
Theoretical Computer Science 12 (1980) 291-302
@ North-Holland Publishing Company

COMPLEXITY, CONVEXITY AND
COMBINATIONS OF THEORIES*

Derek C. OPPEN
Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.

Communicated by 2. Manna
Received February 1979
Revised September 1979

Abstract. We restrict our attention to decidable quantifier-free theories, such as the quantifier-free
theory of integers under addition, the quantifier-free theory of arrays under storing and selecting,
or the quantifier-free theory of list structure under cons, car and Cdr. We consider combinations of
such theories: theories whose sets of symbols are the union of the sets of the symbols of the
individual theories and whose set of axioms is the union of the sets of axioms of the individual
theories. We give a general technique for determining the complexity of decidable combinations of
theories, and show, for example, that the satisfiability problem for the quantifier-free theory of
integers, arrays, list structure and uninterpreted function syrnbirls under +, s, store, select, cons,
car and cdr is NP-complete. We next consider the complexity of the satisfiability problem for
formulas already in disjunctive normal form: why some combinations of theories admit deter-
ministic polynomial time decision procedures while for others the problem is NP-hard. Our
analysis hinges on the question ef whether the theories being combined are convex ; that is, whether
any conjunction of literals in the theory can entaii a proper disjunction of equalities between
variables. This leads to a discussion of the role that case analysis plays in deciding combinations of
theories.

1. Introduction

In many applications of theorem proving, particularly those involving program
verification, program manipulation and program optimization, we would like to be
able to very quickly decide formulas or simplify expressions involving the common
data structures of programming language F: numbers, arrays, records, list structure,
sets, multisets.

The first-order theories of these data structures are either undecidable or of very
high complexity. For this reason, most ‘practical’ theorem provers restrict their
attention to quantifier-free formulas over these data structures. Empirically this
restriction seems reasonable: it admits a large and useful class of formulas, yet
theorem provers which handle this class generally Jo so reasonably efficiently.

The purpose of this paper is to explore the ccmpitixity sf reasoning in quantifier-
free theories. We are particularly interested in combinations of quantifier-free
theories, such as the theory which ‘combines’ the quantifier-free theories of integers

* This research was supported by the National esearch Foundation under contract MCS 78-02835.

291

292 DC. Oppev

under addition, arrays un’der storing and selecxing, and list structure under car, cdr,
cons. The reason is that the formulas which arise in practice tend to be ‘mixed’
formulas containing symbols from various Itheories (formulas such as A[I + l] <
A[r]) rather than from just one of the base t‘lteories. Thus, we are interested in, for
instance, the quantifier-free theory of integers, arrays, list structure and un-

-C interpre te&.firnct-on symbols under +, -) store., select, CSIPS, ear and cdr. (A decision
proceduret foi this theory is implemented a5 part of the simplifier in the Stanford
Pascal Veriner.)

Implementers of theorem prowlers for a theory such as this one have generally shied
away from implementing an actual decision procedure, and have instead relied on ad
hoc techniques designed to catch ‘most’ cases. There are at least two reasons for this.
One is that, until recently, there has been little research done on what a decision
procedure looks like for ‘mixed’ theories such as these i\or even if one can exist). The
main reason, however, is the common belief that any decision procedure for such a
theory must be slow and impractical, that the complexity of such sn apparently rich
theory must be very high. However, as we shall show, the satisfiability problem for
the above theory is in fact (only!) NP-complete.

In Section 2, we describe a nondeterministic procedure for deciding combiir::tions
of quantifier-free theories which generalizes the deterministic procedures given in
[11,17,18]. We analyze the running time of this procedure. In Section 3, we rc;Gew
some existing results on decidability and complexity of various theories. In Section 4,
we use the results of the previous sections to analyze the complexity of several com-
binations of theop:ies. In Section 5, we consider quantifier-free DNE combinations of
theories, that is., combinations of theories all of whose formulas are in disjunctive
normal form. Some of these theories have polynomial time solutions while others
are NP-hard. In Section 6, we discuss the cost of the case-analysis inherent
in any (deterministic) implementation of the procedure described in Section 2.

