Chapter 39

Random Walks I

By Sariel Har-Peled, April 1, 2022

“A drunk man will find his way home; a drunk bird may wander forever.”

Anonymous,

39.1. Definitions

Let \(G = G(V, E) \) be an undirected connected graph. For \(v \in V \), let \(\Gamma(v) \) denote the set of neighbors of \(v \) in \(G \); that is, \(\Gamma(v) = \{ u \mid vu \in E(G) \} \). A random walk on \(G \) is the following process: Starting from a vertex \(v_0 \), we randomly choose one of the neighbors of \(v_0 \), and set it to be \(v_1 \). We continue in this fashion, in the \(i \)th step choosing \(v_i \), such that \(v_i \in \Gamma(v_{i-1}) \). It would be interesting to investigate the random walk process. Questions of interest include:

(A) How long does it take to arrive from a vertex \(v \) to a vertex \(u \) in \(G \)?

(B) How long does it take to visit all the vertices in the graph.

(C) If we start from an arbitrary vertex \(v_0 \), how long the random walk has to be such that the location of the random walk in the \(i \)th step is uniformly (or near uniformly) distributed on \(V(G) \)?

Example 39.1.1. In the complete graph \(K_n \), visiting all the vertices takes in expectation \(O(n \log n) \) time, as this is the coupon collector problem with \(n - 1 \) coupons. Indeed, the probability we did not visit a specific vertex \(v \) by the \(i \)th step of the random walk is \((1 - 1/n)^{i-1} \leq e^{-(i-1)/n} \leq 1/n^{10} \), for \(i = \Omega(n \log n) \). As such, with high probability, the random walk visited all the vertex of \(K_n \). Similarly, arriving from \(u \) to \(v \) takes in expectation \(n - 1 \) steps of a random walk, as the probability of visiting \(v \) at every step of the walk is \(p = 1/(n - 1) \), and the length of the walk till we visit \(v \) is a geometric random variable with expectation \(1/p \).

39.1.1. Walking on grids and lines

Lemma 39.1.2 (Stirling’s formula). For any integer \(n \geq 1 \), it holds \(n! \approx \sqrt{2\pi n} \left(n/e \right)^n \).

39.1.1.1. Walking on the line

Lemma 39.1.3. Consider the infinite random walk on the integer line, starting from 0. Here, the vertices are the integer numbers, and from a vertex \(k \), one walks with probability \(1/2 \) either to \(k - 1 \) or \(k + 1 \). The expected number of times that such a walk visits 0 is unbounded.

Proof: The probability that in the \(2i \)th step we visit 0 is \(\frac{1}{2^{2i}} \binom{2i}{i} \). As such, the expected number of times we visit the origin is

\[
\sum_{i=1}^{\infty} \frac{1}{2^{2i}} \binom{2i}{i} \geq \sum_{i=1}^{\infty} \frac{1}{2^{2i^\frac{1}{2}}} = \infty,
\]

since \(\frac{2^{2i}}{2^{\sqrt{2i}}} \leq \binom{2i}{i} \leq \frac{2^{2i}}{\sqrt{2i}} \) [MN98, p. 84]. This can also be verified using the Stirling formula, and the resulting sequence diverges.

\[\square\]

\(\text{This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.}\]
39.1.1.2. Walking on two dimensional grid

A random walk on the integer grid \mathbb{Z}^d, starts from a point of this integer grid, and at each step if it is at point (i_1, i_2, \ldots, i_d), it chooses a coordinate and either increases it by one, or decreases it by one, with equal probability.

Lemma 39.1.4. Consider the infinite random walk on the two dimensional integer grid \mathbb{Z}^2, starting from $(0,0)$. The expected number of times that such a walk visits the origin is unbounded.

