V) =1 is- derivable from E using rules (1)-(6) of
Section 4.3.2

Rules (1)-(3) give that Q is an equivalence rclation. We now show

substitutivity. Given o in Z,,, with w = s1...sn, the equation
(VX)a(x,,..., xn) = a(xy,..., xn)

holds by rule (1), with X containing xi of sort si for i=1,...,n. By n

applications of rule (4), assuming that tiQt'i for i = 1, ..., n, we now get
~V)a(tl,...,tn) = a(l'l, ..., t'n),

and therefore a(t1,..., tn)Qa(I'l, ..., ¢'n) as desired.

Now let Ty £ = Ty/Q. We first show that Ty g is a (I, E)-algebra, ie, Ty
satisfies each equation (VX)) t = (' in E. Say X has elements x|, ..., xn and
consider a map f X — Ty sending xi to [ti] in Ty g This map can be
factored as g o g, where q: Ty — Ty gis the quotient and g: X — T sends xi
to ti. By initiality of T¢(X), we have f? = q o g*. Then what we have to
show is that f*(t) = f*(¢') or, equivalently, g?(t)Qg*(t). But (sce footnote,

e o rm— e e o
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Section | 4.1) g*) =t(xl «tl,...,xn«tn) , and g% (t) =
t'(xl «tl,..., xn « tn). Moreover, the equation }

(V@N(x] = 11,y xtt = tn) = U(x] = L1, ..., X1 + tn)
is deducible using rule (1) in the form

(VUi = ¢,
for i=1,...,n, and n successive applications of rule (4). Thus, f*(f) =
J2(t') as desired.

We now prove that Tg g is initial. Let A be a (Z,E)-algebra. By the
soundness of rules (1)-(6), 4 satisfies all equations (V&) ¢t = ¢’ deducible
from the equations in E using these rules. By the definition of satisfaction,
this means that h(t) = h(t'), for (V@) t =’ any such equation, where
I: Ty = A is the unique homomorphism. In other words, we have that
Q < O\, and hence, by Proposition 6, there is a unique Z-homomorphism
w: Ty = A such that ue g = h, where g: Ty — Ty g is the natural quotient
map. All that is now lcft is to prove uniqueness of u. Any u": Ty 5 — A must
satisfy «'oq = h since Ty is initial for all Z-algebras; therefore the
uniquencss condition of Proposition 6 gives the desired result. a

This construction of the initial (Z, E)-algebra, Ty g as a quotient of the
term algebra by the congruence Qf gencrated by equational deduction
from E, is the natural generalization of Ty to the case where there are
equations. We now state the completeness of our rules of equational
deduction; the proof has. been exiled to the appendix.

Theorem 13. Completeness. Given a set E of I-equations, then every
cquation salisfied by all the algebras in the variety of E is derivable from E
using the rules (1) to (6) above. .
Wec next give necessary and sufficient conditions for the ordinary rules of
equational deduction to yield the same derived equations as the rules of
Scction 4.3.2. Recall that a sort s is void in X il Ty, = @&. By an ordinary
equation of sort s over X is mcant an expression of the form ¢ = ¢’ where ¢
and ¢’ are both I-terms of sort s. Such an equation is satisfied in a given Z-
algebra A il all the equations of the form (VX)) ( = ¢’ are satisfied in A,
provided that X includes all the variables occurring in ¢t and ¢'. By the
ordinary rules of equational deduction we mean the variants of rules (1) to
(4) above obtaincd by climinating quantifiers. Then, for a given signature
I, we say that the soundness and completeness theorems hold in ordinary
Jorm iff for any sct E of IL-equations (with quantifiers), an ordinary
cquation is satisfied by all algebras satisfying E ifl it is derivable using the
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ordinary rules of equational deduction. Let I{x:s} denotc the new
signature constructed from X by adding a new constant x of sort s.

Theorem 14. The soundness and completeness theorems hold in ordinary
form for a signature T iff for all sorts s,s’ of L, s’ is non-void in the
signature Z{x:s}. . : : O

The proof of this result may be found in [32], where nccessary and
sufficient conditions for the quotient of T by the Z-congrucnce gencrated
by the ordinary rules of deduction to be an initial algebra arc also given.

44 Equivalents of initiality

Some reseurchers have felt the initiality condition, that ‘there
exists a unique homomorphism’, is too abstract to be of interest (e.g.,
Cartwright [19]). Yet there are equivalent propertics having nothing to do
with category theory. This subsection states a number of these, and in
particular some generalized Peano axioms.

We now generalize the ‘no junk, no confusion’ conditions to the casc
where there may be equations. A (Z, E)-algebra A has no confusion relative
to the set E of X-equations if and only if the unique Z-homomorphism
h: Ty — A is injective. We now give a corresponding characterization of

no junk, and then show that these propertics completely characterize the
ADT of initial (Z, E)-algebras.

Proposition 15. A (T, E)-algebra A has no junk if and only if the uniquc Z-
homomorphism Ty ¢ — 4 is surjective. Morcover, A is isomorphic to Ty ¢
if and only if it has no junk and no confusion relative to E.

Proof. By dcfinition, A has ng junk ilf Ty — A is surjective, and we know
from the proof of Theorem 11 that Ty — Ty is surjective; therclore (by
Proposition 3), A has no junk iff Ty — A is surjective. Then h: Ty g — A
is bijective if and only if it is surjective and injective. a

We now give more concrete equivalents of these conditions, first showing
that structural induction [17] is equivalent (o the *no junk’ condition, ..,
to reachability.
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Proposition 16. The following are equivalent for a Z-algebra A:

(1) A is reachable, i.e., the unique h: Ty — A is surjective;

(2) A has no proper Z-subalgebras;

(3) Structural induction. If P = {(P,|sin S) is an S-sorted subsct of A
such that
a. for each constant ¢ in I of sort s, ¢ is in P,, and
b. for cach function symbol ¢ of arity s1...sn and sort s, i pi is in

Pyfori=1,...,n, then a(pl,..., pn) is in P,

then P = A.

Proof. We first show that (1) implics (2): if A is reachable and P is a-proper
I-subalgebra of A, then h™!(P) is also a proper Z-subalgebra of Ty, which
is impossible by Proposition 4.

To show that (2) implies (3), it suffices to note that the conditions (3a)
and (3b) say exactly that P is a Z-subalgebra of A.

Finally, to show that (3) implics (1), supposc that h is not surjective.
Then its image is a proper subalgecbra P of 4, i.e., is a subsct P of A
salisfying (3a) and (3b). a

We now treat the casc where there are no equations.

Proposition 17. A is an initial Z-algebra il and only if it satisfies the
following generalized Peano axioms:

(1) If ¢ and ¢’ arc distinct function symbols in X of the same sort s,
then the images of the [unctions that they denote on A are disjoint
subsets of A4,.

(2) Each ¢ in Z dcnotes an injective function on A.

(3) Structural induction. If P = (P, | sin S) is an S-sorted subset of A
such that
a. for each constant ¢ in I of sort s, o is in P,, and
b. for each funclion symbol o of arity sl ...sn.and sort s, if pi is-in

P,fori=1,...,nthen o(pl,..., pn) is in P,,
then P = A.

Proof. Assume that A is initial. Then by Theorem 9 and Proposition 2, A
is isomorphic to Ty; so let us assume that 4 is Ty. Then axioms (1) and (2)
above follow from the construction of Ty in Theorem 9. Next, axiom (3)
holds by the previous Proposition.

For the converse, assume that A is a Z-algebra saltisfying axioms (1), (2)
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_and (3). Then the previous Proposition tells us that the unique Z-
homomorphism h: Ty — A is surjective. We will be donc if we prove that h
is also injective, i.e., if we prove that h(t) = h(t') for ¢, t' in Ty, , implics that
t = ¢. We will prove this by induction on n = max{depth(t), depth(t’)},
where depth(t) is the depth of ¢ as a tree. For n = 0, t and (' are constants
in ,, and what we want follows from axiom (1). Now suppose t,t' € Ty,
such that max{depth(¢), depth(t')} = n + 1, and assume (without loss of
generality) that depth(t) =n + | and ¢ =o(tl,...,tk) for k> 0. Then
h(t) = a,(h(t1),..., h(tk)), and by axiom (1), ¢’ must bc of the form
a(t'l,..., t'k) for some t'l, ..., 'k in A. Then axiom (2) implies that

h(ti) = h(t'i) fori=1,..., k.
Because each ti and t'i has depth less than or cqual to n, the inductive
hypothesis gives us that

ti=ti fori=1,...,k,

and hence that ¢t = ¢, as desired. O

It follows from the above proof that for reachable algebras, the first two
generalized Peano axioms in Proposition 17 are equivalent to ‘absolutcly
no confusion’. This equivalence fails for nonreachable algcbras, because
- the operations may fail to be injective outside the image of 7.
We now further generalize the Peano axioms to include equations.

Theorem 18. Let I be an S-sorted signature, let A be a X-algebra, and let £
be a set of L-equations. If t is a Z-term (i.e., a ‘ground’ term, containing no
variables), let [¢] denote the result of evaluating t in A. Then A4 is initial
among all Z-algebras that satisfy E il and only if
(1) (1] =[] in A4 if and only if the equation (V) t =" can be
proved from equations in E using the laws of many-sorted
equational deduction given in Section 4.3.2,
(2) Structural induction. If P is an S-indexed family of subscts P, of A
such that:
a. for each constant g in I of sort s, [a] is in P, and
b. for each function symbol ¢ in X of arity s1...sn and sort s, il ai

isin Pyfori=1,...,n then a(al,...,an) is in P,
then P = A.

Proof. We have only to show that for a rcachable Z-algcbra A, axiom (1) is
"‘equivalent to ‘no confusion’, i.e., to injeclivity of the unique h: Ty g — A. If
h is injective, then A is isomorphic to Ty g and Ty g satisfics axiom (1) by
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construction. Conversely, suppose that A4 is reachable and satisfies axiom
(1). Let f: T — A be the unique Z-homomorphism. Then A is isomorphic
to Ty/Q, and axiom (1) says that @, = Q the congruence generated by
the rules of cquational deduction from E. Therefore A is isomorphic to
T1/Qx = Ty g which is initial; thus, h must have been an isomorphism. [

This proof shows that if the sccond axiom (which is cquivalent to ‘no
junk’) is satisficd, then the first axiom is equivalent to ‘no confusion’. Thus,
when E = @, the first condition above is cquivalent to axioms (1) and (2)

of Proposition 17. Theorem 18 may not have been formally stated before,
but the inluition behind it is part of the folklore.

5 Abstract machines

Recall that data types are algcbras, whereas machines have
internal states and use techniques and concepts from automaton theory,
such as rcachability, obscrvability, and minimality. Abstract data types are
uscful for understanding the type systems of programming languages; -
especially when they permit user-defined types as in ALGOL 68 [87].
Abstract machines are useful for understanding the specification and im-
plementation of softwarc modules, for example, as in the HDM metho-
dology of [61]. It is a serious error to assume that there is little or no
diffcrence between these two enterprises. This error has led, for example, to
thinking that the appropriate definition of ‘implementation’ for software
modules is given by the algebraic notion of isomorphism, and has also
led to the rather pointless controversy about whether final or initial
algebra scmantics is ultimately ‘the best approach’, For abstract machines,
it is their behavior that matters. Machines that are different (i.e., non-
isomorphic) as data types can still have the same behavior. Thus, a
soltware module can in gencral be realized in many different ways.

Consider for instance the theory of automata. It has three sorts, input,
state, and output, and operators
—e__: input, Input — input
A: input
so: state
next: input, state — state
oul: state — output

plus some obvious equalions that make input a monoid and next a
monoid action. An automaton is then an algebra on this signature,
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satisfying those equations. An automaton becomes a black box when we
consider the sorts input and output as the only visible sorts. We can then
observe the automation’s behaviour by feeding it inputs and observing
the corresponding outputs. More generally, we are allowed to cvaluale in
our automaton aJl expressions with visible sorts, such as out(next(a e c,
next(b, so))), or A e aeb but not internal states, i.c., not cxpressions of
sort state, such as next(a e b, so). Two automata with’ same input and
output sets have the same behavior, i.c., arc indistinguishable as ‘black
boxes’, il and only if all expressions with visibie sort have the same value in
both.

All this generalizes for an arbitrary signature T and a subset ¥ < S of sorts
dcclared as visible sorts. Let M be a I-algebra (we use M (o stress that, by
specifying which sorts are visible, we arc looking at M as a machinc) we
shall make more precise what we mean by ‘evaluating an expression with
visible sort’ in M. Let My denote the V-sorted sct (M, |ve V); then the
expressions in question are the elements of T¢(M),, for cach visiblc sort v.
There is an evaluation map ¢, that computes the result of evaluating any
such expression in M, namely the unique L(M,)-homomorphism to M
(M can be vicwed as a Z(M)-algebra by adding thc clements of M,
as constants). We then say that two XZ-algebras, M and M’ are
(V-)behaviorally identical, or that they have the same (V-)behavior ilf

(i) My = M'y, and
(ii) ep(t) = £50(t) for each ¢t in Ty(M,), with v in V.

For X an arbitrary signature, the usual notions of automaton theory
generalize to machines, i.e. to X-algebras with a given sct of visible sorts.
For example, every automaton behavior admits an initial realization,
which is initial among all automata that have that behavior; there is also a
minimal or final realization, having the property of finality, dual to
initiality, among all reachable realizations of that behavior. The initial
realization identifies as few states as possible; the minimal realization
identifies internal states as much as possible while retaining the same
behavior; thus it uses as few states as possible. The reader may consult [33]
for more powerful generalizations of classical automaton thcory results
(e.8., [28]) to machines; see also [89] and [25]. Here, we construct initial
and final realizations of a machinc's bechavior using dcfinitions which,
though not fully general, suffice to present the main results with a
minimum of technical machinery.

The initiality and finality thcorems for machines usc the notion of a
strong V-homomorphism between two V-behaviorally identical machincs.
This is exactly a X-homomorphism that leaves unchanged all clements of
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external sort. For M and M’ V-behaviorally identical, this can be
formulated by saying that £ M — M is a strong V-homomorphism ifl [ is a
IZ(M,)-homomorphism.

. om

Theorem 19. Let I be an S-sorted signature, ¥ & S a set of visible sorts,
and M a Z-algebra. Then there is an algebra I(M ) behaviorally identical to
M, called the initial realization of the behavior of M, such that for any X-
algebra M’ behaviorally identical to M there is a unique strong V-
homomorphism h: I(M) - M'.

