
Chapter 42

Entropy III - Shannon’s Theorem
By Sariel Har-Peled, March 19, 2024① The memory of my father is wrapped up in

white paper, like sandwiches taken for a day at work.

beginequation*-0.2cm] Just as a magician takes
towers and rabbits
out of his hat, he drew love from his small body,

beginequation*-0.2cm] and the rivers of his hands
overflowed with good deeds.

– Yehuda Amichai, My Father.,

42.1. Coding: Shannon’s Theorem

We are interested in the problem sending messages over a noisy channel. We will assume that the channel noise
is “nicely” behaved.

Definition 42.1.1. The input to a binary symmetric channel with parameter p is a sequence of bits x1, x2, . . . ,
and the output is a sequence of bits y1, y2, . . . , such that P

[
xi = yi

]
= 1 − p independently for each i.

Translation: Every bit transmitted have the same probability to be flipped by the channel. The question is
how much information can we send on the channel with this level of noise. Naturally, a channel would have
some capacity constraints (say, at most 4,000 bits per second can be sent on the channel), and the question is
how to send the largest amount of information, so that the receiver can recover the original information sent.

Now, its important to realize that noise handling is unavoidable in the real world. Furthermore, there are
tradeoffs between channel capacity and noise levels (i.e., we might be able to send considerably more bits
on the channel but the probability of flipping (i.e., p) might be much larger). In designing a communication
protocol over this channel, we need to figure out where is the optimal choice as far as the amount of information
sent.

Definition 42.1.2. A (k, n) encoding function Enc : {0, 1}k → {0, 1}n takes as input a sequence of k bits and
outputs a sequence of n bits. A (k, n) decoding function Dec : {0, 1}n → {0, 1}k takes as input a sequence of n
bits and outputs a sequence of k bits.

Thus, the sender would use the encoding function to send its message, and the decoder would use the
received string (with the noise in it), to recover the sent message. Thus, the sender starts with a message with
k bits, it blow it up to n bits, using the encoding function, to get some robustness to noise, it send it over the
(noisy) channel to the receiver. The receiver, takes the given (noisy) message with n bits, and use the decoding
function to recover the original k bits of the message.

Naturally, we would like k to be as large as possible (for a fixed n), so that we can send as much information
as possible on the channel. Naturally, there might be some failure probability; that is, the receiver might be
unable to recover the original string, or recover an incorrect string.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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The following celebrated result of Shannon② in 1948 states exactly how much information can be sent on
such a channel.

Theorem 42.1.3 (Shannon’s theorem). For a binary symmetric channel with parameter p < 1/2 and for any
constants δ, γ > 0, where n is sufficiently large, the following holds:

(i) For an k ≤ n(1 −H(p) − δ) there exists (k, n) encoding and decoding functions such that the probability
the receiver fails to obtain the correct message is at most γ for every possible k-bit input messages.

(ii) There are no (k, n) encoding and decoding functions with k ≥ n(1 − H(p) + δ) such that the probability
of decoding correctly is at least γ for a k-bit input message chosen uniformly at random.

42.2. Proof of Shannon’s theorem
The proof is not hard, but requires some care, and we will break it into parts.

42.2.1. How to encode and decode efficiently

42.2.1.1. The scheme

Our scheme would be simple. Pick k ≤ n(1 − H(p) − δ). For any number i = 0, . . . , K̂ = 2k+1 − 1, randomly
generate a binary string Yi made out of n bits, each one chosen independently and uniformly. Let Y0, . . . ,YK̂
denote these codewords.

For each of these codewords we will compute the probability that if we send this codeword, the receiver
would fail. Let X0, . . . , XK , where K = 2k − 1, be the K codewords with the lowest probability of failure.
We assign these words to the 2k messages we need to encode in an arbitrary fashion. Specifically, for i =
0, . . . , 2k − 1, we encode i as the string Xi.

The decoding of a message w is done by going over all the codewords, and finding all the codewords that
are in (Hamming) distance in the range [p(1− ε)n, p(1+ ε)n] from w. If there is only a single word Xi with this
property, we return i as the decoded word. Otherwise, if there are no such word or there is more than one word
then the decoder stops and report an error.

42.2.1.2. The proof

Y0

Y1

Y2

r = pn

2εpn

Intuition. Each code Yi corresponds to a region that looks like a ring. The “ring”
for Yi is all the strings in Hamming distance between (1 − ε)r and (1 + ε)r from
Yi, where r = pn. Clearly, if we transmit a string Yi, and the receiver gets a string
inside the ring of Yi, it is natural to try to recover the received string to the original
code corresponding to Yi. Naturally, there are two possible bad events here:

(A) The received string is outside the ring of Yi.

(B) The received string is contained in several rings of different Ys, and it is not clear which one should the
receiver decode the string to. These bad regions are depicted as the darker regions in the figure on the
right.

