Chapter 19

Discrepancy and Derandomization

By Sariel Har-Peled, February 17, 2022

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered Gustible’s planet. The discovery turned out to be a tragic mistake. Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by making up an opera concerning his recent divorce.”

Gustible’s Planet, Cordwainer Smith

19.1. Discrepancy

Consider a set system (X, \mathcal{R}), where $n = |X|$, and $\mathcal{R} \subseteq 2^X$. A natural task is to partition X into two sets S, T, such that for any range $r \in \mathcal{R}$, we have that $\chi(r) = |S \cap r| - |T \cap r|$ is minimized. In a perfect partition, we would have that $\chi(r) = 0$ – the two sets S, T partition every range perfectly in half. A natural way to do so, is to consider this as a coloring problem – an element of X is colored by $+1$ if it is in S, and -1 if it is in T.

Definition 19.1.1. Consider a set system $S = (X, \mathcal{R})$, and let $\chi : X \rightarrow \{-1, +1\}$ be a function (i.e., a coloring). The discrepancy of $r \in \mathcal{R}$ is $\chi(r) = |\sum_{x \in r} \chi(x)|$. The discrepancy of χ is the maximum discrepancy over all the ranges – that is

$$\text{disc}(\chi) = \max_{r \in \mathcal{R}} \chi(r).$$

The discrepancy of S is

$$\text{disc}(S) = \min_{\chi : X \rightarrow \{-1, +1\}} \text{disc}(\chi).$$

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size of the set system, while introducing small error. Computing the discrepancy of a set system is generally quite challenging. A rather decent bound follows by using random coloring.

Definition 19.1.2. For a vector $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$, $\|v\|_\infty = \max_i |v_i|$.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 19.1.3. For a $m \times n$ a binary matrix M (i.e., each entry is either 0 or 1), consider a vector $b \in \{-1, +1\}^n$. The discrepancy of b is $\|Mb\|_\infty \leq 4\sqrt{n \log m}$.

Theorem 19.1.4. Let M be an $n \times n$ binary matrix (i.e., each entry is either 0 or 1), then there always exists a vector $b \in \{-1, +1\}^n$, such that $\|Mb\|_\infty \leq 4\sqrt{n \log n}$. Specifically, a random coloring provides such a coloring with high probability.

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
Proof: Let \(v = (v_1, \ldots, v_n) \) be a row of \(M \). Chose a random \(b = (b_1, \ldots, b_n) \in \{-1, +1\}^n \). Let \(i_1, \ldots, i_l \) be the indices such that \(v_{i_j} = 1 \), and let

\[
Y = \langle v, b \rangle = \sum_{i=1}^{n} v_i b_i = \sum_{j=1}^{r} v_{i_j} b_{i_j} = \sum_{j=1}^{r} b_{i_j}.
\]

As such \(Y \) is the sum of \(m \) independent random variables that accept values in \(\{-1, +1\} \). Clearly,

\[
\mathbb{E}[Y] = \mathbb{E}[\langle v, b \rangle] = \mathbb{E}\left[\sum_{i} v_i b_i \right] = \sum_{i} \mathbb{E}[v_i b_i] = \sum_{i} v_i \mathbb{E}[b_i] = 0.
\]

By Chernoff inequality and the symmetry of \(Y \), we have that, for \(\Delta = 4\sqrt{n \ln m} \), it holds

\[
\mathbb{P}[|Y| \geq \Delta] = 2 \mathbb{P}[\langle v, b \rangle \geq \Delta] = 2 \mathbb{P}\left[\sum_{j=1}^{r} b_{i_j} \geq \Delta \right] \leq 2 \exp\left(-\frac{\Delta^2}{2\tau} \right) = 2 \exp\left(-8 \frac{n \ln m}{\tau} \right) \leq \frac{2}{m^8}.
\]

Thus, the probability that any entry in \(Mb \) exceeds \(4\sqrt{n \ln} \), is smaller than \(2/m^7 \). Thus, with probability at least \(1 - 2/m^7 \), all the entries of \(Mb \) have absolute value smaller than \(4\sqrt{n \ln m} \).

In particular, there exists a vector \(b \in \{-1, +1\}^n \) such that \(\| Mb \|_\infty \leq 4\sqrt{n \ln m} \). \(\blacksquare \)

We might spend more time on discrepancy later on – it is a fascinating topic, well worth its own course.

19.2. The Method of Conditional Probabilities

In previous lectures, we encountered the following problem.

Problem 19.2.1 (Set Balancing/Discrepancy). Given a binary matrix \(M \) of size \(n \times n \), find a vector \(v \in \{-1, +1\}^n \), such that \(\| M v \|_\infty \) is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists \(v \), such that \(\| M v \|_\infty \leq 4\sqrt{n \ln n} \). Can we derandomize this algorithm? Namely, can we come up with an efficient deterministic algorithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth \(n \), where in the \(i \)th level we expose the \(i \)th coordinate of \(v \). This tree \(T \) has depth \(n \). The root represents all possible random choices, while a node at depth \(i \), represents all computations when the first \(i \) bits are fixed. For a node \(v \in T \), let \(P(v) \) be the probability that a random computation starting from \(v \) succeeds – here randomly assigning the remaining bits can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is **successful** if ends up with a vector \(v \), such that \(\| M v \|_\infty \leq 4\sqrt{n \ln n} \).