Proof. 1(M)is an S-sorted subsct of Ty(My). Specifically, define 1(M) to be
the (S-sorted) set of V-irreducible terms in Ty(My), where a term ¢ is V-
irreducible ifT any subterm ¢ of visible sort v is an element of M,, i.c., iff
= {,(y « ') for ¢’ of sort ve V implies t' € M,.

In particular, for each visible sort ve V, we have I(M),=M,. The
operations of I(M) are defined as follows: the constants for visible sorts are
thosc of M, and for other sorls the constant symbols in the signature. If
CEL, . uns, and if ;e I(M), for i=1,...,n, then the value of the
operation o(t;, ..., t,) is cither the clement ep(a(ty, .. ., ta)) € M, il thesort s
is visible, or else if s is not visible, the term a(¢y, ..., t.) € Te(My),, which is
itself V-irreducible since all its subterms ¢,,..., t, are V-irreducible.

From this definition it is clear that M and I(M) are behaviorally
identical. Morcover, /(M) = I(M') for any M’ (V-)behaviorally identical
to M, i.c., I(M) does not depend on the representative M, but only on its
behavior.

Note also that there is a unique surjective L(My)-homomorphism
iy Te(My) = I(M). Thus the uniqueness part of thé theorem is proved,
since there is at most onc £(M,)-homomorphism (i.e., a unique strong V-
homomorphism) between J(M) and any M’ behaviorally identical to M.
To prove the existence part, for any M’ that is (V-)behaviorally identical
to M, define the function h: I(M) — M’ by h(t) = £,-(1). We will be done if
we show that

(*) hoeyan =enm
since then, by Proposition 6, his a Z(My)-homomorphism, i.e., a strong V-
homomorphism, as desired. Notice that g;)(t) = t for each t € I(M); this
follows from structural induction over the operations in I(M). Thusforva
visible sort, (*) follows from M’ and I(M) both V-behaviorally identical to
M. For s a nonvisible sort, note that any term ¢ € Tx(M ), can be written as

t=0(xl —tl,...,xn « tn)
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with £(x1 « g(tl), ..., xn — g0 (tn)) V-irreducible (just take 1, ..., tn
the largest subterms with visible sorts occurring in ). This finishes the
prool, after establishing (by structural induction and the homomorphic

property of €-) that for any Z-algebra M’ and ¢ as above, the following
equality holds

(**)  ea(t) = erp(t'(x] = err(11), ..., X1 = Ep(t))),
since then we get

hemy(t)) = h(ermy(t'(x1 — egan(tl), ..., X1« g500(11))))
(by (**))
= h('(x1 « grap(tl), ..., xn « gq(tn)))
= ep('(x] — grpa)(tl), ..., xn — g0)(101)))
(by definition of h)
= ep(t) (by (**) and behavioral equivalence). g

The final realization theorem restricts attention to rcachable machines. A
X-algebra M is called V-reachable, or a V-rcachable machine, il the
evaluation map ey: Te(My) — M is surjective. Intuitively this corresponds
to not having internal states that cannot be built up from the constants
and the visible values by repcated operations. Note that /(M) above is V-
reachable by construction. The construction of the final realization
identifies any two internal states that cannot be distinguished as different
from the visible sorts, i.c., thal are (V-)observably cqual.

Theorem 20. For X an S-sorted signature, ¥ < S a sct of visible sorls, and
M a Z-algcbra, there is a V-reachable algebra N(M) thatis V-behaviorally
identical to M, called the final (or Nerode) realization of the behavior of M,
such that for any V-reachable algebra M’ behaviorally identical to M
there is a unique strong V-homomorphism ¢: M’ = N(M).

Proof. Define N(M) to be the quolient of I(M) by the following
congruence ner: for visible sorts v, tner,t’ iff ¢ = (’; for s not in V, tner,t’ il
for each term ¢, € T (M, U {y}), with y a variable of sort s, v € ¥, onc has
Exm(t1(y < 1) = ypm(ti(y « 1))
Then ner is a Z-congruence, and (after the trivial identification of cach
t € M, with the onc-clement cquivalence class {t}) it also follows from the
construction that N(M) is behaviorally identical to I(M), thus, also to M.
By initiality of I(M), any strong V-homomorphism q: M’ — N(M), for M’
V-reachable and behaviorally identical to M must satisfly goh = p,
for h:I(M)— M’ and p:I(M)— N(M) the unique strong V-
homomorphisms. € surjective and gy = li o g,y imply I is surjective.

B
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Thus by Proposition 6, ¢ exists and is unique ifl the congruence Q,
associated to h is contained in ner. Let ¢, ' € I(M), be two terms such that
h(t) = h(r') but (¢, ¢') is not in ner,. Then there is a term ¢, € Te(My U {y})s
for some v e ¥, such that

aon(ti(y « 1) # eian(ti(y « 1)) e M,.
Since ey = h o g0y and b, is the identity on M, this inequality becomes
en(ti(y « ) # eac(ta(y — 1) e M,,
which in turn can be expressed as
On(ti(y — 1) # dp-(ti(y — 1)) €M,
for Oy Te(M') = M’ the unique Z(M')-homomorphism, since - ex-
tends &, Using the homomorphic property of é,, and reasoning by
structural induction on t; as in (**) of the previous theorem, this
incquality can be expressed as

Su(ti(y « Sa(1))) # Sar-(t1(y « Sp (1)) € M,.
This is the contradiction we seek, since

Oar(t) = ear(t) = h(t) = W) = er- (1) = dp:(1). a

We fipish this scction by giving a precise definition of an abstract machine.
Two data types are ‘abstractly the same’ iff they are jsomorphic, Two
machines arc ‘abstractly the same’ iff their behaviors are isomorphic, i.c.,
ilT (up to a possible change of representation) any expressions with visible
sort give the same result in both. Notice that, both for data types and for
machines, *abstract’ means (independent of the representation’, but in the
casc of machines this can happen without the machines being isomorphic
algebras; only their behaviors have to be isomorphic. In [33] behaviors
arc actually algebras and the phrase ‘isomorphic behavior’ has the usual
algebraic sense. In this paper we give an equivalent definition that does not
require explicitly defining behaviors as algebras, but captures the intuition
of visiblc expressions giving ‘the same’ result.

Definition 21. For T a signature and V a sct of visible sorts, one says

that two machines M and M’ are V-behaviorally equivalent, or that they
have isomorphic behaviors, iff there is a V-sorted bijection a: My — M’y
such that for each ¢ in Ty(My), with v in V one has

alea(t)) = ear(a’ (1)),
where a” is the unique I(My)-homomorphism induced by the map
My & M’y & T(M'y), with 5 the inclusion. ’ (]

o .
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It is easy to check that behavioral equivalence is an equivalence relation.
Thus we can now define an abstract machine (or abstract module) as an
equivalence class of machines modulo bchavioral equivalence. It is also
easy to check that if M and M’ are behaviorally cquivalent then

. (i) Their initial realizations /(M) and I(M') are Z-isomorphic.
(ii)  Their final realizations N(M) and N(M') are Z-isomorphic.

Indeed, if one defines a V-homomorphism f: M - M’ as a Z-homomorph-
ism such that f; is bijective for each v in V, Theorems 19 and 20 still hold
after changing ‘behaviorally identical’ by ‘behaviorally equivalent’, and
‘strong V-homomorphism' by ‘V-homomorphism'. Nole finally that the
concept of abstract machine generalizes that of abstract data type since in
the case where all the sorts are visible two machines are behaviorally
cquivalent iff they are Z-isomorphic, i.e., abstract machines become
abstract data types when all sorts are visible.

The most common use of final realizations N(M) is to take as M the
initial (X, E)-algebra, for E a set of equations, and then to take the final
realization of its behavior, called the final algebra specified by (I, E). We
shall denote this algebra by Ng g. This is the idea in [38], later formalized
by Wand [89]. Note that Ty ¢ and Ny g both specify the same abstract
machine; note also that I(Ty ) is in general not isomorphic to Ty g but
there is a surjective strong V-homomorphism I(Ty g) — Tyg.

6 Initiality and computability

This section is a syrvey of results f[rom a rather widcely scattcred
literature on computable algebras, initiality, and finality, including work
by Malcev, Rabin, and Bergstra and Tucker. We stress the fundamental
role played by the categories of: (1) recursive sets and recursive funclions;
and (2) recursive algebras and rccursive homomorphisms. The latter
category inherits appropriate versions of basic universal algebra construc-
tions such as quotients and free algebras; this helps in establishing facts
about computable algebras. Our exposition also includes an introduction
to rewrite rules, and a discussion of equality enrichments and their rclation
to both computability and ‘inductionless induction’ thcorem proving. Onc
new result is an intuitively appealing characterization of computable
algebras using only algebraic concepts; this can be scen as a purcly
algebraic formulation of a Church-like thesis.
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6.1 Recursive sets and recursive functions

We assume that the reader is familiar with the intuitive notion of
an (effectively) computable total (or partial) function on the natural
numbers; this is a function for which there is an algorithm to compute its
values. Church's thesis identifies this intuitive notion..of a computable
function with the precise mathematical notion of a recursive function.
Recursive functions can be defined in several equivalent ways, such as
lambda definability, Turing machines, and primitive recursion with the u-
operator, using 0, the successor function and the projections, where, for
P(x) a predicate on the natural numbers, the u-notation ux[P(x)] stands
for ‘the smallest x such that P(x)".

Unless otherwise stated, by a recursive function f on the set w of natural
numbers we will mean a total function f w — w that is recursive. A
recursive set is a subset U € w such that its characteristic function
fu:w — w is recursive, i.e, such that there is an algorithm to decide
whether ne U. The following is a useful technical tool in studying
recursive sets.

Lemma 22. Each nonempty recursive set U can be expressed as the image
of a rccursive retract, i.c., of a recursive funclion q: w — w such that

9°9=4q.

Proof. Let ng be the smallest element of the nonempty set U, i, let
ng = uz[xy(z) = 1]. Then gy: @ — w as given by the A-expression
l.x._ if x € U then x else ng,

satisfies qu(w) = U, and is a retract, i.e., quoqu = qu.
Converscly, if ¢ is a (recu¥sive) retract; ‘then its nonempty image
U = ¢(w) has a recursive characteristic function given by

An.if n = q(n) then 1 else 0. ()

A recursive function f: U — V between two recursive sets is a total function
from U to V that is equal to the restriction of a recursive function on the
natural numbers; i.e,, there is a recursive f% w — w such that the diagram
in Figure 14.3 commutes (where the vertical arrows denote set inclusions).
Under these conditions, we say that f is the restriction of f°, and that f°
extends f.

Lemma 23. Recursive sets and recursive functions are the objects and
arrows, respectively, of a category that we shall denote REC.
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Proof. Since the identity function 1, on the natural numbers is recursive
and restricts to the identity function 1y, for each recursive set U, it is clear
that the identity axiom is satisfied. To sce that the composition g o f of two
recursive functions f and g is recursive, consider the diagram and notice
that the rectangle obtained by ‘pasting’ the two smaller rectangles also
commutes. Now, g%0f° is recursive, since il is wecll-known that the
composition of two recursive functions on w gives another recursive
function (this is intuitively obvious, since from an algorithm to computc f°
and another to compute g° we can obtain one to compute g°+f°) This
shows that gofis recursive. O

Given a recursive f% w — w and recursive sets U, V, it may not be
decidable whether or not f° restricts to a function from U to V. However, if
V is nonempty, the function gy of° will always so restrict, since V is the
image of q,. This provides a fully general method (when V is nonempty)
for explicitly presenting a recursive function between recursive scts U, V,
namely as a recursive function on w followed by the retract gy; for it is
straightforward to check that if f© restricts to f; then so does gy of°.
Note also that our definition of a recursive function f: U — V between two
recursive sets captures all computable total functions from U to V. For if f
is eflectively computable and if U is nonempty, then the function feqy is
recursive on w (by Church’s thesis) and extends f (here qy is understood to
have U as its target). Hence, in the sequel we will sometimes define a

function with domain U by giving its algorithm, without explicitly
mentioning its extension.

Lemma 24. Anarrow f: U = Vin REC is an isomorphism ifl it is bijcctive.

Proof. Since the arrows of REC arc functions, it is clear that any
isomorphism is a bijection. Conversely, if the recursive function [ is
bijective, then its inverse function f~! is also recursive, as shown by the
expression Ax. uz{z e U and f(z) = x]. a

Fig. 14.3. Definition of recursive function

/
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An isomorphism f: U — V in REC will be called a recursive isomorphism,
and then U and V are said to be recursively isomorphic. (Note that this
notion of recursive isomorphism is different from the standard one in
recursion theory.)

Lemma 25. Each infinite recursive set U is recursively isomorphic to w;
cach finite recursive set U, say with card(U) = m, is recursively isomorphic
to the sct [m] = {x € w | x < m} of the first m natural numbers.

Proof. 1f U is empty, then U = [0]. If U is a nonempty, the function from

U to w given by the expression Ax. card{y € U | y < x} defines a recursive

isomorphism of U with w if U is infinite, or with [m] if card(U) = m.
a

This proof is not constructive, since we may not be able to decide the
cardinality of U from an algorithm to compute its characteristic function
(sce [80] 5.1, 5.XV).

A recursive equivalence relation on a recursive set U is an equivalence
relation Q@ on U such that ils gharacterisfic function xg! o= is
recursive, i.c., such that we can decide when two clements are Q-cquivalent.
The equivalence relation @, associated to a recursive function L U — Vis
clearly recursive (since xQ,y ill f(x) = f(y)). Conversely, given a recursive
cquivalence relation Q on U, it is an easy exercise to sce that we can define
a recursive retract pg: U — U that induces Q, using the expression:
Ax. pz[(z, x) € Q1. The retract pg picks a canonical representative for cach
cquivalence class modulo Q, namely the smallest element of the class, and
so the set po(U) is in bijective correspondence with the set of equivalence
classes U/Q. Since p4(U) is a recursive sct and pg: U — po(U)isa recursive
surjection, this provides a notion of quoticnt within the category REC
(replacing ‘equivalence class’ by ‘canonical representative’). Of course,
pa: U = po(U) also has Q as its induced congruence; moreover, the

Fig. 14.4. Associalivily of recursive function composition
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(recursive) inclusion j: po(U) — U is a right inverse (o Pa. ic., pgoj=
lpyw). More generally, for any surjective recursive function f U - V we
can find a recursive right inverse g (a ‘choice function’) such that fog = 1,.
One such g is given by the expression Ax. uz[z e U and f(2) = x]. Thereis a
lemma of quotients for recursive functions entircly analogous to the onc
for homomorphisms in Proposition 6.

