
Chapter 33

Random Walks V
By Sariel Har-Peled, March 19, 2024①

“Is there anything in the Geneva Convention about the rules of war in peacetime?” Stanko wanted to know, crawling back
toward the truck. “Absolutely nothing,” Caulec assured him. “The rules of war apply only in wartime. In peacetime, anything
goes.”

Romain Gary, Gasp

33.1. Explicit expander construction
We state here a few facts about expander graphs without proofs (see also Theorem 33.4.4).

Definition 33.1.1. And (n, d, c)-expander is a d-regular bipartite graph G = (X,Y,E), where |X| = |Y | = n/2.
Here, we require that for any S ⊆ X, we have

|Γ(S )| ≥
(
1 + c

(
1 −

2|S |
n

))
|S | .

The Margulis-Gabber-Galil expander. For a positive m, let n = 2m2. Each vertex in X and Y above, is
interpreted as a pair (a, b), where a, b ∈ Zm = {0, . . . ,m − 1}. A vertex (a, b) ∈ X is connected to the vertices

(a, b), (a, a + b), (a, a + b + 1), (a + b, b), and (a + b + 1, b),

in Y , where the addition is done module m.

Theorem 33.1.2 ([GG81]). The above graph is 5 regular, and it is (n, 5, (2 −
√

3)/4)-expander.

Specrtral gap and expansion. We remind the reader that a d-regular graph, then its adjacency matrix M(G)
has (as its biggest eigenvalue) the eigenvalue λ1 = d. In particular, let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be the eigenvalues
of M(G). We then have the following:

Theorem 33.1.3. If G is an (n, d, c)-expander then M(G) has |λ2| ≤ d −
c2

1024 + 2c2 .

Theorem 33.1.4. If M(G) has |λ2| ≤ d − ε, then G is (n, d, c)-expander with c ≥
2dε − ε2

d2 .

33.2. Rapid mixing for expanders
Here is another equivalent definition of an expander.

Definition 33.2.1. Let G = (V, E) be an undirected d-regular graph. The graph G is a (n, d, c)-expander (or
just c-expander), for every set S ⊆ V of size at most |V | /2, there are at least cd |S | edges connecting S and
S = V \ S ; that is e

(
S , S

)
≥ cd |S |,

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Guaranteeing aperiodicity. Let G be a (n, d, c)-expander. We would like to perform a random walk on G.
The graph G is connected, but it might be periodic (i.e., bipartite). To overcome this, consider the random walk
on G that either stay in the current state with probability 1/2 or traverse one of the edges. Clearly, the resulting
Markov Chain (MC) is aperiodic. The resulting transition matrix is

Q = M/2d + I/2,

where M is the adjacency matrix of G and I is the identity n × n matrix. Clearly Q is doubly stochastic.
Furthermore, if λ̂i is an eigenvalue of M, with eigenvector vi, then

Qvi =
1
2

(
M
d
+ I

)
vi =

1
2

 λ̂i

d
+ 1

vi.

As such,
(
λ̂i/d + 1

)
/2 is an eigenvalue of Q. Namely, if there is a spectral gap in the graph G, there would also

be a similar spectral gap in the resulting MC. This MC can be generated by adding to each vertex d self loops,
ending up with a 2d-regular graph. Clearly, this graph is still an expander if the original graph is an expander,
and the random walk on it is aperiodic.

From this point on, we would just assume our expander is aperiodic.

33.2.1. Bounding the mixing time
For a MC with n states, we denote by π =

(
π1, . . . , πn

)
its stationary distribution. We consider only nicely

behave MC that fall under Theorem 33.4.1. As such, no state in the MC has zero stationary probability.

Definition 33.2.2. Let q(t) denote the state probability vector of a Markov chain defined by a transition matrix
Q at time t ≥ 0, given an initial distribution q(0). The relative pairwise distance of the Markov chain at time t is

∆(t) = max
i

∣∣∣q(t)
i − πi

∣∣∣
πi

.

Namely, if ∆(t) approaches zero then q(t) approaches π.

We remind the reader that we saw a construction of a constant degree expander with constant expansion. In
its transition matrix Q, we have that λ̂1 = 1, and −1 ≤ λ̂2 < 1, and furthermore the spectral gap λ̂1 − λ̂2 was a
constant (the two properties are equivalent, but we proved only one direction of this).

We need a slightly stronger property (that does hold for our expander construction). We have that λ̂2 ≥

maxn
i=2

∣∣∣λ̂i

∣∣∣.
Theorem 33.2.3. Let Q be the transition matrix of an aperiodic (n, d, c)-expander. Then, for any initial distri-
bution q(0), we have that

∆(t) ≤ n3/2(λ̂2
)t
.