2. Nondeterministic combinations of theories

Assume we have several quantifier-free theories formalized in classical first-order
logic with equality, extended to include the three-argument conditional function
if-then-else. The symbols =, A, v, 1, 3, if-&en-else, V and 3 are common to all
theories; we call them the hgicak symbols. Each theory is characterized in the usual
way by its set of non-logical symbols and non-logical axioms.

If 9 is a theory, then a term is an %term if each non-logical symbol occurring in
the term is a non-logical symbol of 2 We define Witeral and %formula similarly.
(A literal is an atomic formula or its negation.) If 9 is a theory, then a decision
procedure for 9’ is an algorithm for determining whether a formula is valid in 9. A
satisfiability program for 9’ is a program which determines whether a conjunction
L*A-•* A Lk of %literals is satisfiable in 9. (Th.e general decision problem for y can
easily be reduced to this problem.)

Complexity, convexity and combinations of theories 293

Our goal is to construct a (nundeterministic) satisfiability program for the
quantifier-free theory whose set of non-logical symbols is the union of the, sets of
non-logical symbols of the individual theories and whose set of axioms is the union of
the sets of axioms of the individual theories. We will assume that we have just two
theories; the generalization to more than two is straightforward. We also assume that
we have a satisfiability program for each of our quantifier-free theories, and that each
theory is stably-infinite, that is, that any quantifier-free formula in the theory has an
infinite model if it has any model. We will use the name of a theory to denote also it:s
satisfiability program and the conjunction of its axioms.

A formula Fenrails a formula G if G is a logical consequence of F, that is, if F 3 G
is a theorem of first-order logic. A formula F entails a formula G within a theory 27 if
F =) G is a theorem in .% If the context is clear, we will omit specifying the
theory - for instance, we will say that x - y = 0 entails x = y without specifying ‘in the
quantifier-free theory of integers under addition’.

A parameter of a formula is any non-logical symbol which occurs free in the

formula. Thus the parameters of a = b v Vx P(x, f(x)) = c are a, b, P, f and c.
A simple formula is one whose only parameters are individual variables. For

instance, x # y v z = y and Vx x # y are simple, but x c y and f(x) = y are not. Thus
an unquantified simple formula is a propositional combination of equalities between
individual variables.

A formula ;F is non-convex if there exist variables x1, ~1,. . . , xn, yn, it 3 2, such
that F=,x::=yg~-vx,, = y, but for no i between 1 and y1 does F 1 xi = yi.
Otherwise, F is convex. That is, a formula is non-convex if it entails a disjunction of
equalities between variables without entailing any of the equalities alone; otkrwise
it is convex. For instance, the formula 1s x s 2 A y = 1 A z = 2 is non-convex over the
integers because it entails the disjunction x = y v x = z without entailing either
equality alone.

The proof of the following lemmas appears in [111.

Lemma 1. If F is any formula, then there exists an unquantified simple formula
Res(F), the residue of F, which is the strongest simple formula that Fentails ; that is, if
His any simple formula entailed by F, then Res(F) entails H. Res(F) can be written so
that its only variables are free variables of F.

Some examples of residues can be found in Table 1.

Lemma 2. If A, and B are formulas whose only common parameters are individual
variables, then Res(A I\ B) = Res(A) I\ Res(B).

Notice that the condition of the lemma is satisfied when A and B are from Mferent

theories which have no non-logical symbols in common.

Let Fl, F2, . <a . , F,, be simple, convex formulas and V be the set of all
variables appearing in any Fi. Suppose that for all x, y in Vand for all i, j from 1 to n,

294 D.C. Oppen

Table 1

Formula

x =f(a)A y =f(b)
x = store(u, i, e)[j]
x = store(v, f, e)[j] A y = u[j]
XfX

Residue

a=bxx=y
i=jl>x=e
if i = j tlhen x = e else x = y
false

either both Fi and Fi entuil x = y, OS neither do. Then Fl A Fz A l l l A E;I, is satisfiable if
and only if each Fi is satisfiable.

2.1. The nondeterministic satisfiabilitj procedure

We assume we have two theories 9’ and g which have no common non-logical
symbols, that we have satisfiability programs for 9’ and 9, and that 9’ and 9 are the
axioms for 9 and 9. We are given an unquantified formula F whose non-logical
symbols are among those of 9’ and 9, and wish to determine whether F is satisfiable
in the theory 9 u 9, that is, whether 9 A 9 A F is satisfiable.