Proof: Rotate the grid by 45 degrees, and consider the two new axises X' and Y'. Let x_i be the projection of the location of the ith step of the random walk on the X'-axis, and define y_i in a similar fashion. Clearly, x_i are of the form $j/\sqrt{2}$, where j is an integer. By scaling by a factor of $\sqrt{2}$, consider the resulting random walks $x'_i = \sqrt{2}x_i$ and $y'_i = \sqrt{2}y_i$. Clearly, x_i and y_i are random walks on the integer grid, and furthermore, they are independent. As such, the probability that we visit the origin at the $2i$th step is $P[x'_{2i} = 0 \cap y'_{2i} = 0] = P[x'_{2i} = 0]^2 = \left(\frac{1}{2^i} \left(\frac{2i}{i}\right)^2\right) \geq 1/4i$. We conclude, that the infinite random walk on the grid \mathbb{Z}^2 visits the origin in expectation

$$\sum_{i=0}^{\infty} P[x'_i = 0 \cap y'_i = 0] \geq \sum_{i=0}^{\infty} \frac{1}{4i} = \infty,$$

as this sequence diverges. \qed

39.1.1.3. Walking on three dimensional grid

In the following, let $\begin{pmatrix} i \\ a \\ b \\ c \end{pmatrix} = \frac{i!}{a!b!c!}$.

Lemma 39.1.5. Consider the infinite random walk on the three dimensional integer grid \mathbb{Z}^3, starting from $(0,0,0)$. The expected number of times that such a walk visits the origin is bounded.

Proof: The probability of a neighbor of a point (x, y, z) to be the next point in the walk is $1/6$. Assume that we performed a walk for $2i$ steps, and decided to perform $2a$ steps parallel to the x-axis, $2b$ steps parallel to the y-axis, and $2c$ steps parallel to the z-axis, where $a + b + c = i$. Furthermore, the walk on each dimension is balanced, that is we perform a steps to the left on the x-axis, and a steps to the right on the x-axis. Clearly, this corresponds to the only walks in $2i$ steps that arrives to the origin.

Next, the number of different ways we can perform such a walk is $\frac{(2i)!}{a!b!c!}$, and the probability to perform such a walk, summing over all possible values of a, b and c, is

$$\alpha_i = \sum_{a+b+c=i \atop a,b,c \geq 0} \frac{(2i)!}{a!b!c!} \frac{1}{6^{2i}} = \frac{(2i)!}{2^{2i}} \sum_{a+b+c=i \atop a,b,c \geq 0} \left(\frac{i!}{a!b!c!}\right)^2 \left(\frac{1}{3}\right)^i = \left(\frac{2i}{i}\right) \frac{1}{2^{2i}} \sum_{a+b+c=i \atop a,b,c \geq 0} \left(\begin{pmatrix} i \\ a \\ b \\ c \end{pmatrix}\right) \left(\frac{1}{3}\right)^i$$

Consider the case where $i = 3m$. We have that $\begin{pmatrix} i \\ a \\ b \\ c \end{pmatrix} \leq \begin{pmatrix} m \\ m \\ m \end{pmatrix}$. As such,

$$\alpha_i \leq \left(\frac{2i}{i}\right) \frac{1}{2^{2i}} \left(\frac{1}{3}\right)^i \sum_{a+b+c=i \atop a,b,c \geq 0} \left(\begin{pmatrix} i \\ a \\ b \\ c \end{pmatrix}\right) \left(\frac{1}{3}\right)^i = \left(\frac{2i}{i}\right) \frac{1}{2^{2i}} \left(\frac{1}{3}\right)^i \begin{pmatrix} m \\ m \\ m \end{pmatrix}.$$
By the Stirling formula, we have

\[
\binom{i}{m} \approx \frac{\sqrt{2\pi i} (i/e)^i}{(\sqrt{2\pi}/3)^{i/3} \cdot i^{3/2}} = c \frac{3^i}{i},
\]

for some constant \(c \). As such, \(\alpha_i = O\left(\frac{1}{\sqrt{i}} \left(\frac{1}{3}\right)^{i^{3/2}}\right) = O\left(\frac{1}{i^{3/2}}\right) \). Thus,

\[
\sum_{m=1}^{\infty} \alpha_{6m} = O\left(\frac{1}{i^{3/2}}\right) = O(1).
\]

Finally, observe that \(\alpha_{6m} \geq (1/6)^2 \alpha_{6m-2} \) and \(\alpha_{6m} \geq (1/6)^4 \alpha_{6m-4} \). Thus,

\[
\sum_{m=1}^{\infty} \alpha_m = O(1).
\]

39.2. Bibliographical notes

The presentation here follows [Nor98].

References