Proposition 26. Let f: U — V be recursive function. Then the following are
equivalent properties of f:
(1) There is a recursive isomorphism u: po,(U) = V¥ such that
uepg, =/
(2) [fis surjective.
(3) If : U — A is a (not necessarily recursive) function to a sct A,
then
a. There exists a function u: ¥ — A such that u of =h (ic, the
diagram in Figure 14.5 commutcs) iff Q< O
b. If such a function u exists, then it is unique. Morcover, if A and
h are recursive, then so is u.

Proof. We first show that (1) implies (2): since Pe, is surjective and u is an
isomorphism, f is also surjective.

We next show that (2) implies (3b): let g be a recursive right inverse for /.
For any u such that uef= h we have
uof=uo(fog)of=(hog)ef.
Since f'is surjective, this shows that u = Ive g; thus u is unique, and is also
recursive if h is, .
. Assuming (2), we now show (3a). In fact, we will show that (heg)ef=
ilf @, < Q,. Again letting g be a recursive right inverse for f, f(g(f(x))) =

J(x) gives us that xQ,9(f(x)). Then Q, < Q, implics that Mg(f(x)) =
h(x) for all x in U, Conversely, if there is an x in U such that f(x) = f(y),
but h(x) # h(y), then we have h(g(f(x))) = h(g(f(y))) and thus

h#hog)ef.
Fig. 14.5. Universal property of the quotient

y—————eAa
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Finally, we show that (3) implies (1): since Pe, and finduce the same
recursive equivalence relation and since pg, is a retract, the restriction
J':pe,(U) — Volfsalislies f* o pg, = fand also is injective. To see that f* is
surjective, let v: V' — pg (U) be the unique recursive’ function such that
vef=pg,. We then have f=f"9pg =/f"2vef, which by (3b). shows
ly =/f"ov; thus f": pg (U) = V is surjective. ad

A slight variant of the above concept of a recursive function between two
recursive scts is the concept of a recursive function of several variables: we
say that £ U, x --- x U, = V is a recursive fynction of k variables (where
Ui, ..., Ui, V are recursive sets) if fis the restriction of a (total) recursive
function f% w* — w. The same remarks made about recursive functions of
one variable apply now, mutatis mutandis, to functions of scveral variables,
and show that they capture the concept of ‘effectively computable total
function of several variables’ between recursive scts. Such functions of
several variables are used for algebraic operations in the following
subscction on recursive algebras.

6.2 Recursive algebras

This subscction introducces the category of recursive algebras (their
carriers are recursive sets and their operations are recursive functions) and
rccursive homomorphisms. The reason for being interested in recursive
algebras will be seen better in the next subsection on computable algebras,
whith shows that scveral natural definitions of ‘computable’ for general
algebras are cquivalent to being isomorphic-to a recursive algebra. Here
we will sce that the category of recursive algebras has initial algebras and,
more generally, that any recursive sct generates a free recursive algebra.
We also look at quotients and congruences of recursive algebras.

Unless otherwise stated, in this and the following subsections, all signatures
are assumed finite, i.e., they have a finite number of sorts and a finite number
of operators and constants.

Definition 27. A ZI-algebra U is recursive if its carrier sets U, are all
recursive scts and its operations are all recursive functions of the
appropriate number of variables. A recursive Z-homomorphism f: U —» V
between two recursive algebras is a homomorphism such that f;: U, — V,
is recursive for ecach sort s. O
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Recursive algebras and recursive homomorphisms form a category
RALG:;. This follows immediately from the fact that both REC and the
category ALG; of ordinary Z-algebras and their Z-homomorphisms arc
themsclves categories.

A recursive X-congruence on a recursive algebra U is a congrucnce Q on
U such that Q, is a recursive equivalence relation for each sort s. The
congruence Q, associated to a rccursive homomorphism U = V is
clearly recursive. For Q a recursive congruence on U, let us define (U ) as
the algebra with carrier gq (U,) for each sort s, with operations defined by

a(ny,...,m) = qg(o(ny, ..., m)),
and with constants the images of thosc in U under the maps py . Then
there is a recursive homomorphism pg = (pg,>: U — pu(U) that satisfics
the cxpected property of a quotient. '

Proposition 28. Let f: U = V be a recursive Z-homomorphism. Then the
following arc equivalent profertics of f:
(1) There is a recursive Z-isomorphism u: pg (U) — V such that
Uepo, =/
(2) fis surjective.
(3) Ifh: U —» Aisahomomorphism to a (not nccessarily recursive) -
algebra A, then :
a. there exists a homomorphism u; ¥ — A such that ue f = h (i.c.,
the diagram in Figure 14.6 commutes) il @, € Q,.
b. If such a function u exists, then it is unique. Besides, il A and h
are recursive, then so is u.

Proof. Put together Proposition 6 and Proposition 26. a

Recall that if X is an S-sorted sct, then Z(X) dcnotes the signature
obtained by adjoining the elements of X as constants to the signature I,
and Ty(X) denotes the corresponding initial algebra, also called the free Z-
algebra on X. If A is a Z-algebra and if X is an S-sorted sct contained in A,

Fig. 14.6. Universal property of the quoticat
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then the image of Ty(X ') by the unique homomorphism to A (considered as
a X(X)-algcbra in the obvious way) is called the (Z-)subalgebra of A
generated by X. The theorem that follows uses this simple result:

Lemma 29. Let 'Y< X be an inclusion of S-sorled sets. Then the I-
subalgebra of Ty (X) gencrated by Y is an initial Z(Y)-algebra.

Proof. Since all initial algebras are isomorphic up to a unique isomorph-
ism, we can assume that Ty(X) and Ty(Y) are algebras of terms. By the
construction of term algebras, we then have an inclusion Ty(Y) € Tx(X),
which is a Z(Y)-homomorphism; thus, its image is initial, since it is Tg(Y)
itscll. ()

We can now prove the main result of this section, namely that the category
RALG; has initial algebras, and more generally, has initial Z(U)-algebras
for each recursive S-sorted set U, i.e,, there are recursive freec I-algebras.
This result is implicit in {67], Theorem 4.1.1 (that paper, together with
{78], inaugurated the systematic study of computable universal algebras).
Note that the thcorem below states the initiality properly (expressed in
terms of ‘universal arrows’) not only for the category RALGg but also for
the calegory ALG;.

Theorem 30. For cach recursive S-sorted sct U there is a recursive Z-
algebra Gg(U) (G for Godcell) and a recursive S-sorted function
Hu: U = Gy(U) such that for each X-algcbra A and S-sorted function
f: U = Athereis a unique Z-homomorphism f #: G(U) — A4 such that the
diagram in Figure 14.7 commutes. If A and f are recursive, then so is f*.

Proof. Let o denote the S-sorted set with w, = w for each sort 5. We will
define a recursive Z-algebra structure on @ in such a way that the initial
algebras we arc looking for will appear as subalgebras of w. The algebraic

Fig. 14.7. Universal property of a [ree algebra
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structure on o is defined by means of an assignment of prime numbers to
the constants and operalion symbols of the signature X: each constant g is
assigned a prime number p(g); and cach operation symbol of arity s,...s,
is assigned a sequence p(0). .. pi(c) of prime numbers. We assume that all
the prime numbers are distinct, i.e., that no operators (or constants) have
any primes in common, and that the primes in cach sequence are distinct.
We also assume that the primec 2 docs not occur among them. The
recursive X-algebra structure of w is defined as follows: the constant o is
the number p(o); il the operation symbol ¢ has arily s;...s,, then the
corresponding operation is the primitive recursive function
Anl, ..., nk. py(a)" ... pu(o)™.

Now consider the primitive recursive function n: w — w defined by An. 2%,
This gives an S-sorted function n: @ — w having all components equal to
n.

We claim that the subalgebra of w generated by y(w), which we denote
by Gy(w), is an initial Z(w)-algebra. This follows ecasily by checking the
Peano axioms of Proposition 17 for Gg(w): The axiom (3) (structural
induction) is clearly satisfied since, by dcfinition, this algebra has been
obtained as the image of an initial Z(w)-algebra. Axiom (2) (injectivity of
the operations) is satisfied by the algebra w, by the unique factorization
theorem of arithmetic; thus, the opecrations are a fortiori injective when
restricted to a subalgebra. To check axiom (1), notice that 0 docs not
belong to any of the sorts of Gg(w), since it is not in 5(w) and all the
operations return values different from 0. Since the prime scquences of
cach opecration symbol are distinct, again by the prime factorization
theorem, their images cannot have any value in common. The only
exception would be

l = plo"'pko)
which has already been ruled out.

Since every recursive set is a subset of w, every S-sorted recursive set is
similarly an S-sorted subset of ®. Since we have shown that Gy(w) is an
initial £(w)-algebra, Lemma 29 gives that Gy(U), dcfined as the subalgebra
of w generated by n(U), is an initial Z(U)-algebra for cach recursive S-
sorted set U. To finish the proof, we still have to show that

(i) the Gg(U), are recursive sets, and
(ii) the induced homomorphism f* is recursive if [ is.

Here is the decision algorithm for Gg(U ): for cach integer n of sort s, lactor
n into its prime factors,

n=p"..p"™
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Il k=1 and p, =2, then n belongs to Gg(U), iff nl belongs to U,;
otherwise n belongs to Gg(U), ifl there is an operation ¢ of sort s and
arity 's,...s, such that (after eventual reordering of the primes)
P1 = pi(6), ..., px = pa(0) and each exponent nj belongs to Gg(U )')""
The algorithm for f* in terms of a recursive f: U — A is given by
S%(2") = f(n), and
S2(pi(a)"r x oo x p(0)™) = a(S*(my), ... S * (m)). a

Note that the primes in the above (hcorem could have been chosen in an
inifinte number of different ways, as long as they satisfy the conditions of
being distinct and being dilferent from a fixed prime (it was 2 above). More
generally, it is clear that one could define other recursive functions for the
operations ¢ that would still guarantee the Pcano axioms for an algebra
generated as in the proof. The particular representation chosen does not
much matter; what docs matter is that there is a free recursive L-algebra for
each recursive S-sorted sel.

This suggests the concept of a Godel numbering for a free algebra, which
numbers the elements of the frec algebra in such a way that their images
form a recursive [rec algebra isomorphic to the original one. By the
initiality of [ree algcbras, it is enough to number the generators, i.e., to give
a function i: X — U to the recursive algebra that provides the numbering.
We would also like to require that the map n is somehow ‘computable’, but
since X is not a sct of numbers but an arbitrary S-sorted collection of
countable scts, the best we can do is require that the image 5(X') is the
image of a‘rccursive function, i.c,, is a recursively enumerable set. c -

Definition 31. A set Y € w is recursively enumerable if it is either empty or
the image of a total recursive function f: @ — w. Similarly, a set Y < w* is
recursively enumerable if it is either empty or of the form

Y ={(fi(n),....s(m)) | n € w} for some fi,...,fi total recursive
functions. . |

Definition 32. Let X be a countable S-sorted set (i.e., each component of X
is finitc or countably infinite). Then a Gddel presentation for X is an S-
sorted function n: X — U to a recursive I-algebra U such that n(X,) is a
recursively enumecrable set for cach sort s in S and, in addition, n is a
universal map in the sense that for cach S-sorted f: X — A to an algebra A
there is a unique homomorphism f*: U —+ 4 such that f* o =/ The
induced isomorphism from the term algebra, Tg(X) — U, is called the
Godel numbering presented by 1. O
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As a corollary of Theorem 30 we have

Lemma 33. 1l n: X — U and 8: X — V are two Gédel presentations, then
U and V are recursively isomorphic X-algebras.

Proof. U and V will be recursively isomorphic if we show that both arc
recursively isomorphic to Gy(card(X)), where card(X ) is the S-sorted
recursive set defined by: card(X), = [m] if card(X,) = m, and card(X),
=w il X, is countably infinite. Since n(X) and &(X) are recursively
enumerable S-sorted sets, by combining Proposition 26 and Lemma 25,
there are injective S-sorted recursive functions n:card(X) —» U and
y: card(X) — V with images n(X ) and 8(X) respectively. Then Theorem
30 shows that there are bijective recursive T homomorphisms from
Gr(card(X)) to both U and V. By Lemma 24 these (wo homomorphisms
are recursive isomorphisms. ' O

Note that with X = ¥, Lemma 33 gives

Lemma 34. Any two Gédel numberings of an initial Z-algebra Ty have

recursively isomorphic target algebras; in particular, any such algebra is
recursively isomorphic to the algebra Gy = Gy(Q). a

We leave the proof of the following lemma as an excrcisc (hint: usc the fact
that the gencrators of Gy(card(X)) form an S-sorted recursive sct).

Lemma 35. The image n(X) of a Gédel presentation i: X — U is an S-
sorted recursive set. a

6.3 Computable algebras

This subsection shows the equivalence of three diffcrent defi-
nitions for the computable algebra notion. Since each definition is fairly
natural and general, their equivalence can be scen as supporting a
‘Church’s thesis’ for eflectively computable algebras. We also look at
computable minimal algebras (which are computable quotients of the
initial algebra), showing that any computable algebra can be scen as a
computablc minimal algebra if hidden functions are allowed. Our

presentation is based upon the work of Malcev, Rabin, and Bergstra &
Tucker.
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Traditional mathematical practice considers an algebra eflectively
computable if it has a ‘decidable word problem’, meaning that it can be
presented as a quotient of a frec algebra in such a way that one can decide
in a finitc number of steps whether or not two terms represent the same
clement of the quotient algebra (this is called the word problem).

Definition 36. The word problem is decidable for a -algebra A4 ill there is a
coumntable S-sorted set X, a Godel presentation i: X — U, and an S-sorted
function f: X — A such that:

(i) The unique homomorphism f*; U — A induced by fis surjeclive;

and

(ii) the congruence Q,, on U is recursive.
By Lemma 33, the choice of Gédel presentation is immaterial, so what
rcally does'matter is the map f: X — A, called the generating map. We then
say that the map f decides the worgd problem for A . .. 4

Theorem 37. The following are equivalent for a Z-algebra A:

(i) The word problem for A is decidable.
(ii) There is a recursive Z-algebra U and a surjective homomorphism
o U = A (called a coordinatization of A) such that Q, is recursive.
(ii)) A4 is isomorphic to a recursive L-algebra.

Proof

(i) = (ii). Follows directly [rom the definition of decidable word problem.
(ii) = (iii). By Proposition 28, the algebra A is isomorphic to the quotient
algebra pg (U).