Consider first the disjunctive normal form of F. Each disjunct is a conjunction of
literals; F is satisfiable if and only if one of these disjuncts is satisfiable. Our first step
is therefore to guess which literals in F make up a satisfiable disjunct. Call the
conjunction of these literals F’.

F’ may contain ‘mixed’ literals, literals which are neither Niterals nor Sliterals.
For instance, suppose that 9’ is quantifier-free Presburger arithmetic, that 9 is the
quantifier-free theory of list structure and that F’ is the single literal y -2 car(x) + 3.
This literal is neither a %literal nor a F-literal. We wish to divide F’ into two
formulas, one which can be h’andled by the satisfiability program for 9’ and one which
can be handled by the satisfiability program for 9. That is, we want to construct two
formulas FS and FT so that FS is a conjunction of %literals, FT is a conjunction of
Sliterals, and FS A FT is satisfiable if and only if F’ is. In our example, y = car(x) + 3
is equivalent to 2 = car(x) A y = z + 3, where t is a new (existential) variable;
z = car(x) is a Y-literal and y = z +3 is a %literal. We can therefore let Fs be
y = z + 3 and FT be z = car(x). (Variables are typeless.) In general, we construct FS
and FT from arbitrary F’ in similar fashion: for each literal appearing in F’, if the
literal is an Y-literal, we add it to FS ; if it is a 5 literal, we add it to FT ; otherwise we
introduce new variables to replace terms of the wrong ‘type’ and add equalities
defining these variabies.

We now wish to determine if 9’ A Fs A Y A FT is satisfiable. If x1, . . . , xk are all the
variables in Fs and FT, we guess the equalities and disequalities that hold among the
xi, and let E be a conjunction of equalities and disequalities of variables describing
our guess. For instance, if there are four variables x1, x2, x3 and x4, E might be

Xl =X2AX3 =X4AXl#X3.

We add E to our conjunction and now wish to determine the satisfiability of
2? A FS A 9 A FT A E. It suffices to show that Res(Y A FS A F A FT A E) is satisfiable

Complexity, convexity and combinations of theories 295

(that is, not false). By Lemma 2, this residue is equivalent to Res(9 A Fs A E) A
Res(9 A FT A E). Since E already expresses precisely the qualities and disequalities
that hold between the variables, Res(9 A Fs A E) and Res(sr A FT A E) are simple and
convex, and entail the same set of equalities among variables. Hence, by Lemma 3, to
verify that F’ is satisfiable, it suffices to show that bloth Res(9 A Fs A E) and
Res(F A FT A E) are satisfiable. This will be the case if and only if F$ = Fs A E, which
is a con junction of %literals, is satisfiable in 9, and Fk = FT A E, which is a
conjunction of %literals, is satisfiable in K We can use the satisfiability progiams of
9 and Y to determine their satisfiability.

The essential idea behind this nondeterministic procedure thus is to guess all the
qualities that hold between the variables and then to use the individual satisfiability
programs to decide whether the formula with these equalities is satisfiable,

2.2. Analysis of the algorithm

What is the running time of this nondeterministic satisfiability procedure? Let n be
the length of the incoming formula F.

We can guess F’, the satisfiable disjunct of literals of F, in nondeterministic
polynomial time. The size of F’ is linear in n since F’ is a subformula of F.

We now have to construct Fs and FT. There are at most n subterms in F’ of the
wrong ‘type’; for each such subterm we have to replace it by a new variable and add
the equation defining the variable. We can certainly construct FS and Fr in
deterministic time polynomial in n. Each is of length polynomial in n, allowing for the
n new variable symbols.

We can guess the equalities that hold between the variables of F’ in nondeter-
ministic polynomial time. The size of E is polynomial in lz, and so the sizes of Fi and
Fk are also polynomial in n.

We have thus shown that the problem of constructing the formulas Fi and Fk is in
NP. The remaining time required is whatever time is required by the satisfiability
programs for 9’ and 5 to verify that Fk and FL are satisfiable.

Consider now the satisfiability problem for 9’~ 5 Since arbitrary boolean struc-
ture is allowed in formulas, the problem is certainly NP-hard. If the problems of
determining the satisfiability of conjunctions of %literals and of 5 literals are also in
NP, then the satisfiability problem for 9’~ 3 is in NP, and hence NP-complete.
Otherwise, the complexity of the satis$ability problem is dominated by the complex-
ity of the satisfiability problem for 9’ or for .Y.