Let S i = S(Yi) be all the binary strings (of length n) such that if the receiver gets this word, it would decipher
it to be the original string assigned to Yi (here are still using the extended set of codewords Y0, . . . ,YK̂). Note,

②Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician, has been
called “the father of information theory”.
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that if we remove some codewords from consideration, the set S(Yi) just increases in size (i.e., the bad region
in the ring of Yi that is covered multiple times shrinks). Let Wi be the probability that Yi was sent, but it was
not deciphered correctly. Formally, let r denote the received word. We have that

Wi =
∑
r<S i

P[r was received when Yi was sent]. (42.1)

To bound this quantity, let ∆(x, y) denote the Hamming distance between the binary strings x and y. Clearly, if
x was sent the probability that y was received is

w(x, y) = p∆(x,y)(1 − p)n−∆(x,y).

As such, we have
P[r received when Yi was sent] = w(Yi, r).

Definition 42.2.1. Let S i,r be an indicator variable which is 1 if r < S i. It is one if the receiver gets r, and does
not decode it to Yi (either because of failure, or because r is too close/far from Yi).

We have that failure probability when sending r is

Wi =
∑
r<S i

P[r received when Yi was sent] =
∑
r<S i

w(Yi, r) =
∑

r

S i,rw(Yi, r). (42.2)

The value of Wi is a random variable over the choice of Y0, . . . ,YK̂ . As such, its natural to ask what is the
expected value of Wi.

Consider the ring
ring(r) =

{
x ∈ {0, 1}n

∣∣∣ (1 − ε)np ≤ ∆(x, r) ≤ (1 + ε)np
}
,

where ε > 0 is a small enough constant. Observe that x ∈ ring(y) if and only if y ∈ ring(x). Suppose, that the
code word Yi was sent, and r was received. The decoder returns the original code associated with Yi, if Yi is the
only codeword that falls inside ring(r).

Lemma 42.2.2. Given that Yi was sent, and r was received and furthermore r ∈ ring(Yi), then the probability
of the decoder failing, is

τ = P
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤
γ

8
,

where γ is the parameter of Theorem 42.1.3.

Proof: The decoder fails here, only if ring(r) contains some other codeword Y j ( j , i) in it. As such,

τ = P
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤ P

[
Y j ∈ ring(r), for any j , i

]
≤

∑
j,i

P
[
Y j ∈ ring(r)

]
.

Now, we remind the reader that the Y js are generated by picking each bit randomly and independently, with
probability 1/2. As such, we have

P
[
Y j ∈ ring(r)

]
=

∣∣∣ ring(r)
∣∣∣

|{0, 1}n |
=

(1+ε)np∑
m=(1−ε)np

(
n
m

)
2n ≤

n
2n

(
n

⌊(1 + ε)np⌋

)
,
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since (1+ ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation is the
largest. By Corollary 42.3.2 (i), we have

P
[
Y j ∈ ring(r)

]
≤

n
2n

(
n

⌊(1 + ε)np⌋

)
≤

n
2n 2nH((1+ε)p) = n2n(H((1+ε)p)−1).

As such, we have

τ = P
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤

∑
j,i

P
[
Y j ∈ ring(r)

]
≤ K̂ P

[
Y1 ∈ ring(r)

]
≤ 2k+1n2n

(
H((1+ε)p)−1

)

≤ n2n
(
1−H(p)−δ

)
+ 1+ n (H((1+ε)p)−1) ≤ n2n

(
H((1+ε)p)−H(p)−δ

)
+1

since k ≤ n(1 −H(p) − δ). Now, we choose ε to be a small enough constant, so that the quantity H((1 + ε)p) −
H(p)− δ is equal to some (absolute) negative (constant), say −β, where β > 0. Then, τ ≤ n2−βn+1, and choosing
n large enough, we can make τ smaller than γ/8, as desired. As such, we just proved that

τ = P
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤
γ

8
. ■

Lemma 42.2.3. Consider the situation where Yi is sent, and the received string is r. We have that

P
[
r < ring(Yi)

]
=

∑
r < ring(Yi)

w(Yi, r) ≤
γ

8
,

where γ is the parameter of Theorem 42.1.3.

Proof: This quantity, is the probability of sending Yi when every bit is flipped with probability p, and receiving
a string r such that more than pn + εpn bits where flipped (or less than pn − εpn). But this quantity can be
bounded using the Chernoff inequality. Indeed, let Z = ∆(Yi, r), and observe that E[Z] = pn, and it is the sum
of n independent indicator variables. As such∑

r < ring(Yi)

w(Yi, r) = P
[
|Z − E[Z]| > εpn

]
≤ 2 exp

(
−
ε2

4
pn

)
<
γ

4
,

since ε is a constant, and for n sufficiently large. ■

We remind the reader that S i,r is an indicator variable that is one if receiving r (when sending Yi) is “bad”,
see Definition 42.2.1. Importantly, this indicator variable also depends on all the other codewords – as they
might cause some regions in the ring of Yi to be covered multiple times.

Lemma 42.2.4. We have that f (Yi) =
∑

r < ring(Yi) E
[
S i,rw(Yi, r)

]
≤ γ/8 (the expectation is over all the choices of

the Ys excluding Yi).