(iii) = (i). Let U be a recursive algebra with : U — A an isomorphism.
Takc as generating map the map f itsell, and as Godel presentation the
map ify: U = G(U) in Theorem 30. The identity map 1: U — U induces
a uniquc surjective recursive Z-homomorphism gy: Gg(U) — U. Since f is
an isomorphism we have Q,.. ., = Q,, and this is a recursive congruence.
This shows that the word problcm for A can be decided by the map
fU— A a

We can now dcefine a computable X-algebra to be an algebra that satisfies
any of the equivalent conditions in the theorem above. For a finitely
generated I-algebra — i.c., a Z-algebra such that there is @ finite S-sorted sct
X and a gcncriiling map X — A, i.c, a map such that the induced
homomorphism f* from the initial Z(X )-algebra is surjective — condition
(i) takes a stronger form:
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Lemma 38. Let A'be a finitely generated algebra. If the word problem for

A is decidable, then it can be decided by any gencrating-map f£ X — A
(with X finite).

Proof. By the above theorem, A is isomorphic to a recursive algebra, say
U with isomorphism f: A — U. Let f: X — A be a generating map (with X
finite) and let y: X — card(X) be an arbitrary bijection. We will take as
our Gddel presentation the map 5u4x)2y: X — Gr(card(X)). The map
Pofeoy~t:card(X) — U is recursive, since for each sort s with card(X),
= [m] and m > 0, this map is given by the algorithm: Ax.if x = 0 then
Py~ '(0) else...else if x=m—1 then P((y~'(m—1)) else
B(Sf(y~'(m — 1))). Thus by Theorem 30, this map induces a rccursive
homomorphism (fiefey™!)*: Gy(card(X)) — U which, by uniquencss,
satisfies (Bofoy™!)* = flo(foy™!)?. Thus it is surjective, since (foy~!)*
is 5o by hypothesis. Now since 8 is an isomorphism, one has Quone =
Qu.s.n» Tecursive, as desired. a

Minimal algebras, i.e., algebras such that their unique homomorphism
from the initial algebra is surjective, are a particular kind of finitely

generated algebra. As a corollary of the lemma just proved, and recalling
Lemma 34, we obtain:

Lemma 39. A minimal Z-algebra A is computable iff Qs is a computable
congruence on Gy where hi,: Gz — A is the unique homomorphism. The

same holds aflter replacing G by any other Gédel numbering of the initial
Z-algebra. O

This subsection concludes by showing that with hidden functions onc can

reduce the study of computable algebras to that of minimal computable
algebras. This uses the following notion:

Definition 40. Given a signature I, another signature X' (perhaps with
more sorts) is called an enrichment ol ZifZ,,, € X, ,forallwin S*and sin
S; this may be written £ < X'. The enrichment is called finite if cach
Y. —Z,,isfinite. For X’ an enrichment of I, a Z-algcbra A is called the
Z-reduct of a X'-algebra A’, written A’|y = A, if the carricrs of 4 and A’
coincide, and the operations from the signature I are the same for A’ as for
A; A’ is also called an enrichment of A. Similarly, a presentation (X', E') is
an enrichment of another presentation (L, E) if £ < X' and E € E’; the

[ S SO

Initiality, induction, and computability 503

enrichment is called finite if both (X' — X) and E' — E are finite. An
enrichment £ € I’ or (T, E) € (T',E’) is called without new sorts il £ and
L’ have the same sort scts. a

Lemma 41. For any S-sorted computable X-algcbra A there is a finite
enrichment ' of £ without new sorts by at most card(S) constants and
card(S) unary function symbols such that there is a minimal computable
L'-algebra A' which has A as its Z-reduct.

Proof. To get ' f[rom X, add a constant zero and a unary operation
symbol succ: s — s for each sort s in § such that 4, is nonempty. Using
Lemma 25, we can show that A is recursively isomorphic to a recursive
algebra C with carrier card(A). If card(A), = w, we make zero = 0, and
succ the successor funclion; if card(A), = [im], m > 0, we make zero = 0,
and succ the function Ax. if x <m — 1 then x + | else m — 1, which is
clearly recursive. Each of these constants and operations can then be
transported to A via the bijection underlying its Z-isomorphism with C.
Together with the original I-operations this gives the desired minimal
computable L'-algebra structure A’ with reduct A. |

6.4 ' The power of specification techniques: initial algebra semantics

Let £ be a signature and E a collection of I-equations. A Z-
algebra A is said to have an initial algebra specification by means of the
presentation (£, E) ifTf 4 is an initial (Z, E)-algebra. The specification is
called finitary if both Z and E are finite. As we have already seen in Section
4, this provides a spccification method whereby certain abstract data types
can be defined, and certain concrete data types can be shown to belong to
the class of a so-defined abstract data type. For computer science
purposes, a specification method should be considered adequate (or
powerful enough) if all computable algebras can be specified with it. This
scction will show the adequacy of finitary initial abstract data type
specifications with hidden functions, i.e., of finite enrichments without new
sorts.! Lemma 41 alrcady shows that every computable algebra has an
enrichment that is minimal on the enriched signature. This reduces the

t More generally, one could require specifiability of all semicomputable algebras
(sce Definition 61 in Scction 6.6) as in Bergstra & Tucker [83], who show that
finitary initial algebra specifications are also adequale to specily the larger class
of semicomputablc algebras if hidden sorts are allowed.



504 J. Meseguer, J. A. Goguen

adequacy problem to the specifiability of minimal computable algebras
with hidden functions.

The adequacy question for initial algebra semantics was raiscd by
Majster [65], who gave an example of a computable concrete data type (a
traversable stack) for which no finitary initial algebra specification cexisted
without the introduction of hidden functions (i.c., without cnriching the
signature). Majster [66] also gave an explicit definition for compulable
concrete data types, and suggested (p. 123) using Kleene's normal form
theorem to obtain a positive answer to the adequacy problem for initial
algebra semantics with hidden functions. The answer along these lincs
came from Bergstra & Tucker [13], who undcrtook a rigorous and
beautiful systematization of the computability of abstract data types in a
rich series of papers. This section will concentrate on the adecquacy
problem for initial algebra scmantics.

"We begin with a simple cxample (adapted from [84]) of a recursive
minimal algebra U which has no finitary initial algebra specification
without hidden functions.

The signature of U is shown in Figurc 14.8: Ui = wand U,,,, is the set
of even natural numbers union the number 1. The constant 0 is interpreted
as the number 0; the constant odd is interpreted as the number 1. The
operation red is the recursive function Ax. if x is-cven then x else 1, and the
operation s is the successor function.

Lemma 42. No finitary initial algebra specification is possible for U.

Proof. First note that since U,,, = w and the only operation of sort nat is s,
there can be no nontrivial cquations of sort nat in any such specification
and the only possible equations have 1o be of sort even; the only terms of
that sort are: odd, and red(s"(0)) and red(s"(x)) for n > 0 (using the usual

Fig. 14.8. Signature of the algebra U
odd 0

N /

red
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convenlions that s%x) = x and s"*!(x) = s(s"(x))). No cquations of the
form

red(s"(x)) = red(s™(x))
arc possible for m different from a, since we get a contradiction by
instantiating x to 0 if n is even, or to | if n is odd. Thus we conclude that all
cquations in E involve ground terms, and are of the form

red(s"(0)) = odd
or

red(s*(0)) = red(s"(0)).
To show that no (finitary) initial algebra specification is possible, let E be
one, and let m0 be the first odd number strictly larger than any of the
cxponents #, m from the equations in E. Then the equation s™°(0) = odd
holds in U, but there is no way to deduce it from the equations in E with
the rules of cquational deduction. - . " |

The following enrichment permits a (finitary) equational specification of
U: add opcration symbols even: nat — nat, and cond: nat nat nat — nat,
for the recursive functions Ax. if x is-even then O else |, and Ax, y, z.ifx = 0
then y else 2, respectively. Thatcher, Wagner & Wright [83] show that this
enrichment of U has the following equational initial algebra specification:

cven(0) =0

even(s(0)) = s(0)

even(s(s(x))) = even(x)

cond(0,y,2) =y

cond(s(x), y,2) =z

red(x) = cond{(even(x), red(x), odd).
They also show that U has a (finitary) conditional' initial algcbra
specilication with the two conditional equations

red(s(0)) = odd

red(x) = odd = red(s(s(x))) = odd,
thus showing that conditional specifications are strictly more powerful
than cquational specifications if hidden functions are not allowed.

We shall now state the theorem ol [13] that gives the definitive answer
to the adequacy question for finitary initial algebra specifications. The.
thcorem is stated for minimal algebras but, as proved in the previous
subscction, this is not a restrictioif when hidden functions are allowed. We
do not give details of the proof (sce the original paper), but just sketch the
main lincs of their argument.

t Sce discussion before Definition 64 in Scction 6.6.
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Theorem 43. Let A be a minimal computable Z-algebra. Then there is a
finite enrichment ' of T without new sorts and a finitc family of X'~
equations E such that A is isomorphic to the Z-reduct of the initial (', E)-
algebra.

Sketch of the proof. For simplicity, we will reason in the one-sorted case.
By Lemma 25, we can replace A cither by w if A is infinite, or by [m] if A is
finite. The finite case is straightforward, and reduces in cssence to giving a
table for the operations of A. So we are left with w, a few numbcrs
corresponding to constants, and a finite collection of (total) recursive
functions f}, ..., fa €ach having an appropriate number of arguments. The
key observation is the following theorem about the graph of a partial
recursive function:

Theorem 44 ([68], Thm. 6.1.1). A function is partial recursive if its graph
is recursively enumerable. 0

For any recursively enumerable sct onc can actually find a primitive
recursive function having that set as its image ([67], Thm. 4.2.1). As a
consequence, for each of the functions f w* — w, there arc primitive
recursive functions hy, ..., by, g: @ = w such that the graph of fis the sct:
{(hy(n), ..., x(n), g(n)) | n € w}.
This suggests specifying the functions f by equations of the form
) SO0 () = g(x),

but, of course, we have to specily also the primitive recursive functions
hy, ..., b, g. This is not difficult, since primitive recursive functions arc
defined equationally in the following way: for g primitive recursive, there is
a scquence of (primitive recursive) auxiliary functions 0,s,g4,...,gm = ¢
such that each g,,, in the scquence is defined equationally in terms of
previous functions in the sequence by a pair of equations

(i) gi+ 10, x1, ..., xq) = g(x1,..., xq)

(i) @i+ (5(y), x1, ..., xk) = gy, x1, ..., xq, gie 1 (), X1, ..., Xq)).
Thus, the [ollowing enrichment ' of the original signaturc allows
everything to be equationally specified: add function symbols for O, s
(successor), and the primitive recursive functions hy, ..., I, g associated to
each operation f; add also function symbols g, ..., gm- for the auxiliary
functions of each primitive rccursive function g. Let E be the collcction of
equations of type (i), (ii), (iii), together with an equation

(iv) a4 =5"q(0)
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for cach constant g,-of the original signature that was interpreted by the
integer n,. The original algebra is then a reduct of the initial (¥, E)-
algcbra. a

Scc [8] for a differcnt proof of this result in a beautiful theorem that settles
in one blow the adcquacy question for both initial and final (in the
Bergstra and Tucker sense) algebra semantics, and also gives a bound on
the number of hidden functions required that is linear in the number of
sorls; sce Scction 6.6. Still another proof of the above theorem follows
from Bergstra and Tucker’s rewrite rule characterization of computable
algebras, discussed in the next subsection.

6.5 ‘Rewrite rules

There are close connections between general algebra and rewrite
rules. One connection is that equations can be seen as two-way rewriting
systems. Another is that rewrite rules provide computationally effective
representations for objects that are more abstractly defined by equations
plus initiality.

A Z-cquation (VX)t =1t such that each variable occurring in its
left-hand side t also occurs in its right-hand side (', can-be used as a rewrite
rule as follows: a term (o can be rewrilten to a term ¢, if (o contains a
subterm that is a substitution instance of the left-hand side ¢ and ¢, is the
result of replacing that subterm by the corresponding substitution instance
of the right-hand sidc ¢; this is often indicated with the notation to = 1.
Rewriting gives a unidirectional version of equational deduction (compare
the above with the substitutivity rule). Under mild conditions on a set E of
I-cquations, every term can be rewritten to a unique canonical form. This
mcans that the initial (I, E)-algebra is then computable, since we can
decide the word problem by rewriting and then comparing canonical
forms. A remarkable thcorem of [6] shows the converse: any (minimal)
computable algebra is the reduct of the initial algebra specified by a finite
enrichment without new sorts, whose equations rcgarded as rewrite rules
give canonical forms for the cquivalence classes (the minimality restriction
can be removed by Lemma 41).

In this way, rewrite rules provide an operational semantics for all
computable algebras. The evaluation of an expression is its canonical form
alter rewriting, and equality of terms is decided by identity of their

canonical forms. This point of vicw is the basis for the language OBJ {34,
35].
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This subscction gives the basic definitions and propertics of rewrite
rules, and discusses their relationship to initial algebras, ending with the
theorem of Bergstra and Tucker mentioned above. For morc on rewrite
rules, [42] is admirable and complete, and [45] is an excellent survey that
is consistent with an algebraic approach.

Given a term ¢ € T¢(X), the finite set of variables occurring in t, denoted
vars(t) is the smallest S-sorted set Z contained in X such that 1 € Ty(Z).
That vars(t) is well defined is intuitively obvious, and is formally clear after
noticing that: (i) there is always a finite X' € X such that t € Ty(X’); and
(ii) if t is Te(Y) and in Tg(Z), then t is in T(Y N Z). We will say that an
equaltion (VX)) ¢ = ¢’ is usable as a rewrite rulc if ¢ has all the variables that
¢’ has (i.e, vars(t’) < vars(t)) and in addition, the quantificd variables
include only those occurring in ¢ (i.e., X = vars(¢)). If these two conditions
are satisfied, we can omit the quantifier without introducing any
- ambiguity. Usable equations support term rewriting. For example, the
equation x + s(y) = s(x + y) can be used to rewrite the term (s(x) +
5(2)) + (¥ + (s(x) + s(2))) to (s(x) + s(2)) + (y + s(s(x) + z)) by matching
the left-hand side x + s(y) with the second occurrence of the subterm
s(x) + s(z). Now the formal definition.