The results given above for two thea>ries generalize in a straightforward fashion to
more than two theories.

The following summarizes these results.

Theorem 1. Let 91, 92,. . . , 9k be decidable, stably-infinite, quantifier-free theories

with no common non-logical syi:zbols Then $1 u $2 u l l l u J& is decidable; if the
satisfiability proble:rz for each of the Yi is in NP, then the satisfiability problem for

FgJ3-~u l ‘- u & is in NP an II hence NP-complete. Otherwise the complexity of the

296 DE. Oppen

satisfiability problem is dominated by the maximum of the complexities of the
satisfiability problems for $1 v $2 v l l . v Tk.

3. Review of existing complexity results

Before using the results of the previous section to analyze the complexity of
various combinations of theories, we first summarize some existing results. In the
following, the quantifier-free DNF theory is the theory in which every formula is
already in disjunctive normal form. This restriction is of interest because the
complexity of its satisfiability problem is just the complexity of determining the
satisfiability of a conjunction of literals.

3.1. Theory of integers under addition

The first order theory was shown decidable by Presburger [IS]. Fischer and Rabin
[6] prove that the theory has a double-exponential lower bound on nondeterministic
time. Oppen [12] proves that the theory has a triple-exponential upper bound on
Merministic time; Berman [2] has refined this bound. Reddy and Loverland [16]
prove that the bounded quantifier subtheory has a double-exponential upper bound.
The satisfiability problems for the quantifier-free theory and the quantifier-free DNF
theDry are NP-complete; this follows from [4].

k,n interesting subtheory of quantifier-free Presburger arithmetic is the quantifier-
fret: thea3ry of integers under successor; thus addition of variables is not allowed, only
addition of a variable and a constant. This theory is also NP-complete [19].
(However, if disequalities are also not allowed, then one can determine the
sati sfiability of a formula of length n in the quantifier-free DNF theory in time O(n 3,

Pw

3.2. Theory of rationals under addition

The quantifier-free DNF theory has a polynomial time satisfiability problem. This
follows from Khachian’s recent discovery of a polynomial time algorithm for linear
programming ([9]; see also [7]).

3.X Theory of equality with function symbols

ii proof of the decidability of the quantifier-free theory appears in [l]. (An
exumple of a valid formula in this theory is x = y 3 f(x, y) = f(y, x).) Nelson and
Oppen [lo] give an O(n*) decision procedure for the DNFquantifier-free theory (see
also [20-221). It follows that the satisfiability problem for the quantifier-free theory is
NP-complete.

3.4- Theory of list structure under c

There are several possible axiomatizations for this theory:

Complexity, convexity and combinations of theories

car(cons(x, y)) = x

c&(cons(x, y)) = y

atom(x) =) cons(car(x), d(x)) = x
atom(eons(x, y)),

car(sons(%, y)) = x

cdr(cons(x, y)) = y
x # wiil= cons(car(x), c&(x)) = x
cons(x, y) # nil
car(d) = cdr(nil) = nil,

car(cons(u. y)) = x
cdr(cons(x, y)) = y
cons(car(x), d(x)) = x
car(x) # x
cdr(x)#x
car(car(x) # x,

297

(1)

(2)

(3)

. . .

Nelson and Oppen [lo] show that the satisfiabiiity problem for the quantifier-free
DNF theory axiomatized by (1) has an O(n’) solution, but that the problem for (2) is
NP-complete. Oppen [13) gives a linear algorithm for (3). Therefore, for any of these
axiom schemata, the quantifier-free theory is NP-complete. The first order theory
was shown decidable but not elementary recursive by Oppen [13].

These results generalize easily to data structures with one constructor i and k
selector functions ~1, . . . , sk. Such data structures are called recursively defined data
structures.

3.5. Theory of arrays under selecting and storing

The axioms for this theory are as follows:

select(store(A, I, E), I) = E
I # J 2 select(store(A, I, E), J) = select(A, J)
store(A, I, select(A, I)) = A
store(store(A, I, E), I, F) = store(A, 1, F)
I # .I 3 store(store(A, I, E), J, F) = store(re(A, J, F), I, E).

select(A, I) is the Ith component of the one- imensional array A.
A, I, E) is the array whose Ith component is
I, is A[J]. A two-dimensional array is considered a

vector of vectors, so A[I, J] abbreviates A[I][J]. The last three axioms are only
needed if equalities between array terms are allowed [g].