Let \(v_l \) and \(v_r \) be the two children of \(v \). Clearly, \(P(v) = (P(v_l) + P(v_r))/2 \). In particular, \(\max(P(v_l), P(v_r)) \geq P(v) \). Thus, if we could compute \(P(\cdot) \) quickly (and deterministically), then we could derandomize the algorithm.

Let \(C^+_m \) be the bad event that \(r_m \cdot v > 4\sqrt{n \log n} \), where \(r_m \) is the \(m \)th row of \(M \). Similarly, \(C^-_m \) is the bad event that \(r_m \cdot v < -4\sqrt{n \log n} \), and let \(C_m = C^+_m \cup C^-_m \). Consider the probability, \(\mathbb{P}[C_m | v_1, \ldots, v_k] \) (namely, the first \(k \) coordinates of \(v \) are specified). Let \(r_m = (r_1, \ldots, r_n) \). We have that

\[
\mathbb{P}[C_m | v_1, \ldots, v_k] = \mathbb{P}\left[\sum_{i=k+1}^{n} v_i r_i > 4\sqrt{n \log n} - \sum_{i=1}^{k} v_i r_i \right] = \mathbb{P}\left[\sum_{i \geq k+1, r_i \neq 0} v_i r_i > L \right] = \mathbb{P}\left[\sum_{i \geq k+1, r_i = 1} v_i > L \right],
\]

\(\mathbb{P}[C^-_m | v_1, \ldots, v_k] = \mathbb{P}\left[\sum_{i=k+1}^{n} v_i r_i < -4\sqrt{n \log n} - \sum_{i=1}^{k} v_i r_i \right] = \mathbb{P}\left[\sum_{i \geq k+1, r_i \neq 0} v_i r_i < L \right] = \mathbb{P}\left[\sum_{i \geq k+1, r_i = 1} v_i < L \right].
\]

2
where $L = 4\sqrt{n \log n} - \sum_{i=1}^{k} v_i r_i$ is a known quantity (since v_1, \ldots, v_k are known). Let $V = \sum_{i \geq k+1, r_i = 1} v_i$. We have,

$$P[C_m^+ | v_1, \ldots, v_k] = P\left[\sum_{i \geq k+1, r_i = 1} (v_i + 1) > L + V \right] = P\left[\sum_{i \geq k+1, r_i = 1} \frac{v_i + 1}{2} > \frac{L + V}{2} \right].$$

The last quantity is the probability that in V flips of a fair 0/1 coin one gets more than $(L+V)/2$ heads.

Thus,

$$P_m^+ = P[C_m^+ | v_1, \ldots, v_k] = \sum_{i=[(L+V)/2]}^{V} \binom{V}{i} \left(\frac{1}{2^n} \right)^i = \frac{1}{2^n} \sum_{i=[(L+V)/2]}^{V} \binom{V}{i}.$$

This implies, that we can compute P_m^+ in polynomial time! Indeed, we are adding $V \leq n$ numbers, each one of them is a binomial coefficient that has polynomial size representation in n, and can be computed in polynomial time (why?). One can define in similar fashion P_m^-, and let $P_m = P_m^+ + P_m^-$. Clearly, P_m can be computed in polynomial time, by applying a similar argument to the computation of $P_m^- = P[C_m | v_1, \ldots, v_k]$.

For a node $v \in T$, let v_r denote the portion of v that was fixed when traversing from the root of T to v. Let $P(v) = \sum_{m=1}^{n} P[C_m | v_r]$. By the above discussion $P(v)$ can be computed in polynomial time. Furthermore, we know, by the previous result on discrepancy that $P(r) < 1$ (that was the bound used to show that there exist a good assignment).

As before, for any $v \in T$, we have $P(v) \geq \min(P(v_l), P(v_r))$. Thus, we have a polynomial deterministic algorithm for computing a set balancing with discrepancy smaller than $4\sqrt{n \log n}$. Indeed, set $v = root(T)$. And start traversing down the tree. At each stage, compute $P(v_l)$ and $P(v_r)$ (in polynomial time), and set v to the child with lower value of $P(\cdot)$.

Clearly, after n steps, we reach a leaf, that corresponds to a vector v' such that $\|Av'\|_\infty \leq 4\sqrt{n \log n}$.

Theorem 19.2.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a vector $v \in \{-1, 1\}^n$, such that $\|Av\|_\infty \leq 4\sqrt{n \log n}$.

Note, that this method might fail to find the best assignment.

19.3. Bibliographical Notes

There is a lot of nice work on discrepancy in geometric settings. See the books [Cha01, Mat99].

19.4. From previous lectures

Theorem 19.4.1. Let X_1, \ldots, X_n be n independent random variables, such that $P[X_i = 1] = P[X_i = -1] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^{n} X_i$. Then, for any $\Delta > 0$, we have

$$P[Y \geq \Delta] \leq \exp(-\Delta^2/2n).$$
References