Definition 45. A matching of a term t with a subterm of another lerm
to € Te(Z) is a pair (f, v) with fan assignment f vars(t) — T(Z) and with
ve(T(Z U {y}) — Tx(Z)) a term having exactly one occurrence of the
variable y (i, there is no v’ with vars(v) = Zu {u, w}, u # w, and
v=10( — y,w e+ y) such that 1o =v(y « f*()).! A sct E of usable
equations defines a binary relation — on the term algebra Ty(X), called
one step (E-)rewriting, as follows: for any two terms to and t, we have
to = xty ifT there is an equation ¢ = ¢’ in E such that ¢ matches a subterm of

to by (f,v) (ie, to = v(y « f7(1))) and also £, = (y «~ [7(1')). g

Notice that 1o — 4 t, iff to = varsir,) £1. This is because, i the rewriting was
obtained by a matching (/, v) of the right-hand side of a usablc cquation
1 =1, then the image of the homomorphism f* is always contained in
Ty(vars(t,)), and vars(t,) < vars(te) since vars(t’) < vars(t) by hypothesis.

As a consequence, the relation — x restricts well to term algebras with
fewer variables, i.c.,

—x |rlm= —*y

whenever Y < X, and we can therefore drop subscripts on —. But unless

t This includes the case in which the term v is the variable y, i.c., the subterm
maitched is 14 itsell.

Initiality, induction, and computability 509

otherwisc specificd, the rest of our discussion will assume the rewriting
relation — is restricted to the initial algebra Ty; this restriction involves no
loss of gencrality since, for any X, Ty(X) is the initial Z(X )-algebra, and all
the results we discuss specialize to terms with variables by taking £(X) as
the original signature. In this subsection, signatures are not assumed finite.

Lct 2 denote the reflexive-transitive closure of the one step rewriting
rclation associated to a sct of usable cquations E; i.e, ¢ L ¢ iffeithert = ¢’
or there is a finite scquence of one-step rewritings beginning with ¢ and
cnding with ¢

A TR T

We call > the rewriting relation associated with E. Also we let < denote
the smallest cquivalence relation containing —. This equivalence relation
is casily described in terms of yet anolhcr rclallon 1, defined as follows
14 iff there is a term (* such that ¢t 3 (" and ¢ 5 ¢*. * -

Lemma 46. The equivalence relation & is the transitive closure of the
relation §. In other words, ¢ & Uil thereis a scquencet ;3.1 as
shown in Figure 14.9.

Proof. 1t is clear that the relation § contains — and is contained in -,
since the same conditions hold for =, and < is symmelric and transitive.
Thus, the transitive closure 1 is also contained in .:., since « is transitive.
So, we have only to show that this transitive closure is reflexive and
symmetric. Bul both these follow from 3 being reflexive and symmetric.

a

. L
Lemma 47. The rclation « is a Z-congruence on Tx.

Proof. We have to show that for cach operation o € £ and for all pairs
4 & tf Jor 1<i<n (of the appropriate arity), one has
a(ty,..., r,.).o:’ a(ty’,....t,)). The key observation is that if a term ¢ matches
a subterm of another term ¢, then it also matches the same subterm lor any

+ Fig. 14.9. The equivalence &

VAV VA



e g

v

510 J. Meseguer, J. A. Goguen

term ¢" that has ' itself as-a subterm. As a consequence, if t; — ; then
Wy « ;) = t(y « t;) for any te T({y}) Hence the sequence

6Lt t.. ttlltll
yields another sequence

oty ..nty)3a(tyy,..nti) ...
Consequently, we get

1y s 1) 2 Oy Layeean 8) o e S a(ty ey 1),
as desired. 0

I a(‘l’i ‘2' seey ln)-

We can now prove the central property of the rewriting rclation [30].

Theorem 48. Let — be the one-step rewriting associated with a sct E of
usable equations. Then the algebra Ty & is the initial (Z, E)-algcebra.

Proof. By Theorem 11, we know that the initial (Z, E)-algebra is Te/Q¢
with tQgt’ ilf (V) =1 can be deduced from E by the rules of
equational deduction. Whenever ¢(; =, holds, therc is an

. equation (VX)) =t inEatermve Tg({y}), andamapf X - T;

such that ¢ =w(y «f*(')) for i=1,2. Conscquently, (V&) f*(t,’)

= [*(t2") can be deduced by card(| ), X,) applications of the subsmunvny
rule, and ¢,Q¢t, can be obtained by one more application of that rulc. This
shows that (=) € Q¢ which by the reflexivity, symmetry and transitivity
rules of deduction, shows that &He Q¢. So we will be done if we show that
T;/-:' satisfies the equations in E. Let (VX)t=1t bc any such
cquation. By definition of — we then have that f*(t) — /7 (¢’) for cach map
f: X = Ty and hence the equation holds in Ty/<. O

This shows that for constructing initial algebras, the unidircctional
deduction provided by the rewriting relation is as good as the usual
equational deduction (sec also [88]), but it docs not show any computa-
tional advantage of rewrite rules. In fact, it cannot do this, since the
theorem applies to any set E of (usable) equations, and it is well known
[40] that there are (finitary) initial algebra specifications (I, E) with
undecidable word problems; nothing can be done in those cascs to solve
the word problem, regardless of the kind of deduction uscd.

We will soon see that if the rewrite rules satisfy two natural conditions
then the word problem is decidable, and can be decided by rewriting. We
will also see that this method is fully general: any minimal algebra with a
decidable word problem is the reduct of the initial algebra specificd by a
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finitc cnrichment without new sorts and a finite set of usable equations
whose rewriting relation decides it - -

Definition 49. Let E be a sct of usable equations and let — be its one-step
rewriting relation. Then a term tg is a normal form relative to — if it cannot
be further rewritten; i.c., if there is no ¢, such that ¢y — ¢,. The relation —
is called terminating if there is no infinitc sequence of rewritings

lo—ty ==,
Notice that if a system is terminating, then every term rewrites to a (not

necessarily unique) normal form (called ‘a normal form of (') after a finite
number of rewritings. O

An example of non-termination is given by the commutativity law for
addition, which yiclds infinite rewritings like

34222432 23422243 -

Similarly, an cquation of the form x = a(x) gives an infinilc rewriting
0o = 6(0g) = *** = 0"(gg) = ***

for a constant go. Intuitively, for.— to be terminating, the ‘size’ of terms

should decrcase after, rewriting, for some notion of ‘size’ suited to the
problem at hand.

Definition 50. Let E be a set of usable equations and let — be its
corresponding one step rewriting relation. Then — is called coﬂﬂuent (or
Church Rosser) il for cach term 1, and cach pair of rewrilings to % t, and
1o = t we have that £, 1 1,,i.e, that¢, and ¢, rewrite to a common term t5.

a

Fig. 14'.10. The Church-Rosser property
b
4 I
\\ /
h

Theorem 51 (after [31]). Let Z be a finite signature, and let E be a finite set
of usable Z-equations such that the corresponding one step rewriting
rclation — is terminating and confluent. Then:
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(i) Each term ¢ has a unique normal form, denoted [t}. For cach
pair of terms, ¢, ¢, one has t & ¢ iff [t] = [¢].
(ii) The initial (Z, E)-algebra is computablc.
(iii) The (S-sorted) set of normal forms, denoted Cang ¢ with constants
[o] and operations a([t,], ..., [t.]) = [a(ty, ..., 1)} is an initial
(Z, E)-algebra, called the canonical term algebra associated to E.

Proof. Both (ii) and (iii) follow from (i), since rewriting provides an
algorithm to decide the word problem in the initial (Z, E)-algebra; by
Church’s thesis this algorithm-corresponds to a recursive congrucnce on
Gy and this is our formal definition for decidability of the word problem;
thus we get (ii). Again using (i), Cang ¢ is isomorphic by construction (o the
initial algebra Ty formed by the equivalence classes of terms. The
isomorphism is the map can: [¢] — [¢], where [¢] is the E-cquivalence
class of t; this gives (iii).

Now let us prove (i). Since — is terminating, cach term ¢ has at lcast one
normal form t,; suppose it has a second normal form t,. By conflucnce
there is a t3 such that both ¢, and t, rewrite to 5. Since ¢, and {, arc
normal forms, lhlS can only happen if ¢, =ty =1,. If [t} = [r'), then
t& . That t St implies [¢] = [¢'] follows by induction on the length
of the sequence ¢ §...} ¢', using confluence; this is lcft to the reader. [J

Given a set of cqualions, if we can show that they are terminating and
confluent, then by the above thcorem, we have solved the word problem
for its initial algebra. For recent methods to establish termination of a sct
of rewrite rules see [76, 22, 52, 23]. We will now discuss mcthods to
establish confluence. The idea is to reduce conflucnce to a simpler
condition of ‘local confluence’ which is decidable, providing termination
holds (this can be relaxed, as explained below).

Definition 52. Let E be a set of equations and let — be its corresponding
onc-step rewriting relation. Then — is locally confluent if for cach term ¢
and each pair of one-step rewrjtings to — 1, to.— t; we have-that 11,

a

The following result is originally due to Newman [73]; a simple proof by
‘Noetherian induction’ can be found in [42]. Although this result can be

stated very generally for an abstract relation, we specialize it to rewriting
systems,

—
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Proposition 53. Let — be a terminating rewriting relation associated to a
sct E of cquations. Then — is confluent if and only if it is locally confluent.

a

The Knuth-Bendix algorithm tests for local confluence of a set of
cquations, and can also be used to attempt completing a nonconfluent set
of equations into an equivalent set of (locally) confluent equations. What
follows is an informal introduction to the main ideas and extensions of this
algorithin; technical details can be lound in the cited relerences.

Let X be a fixed S-sorted set with an infinite number of variables of each
sort, and consider the rewriting rclation — on Ty(X). Huet [42] has shown
that local confluence ‘of the rewriting relation — is decidable by the
Knuth-Bendix algorithm provided that the relation is terminating. The
idca is that any pair of onc step rewritings either can trivially be shown to
rewrite to a common term, or clse is a specialized instance of a finite set of
‘most gencral’ pairs of one step rewritings, called ‘critical pairs’, that can be
obtained by ‘superposing’ pairs of equations in E in a ‘most general’ way.
Since the relation is assumed terminating, we can decide local confluence
(hence confluence) simply by comparing normal forms for each side of the
pair. The Knuth-Bendix algorithm [55] finds all the critical pairs of a set
of cquations. For example, if E contains the equations

a(t(x, y),2) = I‘(xo »z)

©(x, () = K(y, x)
then {o(x(y, x)), 2); pu(x, 5(y), 2)> is a critical pair. Even if a set of
cqualtions docs not give a confluent rewriting relation, in many common
cases il can be replaced semiautomatically by an equivalent one that does,
using the Knuth and Bendix algorithm. The idea is to choose a good
oricntation for the normal forms of each critical pair that does not have a
common rewriting, and iterate the algorithm until this does not happen
anymorc. Unfortunatcly, this process may not stop.

The Knuth-Bendix algorithm has been extended to handle special cases,

Fig. 14.11. The local confluence property

/\

\
.\ /.
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such as a commutative equation, that give a nontcrminating rcwriting
relation. The idea is to split the equations in E into a sct of ‘rewriting' rules
E, and a set of ‘equivalence’ rules E; and then to consider ways of
rewriting with E, ‘modulo E;’. Three basic papers arc: [58, 75,42]. For the
present state of the art see [49, 50]. The nonterminating case requires in
addition a complete unification algorithm for the ‘cquivalence’ cquations
E, to compute ‘complete scts of critical pairs’ modulo the cquivalence.
Such algorithms are known for various special cases such as commultativ-
ity [77] and associativity-commutalivity [81]. General mecthods for
building such algorithms are studied in [46, 51].

We now conclude this section with the thcorem of [6] showing the
conversc, that any computable (minimal, but we know this is no loss of
generality) algebra has an initial algebra specification by a finite enrich-
ment without new sorts of its signature and a finite number of equations
that yield a terminating and confluent rewriting system. As before, details
of the proof are not given, but the main lines of the argument are sketched.

Theorem 54. Let I be a finite signature and A a minimal Z-algecbra. The
following are equivalent:
(i) A is computable.

(ii) There is a finite enrichment without new sorts I’ of T and a finite

set E of usable equations such that induced rewriting relation — is

terminating and corffluent, and A is isomorphic to the -reduct of
the canonical term algebra Cany. .

Sketch of the proof. Theorem 51 shows that (ii) = (i).

To see that (i) = (ii), we consider the one-sorted case for simplicity. A
can be taken to be w or [m]. The finite case is easy, since for any finite
algebra the tables of their operations provide a terminating and confluent
rewriting relation. Thus, we necd only consider A wilh carrier w, a finite
collection of numbers for the constants and a finite collection of (total)
recursive functions fy,...,fi each having the appropriate number of
arguments. We use a fundamental result in the theory of recursive func-
tions, Klecne's enumeration theorcm:

Theorem 55 ([68], Thm. 6.2.1). Every partial recursive function
JS(x,, ..., x,) can be written in the form

S(xyy ..y xa) = left(uz[(F(xy, ..., Xa 2) = 0]),
where left is the (primitive recursive) left projection function for the Cantor
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diagonal enumeration of w?, cant: w? — w. i.e., left(cant(n, m)) = n, and F
is a primitive recursive function depending on f. a

We can apply this theorem to each operation f w" — w of our algebra, and
definc two auxiliary primitive recursive functions h, g by the equations
Iz, xy, ..., x,) = lefi(uz’ < z2[7 =z or F(x,,..., xs, 2') = 0]),
gz, Xy, .00y X)) =i 32" < 2[F(x,,..., Xa, 2) = 0] then O else |,
and an auxiliary recursive function  defined by the equations
() 1(z, x4y 0evy Xny 0) = I(z, x4, ..., X,)
(i) 1z Xy Xy + D=1z + 1, X, .0y Xy g2 + 1, X4y 000y Xa))-
It is then easy to check that f can be defined by the equation
(i) f(xyy.e0 Xa) =100, Xy, ..., Xp, 1).
The enriched signature I’ is obtained by adding the following [unction
symboils: 0; the successor function s; the functions g, h, t for each operation
J; and [function symbols for each of the primitive recursive functions
Gis-oesfm My, ..., e needed to define each g and h from 0 and s by
primitivc recursion for each operation /. The equations in E are as follows:
(1) The equations defining each g, h, and their auxiliary functions g,
- and hj by primitive rccursion for each f.
(2) The cquations (i)-(ii) for cach f. , L. .-
(3) An cquation oq = s"(0) for each constant oq of the original
signature 'which was intetpreted by the riumber ng.
Onc must then verify that this specification induces a terminating and

confluent rewriting relation that has w as its canonical term algebra. This
is done in two steps, with the following lemmas:

Lemma 56. 1Mt is a terminating term for (Z', E) (i.e., if there is no infinite

scquence of rewritings beginning with (), then ¢ has a unique normal form
of the form s°(0). 0

Lenuna 57. The relation — associated to (X', E) is terminating. a
The proofl of the last lemma uses induction on the depth of terms and casc

analysis. Note that conlluence follows [rom termination by the existence of
a unique normal form for cach term. . a

6.6 The power of specification techniques: final algebra semantics

To examinc the relationship between final algebra semantics and
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computability, it is reasonable to restrict attenlion to machines (i.e.,
algebras) that have computable behavior, since this is clcarly necessary for a
computable realization of that behavior to exist. By ‘computable behavior'

we mean that the word problem is solvable for the visible sorts. Here is the
definition.