Proof: Observe that S i,rw(Yi, r) ≤ w(Yi, r) and for fixed Yi and r we have that E[w(Yi, r)] = w(Yi, r). As such,
we have that

f (Yi) =
∑

r < ring(Yi)

E
[
S i,rw(Yi, r)

]
≤

∑
r < ring(Yi)

E[w(Yi, r)] =
∑

r < ring(Yi)

w(Yi, r) ≤
γ

8
,

by Lemma 42.2.3. ■
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Lemma 42.2.5. We have that g(Yi) =
∑

r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

]
≤ γ/8 (the expectation is over all the choices of

the Ys excluding Yi).

Proof: We have that S i,rw(Yi, r) ≤ S i,r, as 0 ≤ w(Yi, r) ≤ 1. As such, we have that

g(Yi) =
∑

r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

]
≤

∑
r ∈ ring(Yi)

E
[
S i,r

]
=

∑
r ∈ ring(Yi)

P[r < S i]

=
∑

r

P
[
r < S i ∩

(
r ∈ ring(Yi)

)]
=

∑
r

P
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
P
[
r ∈ ring(Yi)

]
≤

∑
r

γ

8 P
[
r ∈ ring(Yi)

]
≤
γ

8
,

by Lemma 42.2.2. ■

Lemma 42.2.6. For any i, we have µ = E[Wi] ≤ γ/4, where γ is the parameter of Theorem 42.1.3, where Wi

is the probability of failure to recover Yi if it was sent, see Eq. (42.1).

Proof: We have by Eq. (42.2) that Wi =
∑

r S i,rw(Yi, r). For a fixed value of Yi, we have by linearity of
expectation, that

E[Wi | Yi] = E
[∑

r

S i,rw(Yi, r)
∣∣∣∣ Yi

]
=

∑
r

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
=

∑
r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
+

∑
r < ring(Yi)

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
= g(Yi) + f (Yi) ≤

γ

8
+
γ

8
=
γ

4
,

by Lemma 42.2.4 and Lemma 42.2.5. Now E[Wi] = E
[
E[Wi | Yi]

]
≤ E

[
γ/4

]
≤ γ/4. ■

In the following, we need the following trivial (but surprisingly deep) observation.

Observation 42.2.7. For a random variable X, if E[X] ≤ ψ, then there exists an event in the probability space,
that assigns X a value ≤ ψ.

Lemma 42.2.8. For the codewords X0, . . . , XK , the probability of failure in recovering them when sending them
over the noisy channel is at most γ.

Proof: We just proved that when using Y0, . . . ,YK̂ , the expected probability of failure when sending Yi, is
E[Wi] ≤ γ/4, where K̂ = 2k+1 − 1. As such, the expected total probability of failure is

E
[ K̂∑

i=0

Wi

]
=

K̂∑
i=0

E
[
Wi

]
≤
γ

4
2k+1 ≤ γ2k,

by Lemma 42.2.6. As such, by Observation 42.2.7, there exist a choice of Yis, such that

K̂∑
i=0

Wi ≤ 2kγ.
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Now, we use a similar argument used in proving Markov’s inequality. Indeed, the Wi are always positive, and
it can not be that 2k of them have value larger than γ, because in the summation, we will get that

K̂∑
i=0

Wi > 2kγ.

Which is a contradiction. As such, there are 2k codewords with failure probability smaller than γ. We set the
2k codewords X0, . . . , XK to be these words, where K = 2k − 1. Since we picked only a subset of the codewords
for our code, the probability of failure for each codeword shrinks, and is at most γ. ■

Lemma 42.2.8 concludes the proof of the constructive part of Shannon’s theorem.

42.2.2. Lower bound on the message size
We omit the proof of this part. It follows similar argumentation showing that for every ring associated with
a codewords it must be that most of it is covered only by this ring (otherwise, there is no hope for recovery).
Then an easy packing argument implies the claim.

42.3. From previous lectures

Lemma 42.3.1. Suppose that nq is integer in the range [0, n]. Then
2nH(q)

n + 1
≤

(
n

nq

)
≤ 2nH(q).

Lemma 42.3.1 can be extended to handle non-integer values of q. This is straightforward, and we omit the
easy details.

Corollary 42.3.2. We have:
(i) q ∈ [0, 1/2]⇒

(
n
⌊nq⌋

)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n
⌈nq⌉

)
≤ 2nH(q).

beginequation*0.1cm] (iii) q ∈ [1/2, 1]⇒ 2nH(q)

n+1 ≤
(

n
⌊nq⌋

)
. (iv) q ∈ [0, 1/2]⇒ 2nH(q)

n+1 ≤
(

n
⌈nq⌉

)
.

Theorem 42.3.3. Suppose that the value of a random variable X is chosen uniformly at random from the
integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average at least

⌊
lg m

⌋
− 1 =

⌊H(X)⌋ − 1 independent and unbiased bits.

42.4. Bibliographical Notes
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