Downey and Sethi [S] show that the satisfiability problem for t

298 D. C. Oppt ,n

3.6. Theory of integers with function symbols

Shostak [17] shows that the quantifier-free theory of integers with uninterpret-
ed functions under + and G is decidable. (This also follows immediately from

Theorem 1.)

3.7. Theory of integers and arrays

Suzuki and Jefferson [18] show that the quantifier-free theory of arrays and
integers under +, G, store and select is decidable. (This also follows immediately
from Theorem 1.) They also extend their results to the quantifier-free theory all of
whose formulas are of the form P 3 Q A PERM(Ap B), where P and Q are con-
junctions of literals over the theory of arrays and integers under +, G, store and select
arid A’ and B are array terms. PERM(A, B) is interpreted to mean that array A is a
permutation of array B.

4. Complexity of various combinations of theories

The results given in Section 3 lead immediately to the following corollaries of
Theorem 1.

Coroiiary I. The satisfiability problem for the quanti’er-free theory of rutionals (or
integers), arrays, list structure and uninterpreted funciion symbols under + , G, store,
select, consF car and cdr is NP-complete.

A decision procedure for this theory is implemented in the Stanford Simplifier.

Corollary 2. The satisfiability problem for the quanti’er-free theory of integers and
arrays under +, s, store and select is NP-complete.

This is the theory considered by Suzuki and Jefferson [Ml. It is easy to verify as
well that the addition of the PERM predicate does not change the NP-completeness.

Corollary 3. The satisjiability problem for the quantifier-free theory of integers and
uninterpreted function symbols under -I- and =S is NP-complete.

This is the theory considered by Shostak [I 71.

5. Convexity

Since the theories we considered in the previous section were already NP-hard
(because of the arbitrary boolean structure allowed in formulas), our analysis of tile

Complexity, convexity and combinations of theories 299

running time of our nondeterministic procedure could be fairly gross: it sufficed to
show that each step required at most nondeterministic polynomial time. But what if
we restrict our attention to formulas already in disjunctive normal form, that is, to
quantifier-free DNF combinations of theories? The thf;ories then are no longer
automatically NP-hard, and so we may be able to impro.;e the upper bound down to
polynomial time.

The satisfiability problem for some quantifier-free DNF theories (such as the
theory of integers under addition_ or of arrays under storing and selecting) is already
NP-hard. SO of course any theory ikluding such a theory must therefore be at least as
hard.

However, if we further restrict our attention to quantifier-free DNF theories with
deterministic polynomial time satisfiability problems, vve might hope that their
quantifier-free DNF combinations also admit deterministic polynomial time solu-
tions. For instance, we might consider combinations of the quantifier-free DNF
theories of equality with uninterpreted function symbols, and list structure under cspr,
cons and cdr (with axioms (1) or (3)) since each has a deterministic polynomial
satisfiability problem. Nelson and Oppen [lo] show that the satisfiability problem for
the quantifier-free DNF theory of list structure with uninterpreted function symbols
has an O(n*) solution. In fact, as we now show, any combination of theories with
polynomial time decision problems also has a polynomial time solution as long as the
theories are convex.

Recall that a formula is non-convex if it entails a disjunction of equalities between
variables without entailing any of the equalities alone; otherwise it is convex. Define
a theory Sp to be convex if every conjunction of %literals is convex; otherwise it is
non-convex.

Some of the theories considered in this paper are (convex, others non-convex. The
theories of equality with uninterpreted function syrnbols and of list structure under
car, cdr and cons are convex [W]. The theory of rationals under + and < is convex:
the solution set of a conjunction of !inear inequalities is a convex set; the solution set
of a disjunction of equalities is a finit:: union of hyperplanes; and a convex set cannot
be contained in a finite union of hyperplanes unless it is contained in one of them. The
theories of integers under addition and of integers under successor are non-convex.
For instance, the formula 1 s x s 2 A y = 1 A t = 2 entails the disjunction x = y v x = z
without entailing either equality alone. The theory of arrays is non-convex. For
Illstance, the formula x = store@, i, e)[j] A y = u [j] entails i = j v x = y. The theory of
he reals under multiplication is not convex; for example, xy = 0 A z = 0 entails the
disjunction x = 2 v y = z. The theory of sets is also non-convex; for example,

consider (a, 6, c} r\ {c, d, e} f (}.
The results on theories of most interest to us are summarized in Table 2.
Suppose we have two convex theories Y and 9, and that for each we have a

deterministic polynomial time decision procedure for deciding satisfiability of con-
junctions of literals. Then we can decide the satisfiability of a conjunction F in their

union in polynomial time by the following procedure (see [ill).