Definition 38. For Z a (inite signature and ¥ a subsct of sorts, a Z-ulgebra
M has a computable V-behavior ilf there is a V-sorted recursive set 1 and a
V-sorted map f:W — M such that the induced homomorphism
J?:Gg(W) = M is surjective'in cach component f*, with v'e V, and the
equivalence relation (Q/s), is recursive for cach ve V. (]

Since Gy < Gy(W) for any W, if M is a minimal I-algebra, then the above
definition can be rephrased by saying that M has a computable V-
behavior iff (Q,), is a recursive equivalence relation for cach ve V, for
h: Gz - M the unique homomorphism. Note also that this dcfinition is
stable under isomorphism: if M has a computable behavior so docs any M’
isomorphic to M. .

The following theorcm of Bergstra & Meyer [5] shows (hat every
computable behavior is effectively realizable by the initial realization.

Theorem 59. Let M be an algebra with a computable V-behavior, lor V a

subset of its sorts. Then the initial realization /(M) is a computable
algebra.

Proof. If f W — M shows that M has a computable bchavior, then by
Proposition 26 we can find recursive scts’ U, and rccursive rctracts
po: Gx(W) — U, such that f*, = g,0p, wilth g,: U, » M, bijectivefor cach
v in V. Since computability of an algebra is a concept stable under
isomorphism, without loss ol.generality we may assume that the bijcction
g: U = M, is the identity. Recall that I(M) was constructed as the V-
sorted subset of Ty(U) formed by the V-irreducible terms. Notice that
there is an algorithm to decide if a term ¢ is irreducible: just examine all
proper subterms of ¢ and sce if there is one of external sort different from a
constant in U. Consequently, I(M) is in bijective correspondence with an
S-sorted recursive subset by the unique isomorphism of Gg(U) with 7¢(U)
as (U )-algebras, since this later isomorphism is given by an algorithm,
and we can then use Church’s thesis. Using this bijection and again by
Church’s thesis, each operation of I(M) corresponds (o a recursive
function for the image, i.e., /(M) is a computable algebra, since, for o with
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nonvisible sort, the algorithm to compute o is the same as the one to
compulc o in Ty(U), and, for ¢ with visible sort, the algorithm to compute
o(tl,...,tn) is as follows: (i) compulte al,..., an, the Gédel numbers of
t1,...,tn, in Gg(U); then the result is p,(a(al, ..., an)). a

As a corollary to this theorem, we next show that (V-reachable) algebras
with computable bchavior are always minimal in a finite enrichment
without ncw sorts of their original signature. Recall that an algebra is V-
reachable, for ¥ a set of sorts, ifl the evaluation map gy Te(My) = M is
surjective; thus any minimal Z-algecbra is V-reachable, but a V-reachable
algebra need not at all be minimal.

Lenuna 60. For X a finite signature, let M be a V-reachable Z-algebra with
a computable V-bchavior. Then there is an enrichment without new sorts
X’ of X by at most | V| constants and | V| function symbols, and a minimal
X'-algebra M’ with a computable V-behavior (as a Z'-algebra) such that
M'I); =M.

Proof. By Theorem 59, I(M) is compulable; therelore, it is isomorphic to a

recursive number algebra U, which we may assume for each sort s has

cither U, = w (if U, is infinite), or U, = [n] for some intcger n (if U, is

finite). For cach visible sort v such that U, is nonemply, we can pick O e U,

as a constant and a recursive function s: U, — U, that is the ordinary

successor function when U, is infinite, or the truncated successor function,
Ax.if x <n—1lthenx + lelsen—1,

when U, = [n]. This makes U into a recursive I'-algebra, U’, for the
signaturc obtained by adding a constant 0 and a successor function s to
cach visiblc sort v with U, nonempty. Using the bijection between (M)
and U, we can then make I(M) into a computable Z'-algebra, I(M)', and,
since, I(M), = M, lor cach visible sort ¥, this also makes M into a Z'-

algebra M'. ) o _ .
(Incidentally, I(M) is the initial rcalization of M'.) M’ is the algebra we
want; since I(M) is generaled by M, as a I-algebra, then /(M) is a
minimal Z'-algcbra, and so is M’ for the same rcason. The unique Z'-
homomorphism h: Gy = M’ factors through the quotient (M) — M’
and I(M)' is computable, so M’ has a computable V-bchavior, as desired.
a

Before considering the relationship between final algebra semantics and

computability, we dcfine scmicomputable and coscmicomputable
algebras.
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Definition 61. For £ a finite S-sorted signature, a Z-algcbra A is
semicomputable (respectively cosemicomputable) il there arc an S-sorted
recursive set W and an S-sorted map f: W — A such that the induced
homomorphism f'*: G(W) — A is surjective and the congrucnce Qy, is a
recursively enumerable set (respectively its complement G2 — Q,, is a
recursively enumerable set). O

Thus, A semicomputable means that the word problem for A is
semidecidable, i.e., there is an algorithm that assigns the value 1 to (¢, ¢') ifT
S2(1) =S*(t'), but may not stop if f*(t) # f*(t'). Similarly, A coscmicom-
putable means that the word problem for A is cosemidecidable, i.c., there
is an algorithm that assigns the valuc 0 to (t, ¢') ilT£*(t) # f*(¢'), bul may
not stop if f*(t) =f?(t'). Thus, an algebra.is computable iff it is both
scmicomputable and cosemicomputable. Note that since Gy € Gy(}) for
any W, in the case where A4 is a minimal Z-algebra, the above can be
rephrased by saying that A is semicomputable (respectively cosemicom-
putable) iff the congrucnce Q, associated to the unique homomorphism
h: Gz = A is recursively enumerable (respectively its complement is
recursively enumerable). Note also that the choice of the Gédcel numbering
Gy(U) is immaterial, since it can be replaced by any other recursively
isomorphic to it.

We have already pointed out that there are finitary initial algecbra
specifications with undecidable word problems [40] (however, they are
semidecidable.)We now show that the final realization N(M) of an M with
computable bechavior is always cosemicomputable, and we give later an
example of an N(M) that is undecidablc.

Theorem 62. For X a finite signature, and V a subset of sorts, il an algebra
M has a computable V-behavior, then its final rcalization N(M) is
cosemicomputable.

Proof. Since M has a computable V-behavior, there is a homomorphism
h: Gx(W) — M surjective on the sorts in ¥, with (Q,), recursive for cach v
in V. Reasoning as in the proof of Theorem 59 there are recursive retracts
ps: Ge(W), = U, and bijections g,: U, = M, with g, o p, = h,. Since being
cosemicomputable is stable under isomorphism, we may assume without
loss of generality that the V-sorted bijection g: U — M, is the identity. We
can then replace the above h by the homomorphism g,: G(U) —= M for
the purposes of the computability of the behavior. Indeed,.consider the
diagram of Figure 14.12, which shows ¢, = hi o j?. Since the inclusion
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j: U = Gy is a recursive function, j* is a recursive homomorphism by
Theorem 30, and thus (Q.,, ), is recursive for each v in V. Note that, by the
identification U = M, we have (ex)s = Py ©j * o Thus, (€p), is recursive for
each v in V. Let t and ¢ be two terms in Gy(U). We will be done if we
exhibit a semidecision procedure for ex)(f) # enqa(t’) or equivalently for
failure of &, (t)neregan(t’). By definition of ner, this means that thereisav
in ¥ and a term u in Ty(U U {y}), such that (identilying Tr(U) with
Gy(V)),

ey « eran())) # eran(u(y « Eipan(t))).

As in the proof of Theorem 19, this incquality can be rewritten as
cipn(u(y « 1) # crpnlu(y « 1).

Since 1(M) is behaviorally identical to M this, in turn, can be written as

(*) ear(u(y « eran(t))) # em(u(y < eranft))),
Here then is the semidecision procedure: (i) number all the terms of
Ty(U u {y}), for each v in V in a ‘diagonalized’ way, ie., ul of sort
vl,..., un of sort vn, un + | of sort vl, etc.; and then (ii) compute (*) for
each term u = un (ndle that (cp), is recursive); if there is a u giving an
inequality, it will be found in a finite number of steps. a

At the end of Section 5 we pointed out that the most usual final
realizations arc those behaviorally equivalent to an initial algebra Ty g for
E a set of equations, i.c., the behavior (for V a subset of sorts) is specified
using initial algebra semantics, and then the final realization Ng 5 of that
behavior is considered. This algebra is called the final algebra specified by
(Z, E) relative to the visible sorts ¥, or the final (Z, E)-algebra relative to
V. We also mentioned that Tpx nced not coincide with the initial
realization I(Tt.g), which does not have to satisfly E, but that there is a
surjcctive strong V-homomorphism from I(Ty,g) to Tx,s. Thus even if the

Fig. 14.12
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initial (Z, E)-algebra is not computable, there is a computable realization,
I(Tyg), of its behavior, provided the behavior itsclf is computable.

Note also that we have proved that any V-reachable algebra M with a
computable behavior is the I-reduct of a minimal algebra M’ with a
computable behavior for a finite enrichment without new sorts X' of its
signature. Thus, it is natural to ask for a computational characterization of
the class of machines having finitary final algebra specifications. We state
below a conjecture on such a characterization, in a sense a converse to the
last theorem. Call the V-behavior of an algebra M nonunit if there is a v in
V such that M, has more than one clement.

Conjecture. For T a finile signature and ¥ a subsct of visible sorls, the
following are equivalent for a minimal algebra M with nonunit comput-
able V-behavior:
(i) M is cosemicomputable.
(ii) Thereis a finite enrichment without new sorts £’ of X, and a finite
set E of equations such that M is isomorphic to the reduct Ny gl
of the final (', E)-algebra. a

We now give an example (inspired by [9]) of a final algebra with a
computable behavior that is cosemicomputable but is not computable.
The signature X is given in Figure 14.13,

There are no equations of sort fun; the equations of sort nat arc the usual
primitive recursive definitions of addition, +, truncated difference, = (i.c.,
n=m=ifn>mthen n — m else 0), multiplication, e, the test for n # 0,
and min (i.e., min(n) = if n = 0 then 0 else 1), plus the following equations:

ofnl,...,n14]1 =0

I{nl,...,n14} =1

xi(nl,,..,nl4) =ni (forl <i< 14)

s(fN)[nl,...,n14] = s(f[nl,..., n14])

1 +/2)[nl,...,n14] = f1[n1,..., n14] + f2[nl, ..., nl4]

S = 2)n),....,n14]) =f1[nl,...,n14] = f2[nl, ..., nld)]

(J1es2)nl,...,n14].=f1[nl,...,n14) @ f2[nl,. ., n14]

min(f)[nl, ..., n14) = min(f[n1, ..., n14)).
For E the above equations, (Ty ). = (Tt)tuar and (T g),., can be
identified with . These equations evaluate cach cxpression in the
variables x1, ..., xn, to its result in w after binding each xi to the value ni.
Thus, it is clear that Ty ¢ is computable; in particular, it has a computable
behavior for ¥ = {nat}. (Incidentally, Ty, is the initial realization of its

own behavior, since no nontrivial equations of sort fun can be deduced
from E.)
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Another very natural (Z, E)-algebra is Q with Q,, = w and Q. =
[w'* - w], sct of all functions of 14 variables on the natural numbers.
The operation _[,...,_] is function evaluation, i, f[nl,..., nl4] =
JS(nl,...,nl14); the operations s, +, =, e, and min are interpreted as
usual on w, and for the sort fun are interpreted as acting on the value of
cach function, i.c., are dcfined by the above equations; 0 and 1 are the
constant functions with values 0 and 1 respectively, and xi is the ith
projection function, i.c., is defined by the equation xi[nl, ..., nl4] = ni
abovt. There is then a unique homomorphism h: Ty 5 — Q, and letting Q;
denote the image subalgebra under this homomorphism, we oblain a
minimal algebra behaviorally identical to Ty 5. We claim that Qg is the
final (Z, E)-algebra. To sce this, note that if Q; were not final, there would
be two functions f'1 # 2, with corresponding expressions (1, £2, such that
for cach u in Ty(w U {y}).. one would have

erp ((u(y « 1)) = er, (u(y « 12)).
In particular, one would have t1[nl, ..., n14] = 12[n}, ..., n14], for each
nl,...,nl4 e w'*, in contradiction to f1 # 2.

By Matijasevic's theorem [69, 70], ©; is not computable. Define an w-
polynomial expression (in 14 variablcs) to be a {nat}-irreducible term ¢ of
sort fun in Ty g such that the operations - and min do not occur in ¢ (i.c.,
an expression on the variables x1,..., x14 involving +, e, and natural

numbers as cocllicicnts). Matijasevic's thcorem can be formulated as
follows:

Theorem 63. A sct U w is recursively enumerable iff there are w-
polynomial expressions ¢, ' € Ty g such that for each n in w
neU il 3Im2,..., mldew such that ([n,m2,...,ml4] =
t'[n,m2,...,ml4] in Ty ¢. a

Fig. 14.13. The signature of an example

xI x2 -

sl  min
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It is a basic fact of recursive function theory that there are nonrecursive
recursively enumerable sets, and that the complements of such sets arc also
not recursively enumerable. Let U be such a set. By Matijascvic’s thcorem
there are w-polynomials, ¢, t’ such that for cach number n, ne w — U ifl
(*) Vm2,...mldew
tfn,m2,...,m14] # ¢'[n,m2,...,mi4] in Ty ;.

Let ¢, be the w-polynomial obtained by replacing cach occurrence of x1 in
t by s"(0). It is easy to see that for each ml,...,ml4 in w one has
t(mi,...,ml4] = ¢[n,m2,...,ml4] in Tg.
Define t’, similarly from ¢, Then condition (*) can be rephrased as
(**) h(min(t, - ¢p) + (t's = 1)) = | in Qy,
where h: Ty g — Qg is the upique homomorphism. If Q; were computable,
we could decide for each n the word problcm (**), i.c., we could decide
n e w — U, which is impossible.

This example shows the strong computational difference between
intensional and extensional notions of function. Functions in intensional
form (i.c., understood as rules of computation) are amenable to finitary
specification by initial algebra semantics, whereas functions considcred
extensionally (i.e. identified as equal if they give the same result for all
values) lead to cosemicomputable data types with a final algcbra
specification. The above example illustrated this for arithmetic ex-
pressions, but we could have chosen an cntire programming language
instead.

We now discuss a difTerent notion of final algebra, due to Bergstra and
Tucker, who have established a number of important thcorems for this
notion. We shall call their notion BT-final to avoid confusion, since the
two notions are not equivalent; their intuition is also diffcrent, since there
is no notion of visible sorts or of the behavior associated with a BT-final
algebra (no sorts play a privileged role). Rather, their intuition is one of
logical consistency. Before giving the definition, we will say a few words

about conditional equations, i.e., equations of the form

VX) tl=r1&...&th=tn=t=",

An algebra A satisfies such an cquation ifl for any assignment f£ X — A
such that the conditions hold,.the consequence also holds. Then A is a
(X, E)-algebra, for E a set of conditional Z-cquations, ifT A satisfics each
equation in E; and a (I, E)-algebra is initial iff there is a unique I-
homomorphism [rom it to any other (I, E)-algebra. Sound and complete
many-sorted rules of deduction for conditional cquations are given in
[33]. These rules of deduction give the sct E* of all (ordinary) equations
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that are satisficd by all (Z, E)-algebras, for E a given set of conditional
equations. [33] also shows that A4 is an initial (T, E)-algebra iff A4 is an
initial (£, E*)-algebra. Thus, Ty g. is also initial for the class of all algebras
satislying E. Similarly, by the final (Z, E)-algebra Ny g (for ¥ a subset of
sorts), we mean the final realization N(T%g) of the V-behavior of the initial
algebra Ty . We are now ready to define BT-final algebras.

Definition 64. Given a signature Z and a set E of conditional equations, a
BT-final-(Z, E) algebra, il it exists, is a minimal (Z, E)-algebra F such that,
il . Ty — F is the unique homomorphism, then the following hold:

(i) Qu # Tx? (i, F is not the ‘unit’ algebra).

(#5) I h(t) # h(¢'), then T g wgp=r) is the unit algebra, i.c. it has

cxactly one point of sort s if (Ty), is nonempty )

Thus, the BT-final algcbra is the algcbra obtained by imposing on Ty z all
the equations ¢ = ¢’ such that there is a nonunit minimal (Z, Ev {t = t'})-
algebra, i.e., all equations that in a certain sense are not ‘inconsistent’ with
the equations E. In general such a process, although well-defined, may
yield an algebra that is the unit algebra. For example, with the natural
numbers, the equations 2 = 0 and 3 = 0 have nonunit models, but the two
together collapse all the natural numbers to one point. But, when they do
exist, any two BT-final algebras are isomorphic and can be characterized
as the final object of the category with objects minimal (Z, E)-algebras
(with exclusion of the unit algebras) and morphisms the Z-homomorph-
isms. Thus, all the final BT-algebras, if they exist, form an abstract data
type, and we talk of the BT-final (Z, E)-algebra.

Here is the thcorem of [9] characterizing cosemicomputable algebras;
their proof uses Matijascvic’s thecorem.

Theorem 65. Let A be a minimal X-algebra (Z finite and one-sorted). Then
the following are equivalent:

(i) A is cosemicomputable.

(ii)) A is the Z-reduct of a BT-final (', E)-algebra, for X' an
enrichment without new sorts of X by at most 5 hidden functions,
and E a set of at most 15 + |Z| conditional equations.

The same holds for A a minimal Z-algebra when is finite and many-

sorted, making the appropriate modifications on the bounds for the
number of hidden funclions and conditional equatioris. ]

We conclude this section with a very nice theorem of Bergstra & Tucker
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[8] showing the simultancous adequacy of initial and BT-final algebra
semantics to specify computable algebras, and giving a bound on the
number of hidden functions and equations required. This bound depends
only on the number of sorts and not on the size of the signature Z.

Theorem 66. Let A be a minimal Z-algebra, and n the number of sorts of
its signature X. Then the following are equivalent:
(i) A is computable.
(ii) A is the Z-reduct of an algebra that is both initial and BT-final for
(Z', E) an enrichment without new sorts having at most 3(n + 1)
hidden functions and 2(n + 1) new equations. a

The proofl of this thcorem also makes esscntial use of Matijasevic's
theorem. The original algebra is ‘rigidified’ by introducing ncw operations
that act as injections (with corresponding retractions) of each sort into a
highest cardinality sort. Identification of any two clecments after this
enrichment produces the unit algebra. Further enrichment, use of
. Matijasevic’s theorem, and an elegant ‘folding’ of cquations using
conditionals give the required result and bounds.

6.7 Equality enrichments, computability and inductionless induction

Whaltever other operations an abstract data type may have,
programming intuition strongly suggests that it can be given equality
operations that tell whether or not two abstract data itcms arc the same;
intuition also suggests that these operations will be equationally definable
{31]. This subsection gives a formal justification to this intuition by
showing that a data type is computable if and only if its equality can be
axiomatized with a finite number of equations. This can be secn as a purcly
algebraic formulation of a Church-like thesis, that the intuitive notion of
computability agrees with certain algebraic concepts. The equational
axiomatization of equality is also closely rclated to the recent thcorem-
proving method called ‘inductionlecss induction’, which uses purcly
cquational reasoning (in the form of rewrite-rules) to prove thcorems valid
in an initial algebra that would normally have to be proved by induction.
We explain the basic facts about the satisfaction of equations in initial
algebras and about inductionless induction, and give pointers to [urther
developments in this area. This subscction drops the implicit assumption
of finiteness for signatures.
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Intuitively, we seek (o enrich a given data type with equality predicates,
i.e., operations =,: ss — newbool for each sort s, where newbool is a new
sort with constants true and false, we also want o axiomatize those
operations by giving new equations such that, for any two ground tetrils
1, ', one can prove (t =t') = trye (respectively .false) iff ¢t and.-¢’ can
(respectively cannot) be proved equal in our original data type by the rules
of equational deduction, and, of course, one cannot prove true = faise. For
instance the equations

(x = x) = true
(0 = s(x)) = false
(s(x) = 0) = false
(s(x) =s(y) = (x =),
give such an axiomatization for the natural numbers.

We also desire that the new cquations should have no effect on the old
sorts. This property is meaningful for any enrichment, and corresponds to
sufficient completeness plus consistency in Guttag's terminology; it is
weaker than ‘persistence’ since it is only stated for the initial algebra.

Definition 67. Given an enrichment (X', E’) of (Z, E), there is a unique Z-

homomorphism h: Tg,g - Ty glz. Then this enrichment is protected iff h
is an isomorphism. a

We give now the definition of an ‘equational equality presentation’; the
dcfinition is meaningful even without explicitly giving a subpresentation
that it enriches by equality. In case this is explicit, the equational equality
preséntation is called an ‘cquality enrichment’ of the given
subpresentation. o ' -

Definition 68. Let L™ be a signature that contains a sort newbool with
constants frue and false, and for each sort s # newbool an operation
=,: 55 — newbool; let E® be a set of "-equations. Then (X%, ET) is an
equational equality presentation ifl it satisfies the following conditions:
(1) Equational equality. For each sort s # newboolin X~ and cach ¢, ¢’
in (Tta),
a. The equation (V@) (¢t =t') = true is provable from E= if
and only if (V@) t =1 s provable from E=.
b. The equation (V) (¢t = (') = false is provable from E= if
and only il (V@) t =1 s not provable from E~.
(2) Consistency. It is not provable from E= that (V) true =
Jalse for sort newbool.
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In addition, if there is a subpresentation (X, E) with sorts those of L except
newbool and such that the enrichment (T, E) < (£, E7) is protected, then
we will call (=, E7) an equality enrichment of (Z, E). Note that by having
a protected enrichment, the equational cquality condition is then equiva-
lent to the following:

(1) Equational equality’. For each sort s of  and each ¢,¢" in Ty,
a. The equation (YJ) (¢t = ') = true is provable from E* if
and only if (V@) t=1t s provable [rom E.
b. The equation (VQ) =)= false is provable from E*= if
and only if (V@)t=1 s not provable from E.
In other words, the equality predicate in the enrichment is characterized
by equational deduction in the original subspecification. O

In general, the property of an enrichment being protected requires carcful
analysis. However, for the case of equality enrichments there is a simple
sufficient condition that applies to all reasonable situations that appear in
practice:

Lemma 69. Let (X%, E) < (Z', E’) be an enrichment such that: there is only
one sort sp in I’ and not in X; the operations and constants in X’ that are
not in I all have sort so; and the equations in E’ that are not in E all have
sort so. Then the enrichment is protected. -

Proof. For each sort s # s, we have Ty, = Ty, and, by inspecting the
rules of many-sorted equational deduclion, it is easy to check that since
there are no operations of sort different from s, which have sq as an
argument, the equations in E' and not in E have no effect whatsocver on
terms of sort different from s,. 0

A close connection exists among initial, final and BT-final algebras lor
equational equality presentations.

Lemma 70. Let (£~, E7) be an equational equality presentation. Then:
(1) Taking ¥V = {newbdol} as the sct of visible sorts, the initial and the
final (£=, E™)-algebras coincide.

()] Assummg that (Tge, g=)eemron = {[truel, [ false]} and adding to
= the conditional equation
V{x, _y} true = false = x = y

for each sort diflerent from newbool to form an enrichment
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(X°,E"’), the initial (£~, E~)-algebra and the BT-final
(X =, E=)-algebra coincide.

Proof. To prove (1), assume [t] = [¢'] in the final algebra but [t] # [t] in
the initial algebra. This gives [true] = [t = t] = [t = ¢'] = [ false] in the
final algebra, a contradiction.

To prove (2), first note that (Ty- g-) vacuously satisfies the conditional
equation of (2), i.e., it is also initial (=, E™")-algebra. We will be done if we
show that the only proper quotient, 4, of Ty- ;- that satisfies E= is the
unit algebra. Indeed, for such an A4, if[t] = [t] in A and if [t] # [¢"] in the
initial algebra, then

(i) If the sort is newbool this means that [true] = [ false], and hence
everything reduces to one point for the sort newbool, and so by the
conditional equations, everything also reduces to one point in any
other nonempty sort; i.c., A is the unit algebra.

(ii) For any other sort, we reason as in the proof of (1) and reduce to
the case (i). a

The following theorem characterizes the computability of an abstract
data type in terms of equational equality and initiality. From the last
lemma, one can obtain as immediate corollaries two similar characteriza-
tions replacing initiality by either finality or by BT-finality.

Theorem 71. For £ a finite signature and a minimal Z-algebra the
following arc equivalent:

(1) A is computable.

(2) There is a finite enrichment £ g £~ with only one new sort
newbool and a finite set E® of £™-cquations such that (£, E™) is
an equational equality presentation and A is Z-isomorphic to the
reduct (Tz- g-)le-

(3) Same as (2) plus the equations E” are confluent and terminating

as rewrite-rules.
[

Proof. Clearly, (3) = (2). To see (2) = (1), notice that we can decidg the
word problem for A by the following algorithm: given ground I-terms ¢
and (', start generating all the consequences of E= by the rules of many-
sorted equational deduction. After a finite number of steps you either
obtain the equation (V@) t=¢ (f t=¢ in A), or the
equation (V) (t=t)=1ralse (ift# ¢ in A)



528 J. Meseguer, J. A. Goguen

To see (1) = (3), we may assume without loss of gencrality that 4 is a
recursive algebra. We take 29 (he enrichment of £ by sort newbool with
constants true and false and operations = ss — s for each old sort s. We
extend A to a recursive Z™%algebra A~ in the obvious way: sorts and
operations for the signature I are those of A, (A7 ),mioa = {0, 1} with
false = O and true = I; for each sort 5 in Z, (47),, is the function:

A(x,y). if x =y then | else 0,

which is clearly recursive. By Theorem 54 characterizing computable
algebras by rewrite rules, we know that there is a finite cnrichment without
new sorts 7% € I~ and a finite set E~ of usable cquations such that the
induced rewriting relation — is terminating and confluent, and A~ is
isomorphic to the X"%reduct of the initial algebra Tj. ... As a
consequence, A is isomorphic to the Z-reduct of that initial algebra. To
finish the proof we need only note that (£=, E™) is an equational equality
specification. The consistency property is clear, and the equational
equality property follows from the bijection between A™ and Ty- - and
the definition of the equality predicates (47).,. 0

We will now consider the relationship between equality enrichments and
the satisfaction of equations in initial algebras. This relationship, namely
the reduction of satisfaction to consistency, underlies the ‘inductionless
induction’ theorem proving method. Finally, we briclly discuss the
literature in this area.

An initial (I, E)-algebra in general satisfies more equations than just
those deducible from E by the rules of equational deduction. For cxamplc,
the natural numbers with zero, successor and addition arc the initial
algebra for the following equations E:

x+0=x

O+x=x

s(X)+y=s(x+y)

x + 5(y) = s(x + y),
and it is well-known that natural number addition saltisfics the associative
law

(x+yY+z=x+(y+2).
However, this law is not satisficd by all the algcbras that satisfy the above
equations E. One way to see this is to first remark that the above rules are
indeed terminating and confluent (more justification for this below), and
they remain terminating and confluent when Ty is replaced by Ty(X ) for X
a set of additional constants, and then give risc to a canonical term algcbra
Cang (X)) which is an initial (Z(X), E)-algebra; but for X = {a, b, c},
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Cang g(X ) does not satisfy the associativity law, since the terms (a + b) + ¢
and a + (b + c) arc both in canonical form. . . -

Associativity of + dépends on the additional fact that the natural
numbers arc initial. This must be used in any proof of associativily by
induction. We will now establish two basic lemmas about the satisfaction
of equations in initial algebras.

Lemma 72. Let(Z, E) < (I, E’) be an enrichment by equations only. Then
the initial algebra Ty g satisfies the equations in E’ ifl the enrichment is
protected, ic., iff Ty g = Ty

Proof. If Ty g = Ty g then Tyg clearly satisfies E’. Conversely, if Ty g
satisfics E’ then there is a unique homomorphism j; Ty g — Ty s. Now
since T g certainly satisfies E < E’, there is a unique homomorphism
q: Ty.g = Tre. Then jand g must be isomorphisms, since they give rise to
endomorphisms j o q and g ¢/ that by initiality must satisfy jo g = 1, and
gej= I, Indced, q and j are both identity functions, since again by
initiality, goh = I, for h, It the unique homomorphisms from Tx so that
the congruences associated to h and i’ are identical, i.e., Ty g = Ty . O

Lemma 73, A set E” of Z-cquations holds for the initial (Z, E)-algebra ifT it

holds for the initial (Z', E‘)-algecbra for every protected enrichment
(L,E)s (¥, E).