300

Table 2

D.C. Oppen

Convex Theories Non-convex Theories

Theory of rationals under addition Theory of integers under addition
Theory of equality with uninterpreted Theory of integers under successor
function symbols Theory of arrays
Theory of li‘st structure (with axiom
scheines (1) and (3))

Step 1. Construct & and & from F as in the nondeterministic procedure in Section
2. Then Fs is a conjunction of %literals, FT is a conjunction of Y-literals, and
Fs A Fr is satisfiable if and only if F is.
Srep ZGB Using the satisfiability procedures for 9 and g, check to see if eithler Fs or FT
is unsatisfiable. If so, return unsatisfiable since F must be unsatisfiable.
Step 3. If either & or & entail some equality between variables not entailed by the
other, then add the equality as a new conjunct to the one that does not entail it and go
to Step 2.
Step 4 If this step is reached, F is satisfiable.

This, procedure is a specialized deterministic version of the non-deterministic
procedure given in Section 2. Instead of guessing the equalities that hold between
variables, we compute the equalities in Step 3. We can implement Step 3 by
determining, for each x and y in the formula, if x = y is entailed by Fs or FT. We can
do this by ‘checking, using the satisfiability procedure for 9, if FS AX Z y is
unsatisfiable; similarly for FT. The algorithm is a complete satisfiability procedure
only if the theories 9 and 9 are convex (if they are not, FS or FT may entail a
disjun’ction of equalities not entailed by the other).

What is the running time of this deterministic procedure? Steps 2 and 3 can be
executed at most n times, where n is the length of F, since there can be most n
variables in F, and FT, and there can be at most n - 1 non-redundant equalities
between n variables. Since 9 and 9 have polynomial time DNF satisfiability
problems, Steps 2 and 3 require polynomial time.

The procedure therefore runs in polynomial time, and leads to the following
theorem:

Theorem 2. Let FI, $2, . . a , Yk be decidable, convex, stably-infinite, quantifier-free
theories with no common non-logical symbols and with deterministic polynomial time
DNF satisfiability problems. Zhen Yl u 92 u l . l u Yk has a deterministic polynomial
time DNF sa tisjia bility problem.

Complexity, convexity and combinations of theories 301

6. Case splitting

If the theories being combined are non-convex, the nondeterministic procedure
given in Section 2 for combining satisfiability programs translates in the obvious
fashion into a deterministic procedure. The incoming formula is converted into
disjunctive normal form, each disjunct is massaged into one containing no literals of
‘mixed’ type, a case split is done on all the ways that the variables in each conjunct can
be equal, and the individual satisfiability programs are used to determine the
satisfiability of each branch of the split.

This simplistic way of combining satisfiability programs is of course rather
inefficient: a superior method is given in [ll]. However, it is interesting to briefly
analyze the running time of this brute force algorithm since % illustrates the
importance of case splitting.

Assume that the size of the original formula is n. The size of each disjunct in
disjunctive normal form is O(n) since each disjunct is a subformula of the original
formula; there may of course be O(2”) disjuncts.

We now want to convert each disjunct into the form Fs II FT. There are at most n
subterms in F of the wrong ‘type’; for each such subterm we have to replace it by a
new variable and add the equation defining the variable. As before, we can construct
P’s A & in deterministic polynomial “iime; its length is O(n). The total number of
variables (including newly introduced ones) is at most n.

The next step is the case split on the equalities between the variables appearing in
F‘/ and FT. The number of branches in the case split will be the number of ways we can
partition the set of variables into nonempty disjoint subsets. By definition, this
number is B(n), the Bell number of n. For each case split, the corresponding partition
of the set of variables can be represented in space O(n).