Proaf. If E” holds for every protected enrichment, it will in particular hold
for the trivial one.

Conversely,let(Z, E) < (T, E') beanarbitrary protected enrichment and
let (VX) t=1( becanequationin E not salisfied by the initial (Z', E')-
algebra. This means that if X consists of variables x,, ..., x,, there is an
assignment f; X — Ty g, say f(x;) = [t,], such that f*(t) # f*(¢'). Since
the enrichment (I, E) < (¥, E’) is protected, we may assume that the
representatives {y, ..., t, are Z-terms. This provides a similar assignment
f% X = Ty.g by f°(x)) = [t,] from which (using protection of the enrich-
ment and the obvious factorization of f *|rx, as (f°)* composed with the
isomorphism h: Ty g — Ty |z which follows from initiality) one sees that
the equation (VX)t =1t does not hold in Ty g. a

We are now ready to reduce the problem of satisfaction of a set of
cquations in an initial algebra to that of consistency in an equality
enrichment augmented by those cquations:
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Theorem 74. Let (Z, E) be a presentation and let (£°, ET) be an cquality
enrichment of it. Then a set E’ of Z-equations is satisfied by the initial
(Z, E)-algebra if and only if (V@) true = false is not deducible from
E= U E’ by the rules of many-sorted equational deduction.

Proof. If E’' holds for the initial (X, E)-algebra then, by the previous
lemma, it also holds for the protected enrichment (£=, E=); it then follows
from Lernma 72 and the consistency property of the equality enrichment
that (V) true = false is not deducible from E= U E’.

Conversely, suppose that an equation (VX)t=1¢ in E’, say of sort
s, is not satisfied by Ty g; ie., suppose that there is an assignment
J: X — Ty such that [f*()] # [/?(¢')] in Ty g; then -

() (V) (£ () =S (¢)) = false

can be deduced from E® by the rules of many-sorted cquational
deduction. On the other hand

(i) (VSO =S*(1)

can be deduced from E’ by the rules of equational deduction, and by
reflexivity we have

(i) (V{x,y}) (x =,p) = (x =,)).
Hence from (ii) and substitutivity we can deduce

(iv) (V{x}) (x =./°()) = (x =,/°(t)).
Again by substitutivity and reflexivity we can then deduce that

) VO =S = (S (1) =,/ ().
Since f?(t) =,/?(t)) = true follows from E~ by the rules of deduction,
from E® UE' and transitivity we deduce (V) (S?{() =,/°(1)) =
true, which together with (i) gives (V) true = false, a

. This theorem provides an ‘inductionless’ (i.e., purcly equational) way of
proving that an initial algebra salisfics a given equation. Several
algorithms can help in automating most of the proof cflort, turning it into
a theorem-proving strategy. On the one hand, the Knuth-Bendix
algorithm can attempt to find a set of confluent equations deductivcly
equivalent to a given set of equations, provided termination is satisficd; on
the other, attempts to prove rewrite-rule termination can also be
semiautomated [32] or even automatcd [52]. Here then is a possible
strategy, using the Knuth-Bendix algorithm, to prove that a set E' of
equations holds for the initial (£, E)-algebra:

(i) Enrich (T, E) to a confluent and terminating equality enrichiment
(X~,E").

{
‘.Z
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(ii) Use Knuth-Bendix and termination methods to attempt complet-
ing E™ U E’ to a confluent and terminating set of equations.

(iii) If somewhere in the completion process for EUE’ the
equation (V) true = false is derived, then stop: at least one
of the equations in E’ is not satisfied by Ty s.

(iv) If the completion process terminates with a set of confluent and
terminating rewrite rule for which [true] # [ false], then
the equations E’ are satisficd by Tyg.

(v) Otherwise (i.c., if the completion process does not terminate and
we could not prove (V) true = false from. already gen-
crated rules), nothing can be decided about the satisfaction of the
equation. Nevertheless, ‘I e were to ideally ‘wait forever’, this
would actually give a proof that the equation holds; this is so

because, in the limit, the set of all generated equations is confluent
[43].

For example, consider the associativity of natural number addition. The
set E= below is a confluent and terminating equality enrichment:

x+0=2x

O+x=x

s(x) + y=s(x +y)

X + s(y) = s(x + )

(x = x) = true

(0 = s(x)) = false

(s(x) = 0) = false

(s(x) = 5(y)) = (x = y).
It so happens that E™ union with the equation

(x+P+z=x+(y+2)
is already terminating and confluent, and is certainly consistent (i.e.,
true # false), so that associativity follows. Termination can be seen using
the following ordering on terms: ¢ < ¢’ iff @(t) < ¢(t') where ¢(0) =
$(true) = ¢(false) = 1, ¢p(x) = 1 for any variable x, and ¢(s(1)) = ¢(¢) + 1,
P+ 0)=()e3*), and P(t=1t)=¢(t)+ ¢()+ 1. Then one
can sce that for any one step rewriting ¢ — ¢’ induced by the equations,
(1) < $(1); hence the rules are terminating. Confluence is handled
semiautomatically by the Knuth-Bendix algorithm, which for the above
cquations stops without producing any new rules. This is because all
critical pairs produce the same normal form. For instance, the associativ-
ity cquation and the equation x + s(y) = s(x + y) give the critical pair
(x + (y + 5(z); s((x + y) + 2)), both one step rewritings from (x + y).

+ 5(2), and both sides rewrite to s(x + (y + 2)). We lcave the readerto
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aclually compute all cases (seec [42] for a precise dclinition of critical
pair). ' S

The inductionless induction method is originally due-to’ Musser [72].
Goguen [31] generalized and simplified the method, and proved Theorem
74. Huet & Hullot [44] give a variant of the method that when certain
conditions are satisfied by the original equations, does not require the
introduction of an equality predicate; intuitively, if there is a subsignature
Q < X of ‘constructors’ (with same set of sorts) such that the enrichment
Q, &) = (T, E) is protected, i.e., such that each equivalence class [t] of Z-
terms has a unique Q-term as its representative, then we can handle
equality implicitly, as identity between the representative Q-terms. This
idea has been extended further to the case of a protected enrichment
(Q, Eo) < (Z, E) by Kirchner [54]; this opens generalizations of the above
method that use generalized Knuth-Bendix algorithms modulo ‘nice’
equations such as associativity and commutativity for proofls by induc-
tionless induction; termination methods in this context have recently been
considered [23]. Lankford [56] discusses potential limitations of the
inductionless induction method, and [52] gives a careful explanation and
examples of the method (for the case without equality predicates).

6.8 Concluding remarks on abstract data type computability

This brief subsection indicates some additional references and
research directions in abstract data type computability; it claims ncither
exhaustion nor completeness.

6.8.1 The classics

Even before the establishment of any formal notions of computa-
bility, van der Wacrden [85] defined ‘explicitly given ficlds' and proved
[86] that there was no general splitting algorithm applicable 1o all
explicitly given fields. The subject of computable ficlds was further
developed in the framework of computability thcory by Frolich &
Shepherdson [24] and later by Rabin [78], who proved that the algebraic
closure of a computable field is also computable. Both Rabin [78] and
Malcev [67] develop equivalent versions of computable algebra for an

arbitrary signature, as in Section 6.3, and establish the foundations of the
subject.
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6.8.2  Further work by Bergstra, Tucker et al.
(i) By Bergstra and Tucker, besides the references already cited, see
(7, 10, 11, 12].

(i)) Asveld & Tucker [1] study the computational complexity of
abstract data types.

(iii) Bergstra, Broy, Tucker & Wirsing [14] give characterization
thcorems for hicrarchical specifications and partial abstract data
types.

(iv) Bergstra & Klop [3, 4] begin the subject of computability of
parameterized abstract data types.

6.8.2  Computability of partial abstract data types with equationally
defined domains

A natural way of extending (total) data types is to consider partial
data types with operations defined on (vectors of) values that satisfy
equational conditions (e.g., empty(x) = false). This approach has been
proposed in [79]. Kaphengst [53] gives a careful study of the computa-
bility of these data types, and Hupbach {47] studies the related problem of
computability for implementations.
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Appendix: proofs of soundness and completeness

We first prove the Soundness Theorem stated in Section 4.3.3.

Proof of Theorem 12. For technical rcasons, it is easier to prove the
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soundness of a set of rules equivalent to those given in Scction 4.3.2. The
new rules are (1)—(3), as before, together with:
(4') Substitutivity-1, 1f
VY)ul = u2
of sort s is derivable and if g € Z,; _,,, is an operation with sk = s,
then so is ..
(VZ) o(x1,...,xk — L ul,xk + 1,..., xn) = _
o(xl,...,xk— 1,u2, xk + 1,..., xn),
where Z=Yu{xl,...,xk—-1,xk + 1,..., xn} with xj of sort sj.
(5") Substitutivity-2. If
vVX)t=r
is derivable and il g: X — Ty(Y) is an S-sorted map, then
(YY) g*(t) = g*(¥')
is also derivable.
We first prove the soundness of the rules (1)-(3), (4'), (5'), and then prove
their equivalence with the original rules (1)-(6) in a subsequent lemma.
Soundness of rules (1)-(3) follows directly from the dcfinition of satisfac-
tion and is left to the reader; the soundness of rules (4') and (5') remains.
For (4), we must show that if A is an algebra satislying (VY) ul =u2,
then A also satisfies
(VZ) o(x),..., xk — Lul,xk + 1,...,xn) =
a(xl,...,xk — 1,u2, xk + 1,..., xn).
Now let f1Z —+ A be a (S-sorted) map, and consider the commula-
tive diagram in Figure 14.14, where j: Y — Z is the inclusion map which
induces the inclusion homomorphism j*: Ty(Y) — T(Z). We then have
(*(o(x1, ..., xk — 1, ul, xk + 1, ..., xn))
= a(f*(x]),..., [f(xk — 1), f2(ul), [ (xk + 1), .:., £ *(xn))

(by f/* a homomorphism)
=a(f7(xD), ..., [ (xk = 1), S2G (1)), S*(xk + 1), ..., £*(xn))
=o(f*(x1), ..., f*(xk — 1), (f 2 j)* (ul), f*(xk + 1),...,[*(xn))

(by j* inclusion and diagram above)
Fig. 14.14
’l
Te() = = = —omTy(2) = = === 4

,.,/[/
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= a(f*(x1),..., [ *(xk = 1), (f=j)? (u2),f*(xk + 1), ..., S *(xn))
(by hypothesis)
= f*(o(xl,...,xk — 1,u2,xk + 1,..., xn)) (reversing the steps)
as desired.

To see the soundness of ('), let Asatisly (VX)t=t(, letfY o A
and g: X — T¢(Y) be maps. Then the diagram of Figure 14.15 shows that
S*%og?® =(f*0g)* and so we have that

SP@* @) =(f?eg)* (1) =(S* = g)*(V) (by hypothesis)
=[*@°),

as desired. To finish the proof we need only prove

Lemma 75. The rules (1)-(3), (4'), (5') are equivalent to the rules (1)-(6),
i, an equation (VX)t=¢ is derivable by the first set of rules from a
set E of equations ifT it is derivable by the second set of rules from the same
sct of equations.

Proof of Lemma. For the ‘il part, we must show that any equation
derivable by the rules (4)-(6) can be derived using (1)-(3), (4'), (5°). First
note that (5) and (6) are particular instances of (5°): for (5), take as g the
inclusion X = X u {y} = Ti(X u {y}); for (6), take g: X — T(X — {x})
with g(x') = x" il x’ # x, and g(x) = v € (T%),. For (4), reason by induction
on n = max(depth(¢1), depth (¢2)) where depth(t) = 0 il ¢ is a variable or a
constant and depth(o(vl,...,vm)) = | + max{depth(vl), .., depth(vm)}.
We leave the reader to check the case n = 0. Let n + 1 = max{depth(t1),
depth(2)}; say n + 1 = depth(tl), t1 = a(vl,..., vm). Then we have

ll(x — ul) = o(l(x « ul),..., vm(x « ul))

= g(vl(x « u2),..., vm(x «~ u2)) *

since by induction hypothesis, - (VZ) vi(x « ul) = vi(x «~ u2)- can be
derived using (1)-(3), (4'), and (5°). Then by m applications of (4) we have

= {1(x « u2)

=12(x « u2) (by (5),
as desired.

. .

Fig. 14.15

3
TeX) =— —— —— = T (V) —— — — —- 4
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For the ‘only if" part, we must show that any equation derivable using
rules (4') or (5') can be derived using rules (1)-(6). Rulc (4') is a particular
instance of (4) with tl =12 = a(x|, ..., xn) and with x = xk. Rule (5
follows: (i) if X = (J, from as many applications of the rule of abstraction
as variables in Y; (ii) il X # (&, [rom as many applications of the rule of
substitutivily as variables in X, o0

Now we prove the Completeness Theorem stated in Section 4.3.3.

Proof of Theorem 13. We have to show that if an equation

*) vVX)e=r
is satisfied by all (Z, E)-algebras, then it is derivable from E using the rules
of deduction (1)-(6) or by the above lemma, using the equivalent rules (1)-
(3), (4), and (5°). Assume that the equation (*) is salisfied by all (X, E)-
algebras, but is not derivable. We will reach a contradiction by considering
the algebra Ty £(X), defined as the quotient of Ty(X) by the congrucnce E*
such that (u,v') is in E* i (VX)u =vis derivable from E using the
rules (1)-(3), (4'), and (5'). The fact that E“ is a congrucnce follows trivially
from the rules (1)-(3) and (4'). Also Ty g(X) is a (X, E)-algebra, since for
any equation (VY)u=u'in E with, say- Y= {yl,.z.,yn}, and for
[ Y = Ty (X) a map with, say f(yj) = tj, we have

S =u(yl «tl,...,yn « n)

=u'(yl « tl,..., yn « (n) (by n applications of the rule
(5
_ = [*W),

as desired. By hypothesis the equation (*) holds for all (Z, E)-algebras but
is not derivable. This means that [¢] # [t'] in Ty g(X), which contradicts
the fact that (*) is salisfied in Tg,g(X), so in particular [t] = [t'] when we
consider the assignment

X = Ti(X) = Tr(X)

obtained by composing the inclusion of X with the quoticnt map from
Ti(X) to Tr(X). O
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