The satisfiability programs for 9’ and 9 receive this partition and one of the
formulas Fs or Fr, and determine the satisfiability of the formula Fs or FT under this
partition.

Let us suppose that the theories 9 and 9 admit exponential-time decision
procedures (as do all the quantifier-free theories we have used as examples in this
paper). Then the whole deterministic case-splitting procedure described above runs
in exponential time except for the factor B(n), the number of case splits. And
unfortunately B(n) grows faster than 2”.

B(n) grows faster thG.12” or (n/2)! but slower than n! B(0) = B(1) = 1; B(2) = 2,
B(3) = 5, B(4) = 15,. . . . de Bruijn [3] shows that

ln(B(n)) = n * In(n) - n - n * ln(ln(n)) + O(n * ln(ln(n))/ln(n));

he actually gives several more terms in the expansion, Since In(n !) =
n * In(n) - n i-O(ln(n)), the quantity n!/B(n) is approximately In”(n).

So the satisfiability problem is dominated by B(n). Bell numbers appear naturally
in any algorithm which does case: analysis on equalities between variables. This is the

302 D.C. Oppen

case for the algorithms given in [17, 18, 111. Suzuki and Jefferson [l&] prove that
their decision procedure is O(rt !); the bound given above improves on their bound.

Acknowlledgment

I acknowledge with thanks the helpful conversations I have had with Vaughan
Pratt and Chris Goad.

References

W. Ackerman, Solvable Cases of the Decision Problem (North-Holland, Amsterdam, 1954).
L. Berman, The complexity of logical theories, Theoret. Comput. Sci. 11 (1980) 71-77.
N. de Bruijn, Asymptotic Methods in Analysis (North-Holland, Amsterdam, 1970) 103-108.
1. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear diophantine equations,
froc. AMS 55 (2) (1976) 299-304.
P. Downey and R. Sethi, Assignment commands with array references, J. ACM 25 (4) (1978).
M. Fischer and M. Rabin, Super-exponential complexity of Presburger arithmetic, Proc. Symposium
on the Complexity of Real Computation Processes (1973).
P. Gacs and Laszlo Lovasz; Khachian’s algorithm for linear programming, CS Report STAN-CS-79-
750, Stanford University (1979).
D.M. Kaplan, Some completeness results in the mathematical theory of computation, J. ACM 15
(1968).
Khachian, Polynomial algorithm for linear programming, manuscript, Computing Center, Academy
Sciences USSR, Moscow (1978).

[IO] C.G. Nelson and D.C. Oppen, Fast decision algorithms based on congruence closure, J. ACM, to
appear.
C.G. Nelson and D.C. Oppen, Simplification by cooperating decision procedures, ACM Trans.
Programming Languages and Systems 2 (1) (1979).
D.C. Oppen, A 2?‘“upper bound on the complexity of Presburger arithmetic, J. Cbnput. System sci.
16 (3) (1978)..

WI

WI

Cl33
El41
Cl51

El61

WI

[U-4)

[i”2’1

[‘i! O]

Frl]

1121

D.C. Oppen, Reasoning about recursively defined data structures, J. ACM, to appear.
V. Pratt, Two easy theories whose combination is hard, manuscript (1977).
M. Presburger, Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in
welchem die Addition als einzige Operation hervortritt, Comptes Rendus du ler Congres des
Mathematiciens des Pays Slavs (1929).
C.R. Reddy and D.W. Loveland, Presburger arithmetic with bounded quantifier alternation, Proc.
10th Annual ACM Symposium on Theory of Computing (1978).
R. Shostak, A practical decision procedure for arithmetic with function symbols, J. ACM 26 (2)
(1979) 351-360.
N. Suzuki and D. Jefferson, Verification decidability of Presburger array programs, Proc. Conference
on Theoretical Computer Science, University of Waterloo (1977).
T. Ghan, An algorithm for checking PL/CY arithmetic inferences, Technical Report 77-326,
Department of Computer Science, Cornell University (1977).
P. Downey, R. Sethi and R. Tarjan, Variations on the common subexpression problem, J. ACM, to
appear.
D. Kozen, Complexity of finikiy represented algebras, Proc. Annual ACMSymposium on Theory of
Computing (1977).
R. Shostak An algorithm for reasoning about equality, Comm. ACM (July 1978) 583-585.