Since λ̂2 is a constant smaller than 1, the distance ∆(t) drops exponentially with t.

Proof: We have that q(t) = q(0)Qt. Let B(Q) = ⟨v1, . . . , vn⟩ denote the orthonormal eigenvector basis of Q (see
Definition 33.4.2p6), and write q(0) =

∑n
i=1 αivi. Since λ̂1 = 1, we have that

q(t) = q(0)Qt =

n∑
i=1

αi
(
viQ t) = n∑

i=1

αi
(
λ̂i

)tvi = α1v1 +

n∑
i=2

αi
(
λ̂i

)tvi.
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Since v1 =
(
1/
√

n, . . . , 1/
√

n
)
, and

∣∣∣λ̂i

∣∣∣ ≤ λ̂2 < 1, for i > 1, we have that limt→∞
(
λ̂i

)t
= 0, and thus

π = lim
t→∞

q(t) = α1v1 +

n∑
i=2

αi

(
lim
t→∞

(
λ̂i

)t
)
vi = α1v1.

Now, since v1, . . . , vn is an orthonormal basis, and q(0) =

n∑
i=1

αivi, we have that ∥q(0)∥2 =

√√
n∑

i=1

α2
i . Thus implies

that

∥∥∥q(t) − π
∥∥∥

1
=

∥∥∥q(t) − α1v1

∥∥∥
1
=

∥∥∥∥∥∥∥
n∑

i=2

αi

(
λ̂i

)t
vi

∥∥∥∥∥∥∥
1

≤
√

n

∥∥∥∥∥∥∥
n∑

i=2

αi(λ̂i)tvi

∥∥∥∥∥∥∥
2

=
√

n

√√
n∑

i=2

(
αi (λ̂i)t)2

≤
√

n(λ̂2)t

√√
n∑

i=2

(αi)2
≤
√

n
(
λ̂2

)t ∥∥∥q(0)
∥∥∥

2
≤
√

n
(
λ̂2

)t ∥∥∥q(0)
∥∥∥

1
=
√

n
(
λ̂2

)t
,

since q(0) is a distribution. Now, since πi = 1/n, we have

∆(t) = max
i

∣∣∣q(t)
i − πi

∣∣∣
πi

= max
i

n
∣∣∣q(t)

i − πi

∣∣∣ ≤ n max
i
∥q(t) − π∥1 ≤ n

√
n
(
λ̂2

)t
. ■

33.3. Probability amplification by random walks on expanders

We are interested in performing probability amplification for an algorithm that is a BPP algorithm (see Defini-
tion 33.4.3). It would be convenient to work with an algorithm which is already somewhat amplified. That is,
we assume that we are given a BPP algorithm Alg for a language L, such that

(A) If x ∈ L then P
[
Alg(x) accepts

]
≥ 199/200.

(B) If x < L then P
[
Alg(x) accepts

]
≤ 1/200.

We assume that Alg requires a random bit string of length n. So, we have a constant degree expander G
(say of degree d) that has at least 200 · 2n vertices. In particular, let

U = |V(G)| ,

and since our expander construction grow exponentially in size (but the base of the exponent is a constant),
we have that U = O(2n). (Translation: We can not quite get an expander with a specific number of vertices.
Rather, we can guarantee an expander that has more vertices than we need, but not many more.)

We label the vertices of G with all the binary strings of length n, in a round robin fashion (thus, each binary
string of length n appears either

⌈
|V(G)| /2n⌉ or

⌊
|V(G)| /2n⌋ times). For a vertex v ∈ V(G), let s(v) denote the

binary string associated with v.
Consider a string x that we would like to decide if it is in L or not. We know that at least 99/100U vertices

of G are labeled with “random” strings that would yield the right result if we feed them into Alg (the constant
here deteriorated from 199/200 to 99/100 because the number of times a string appears is not identically the
same for all strings).
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The algorithm. We perform a random walk of length µ = αβk on G, where α and β are constants to be
determined shortly, and k is a parameter. To this end, we randomly choose a starting vertex X0 (this would
require n + O(1) bits). Every step in the random walk, would require O(1) random bits, as the expander is a
constant degree expander, and as such overall, this would require n + O(k) random bits.

Now, lets X0, X1, . . . , Xµ be the resulting random walk. We compute the result of

Yi = Alg(x, ri), for i = 0, . . . , ν, and ν = αk,

where ri = s
(
Xi·β

)
. Specifically, we use the strings associated with nodes that are in distance β from each other

along the path of the random walk. We return the majority of the bits Y0, . . . ,Yαk as the decision of whether
x ∈ L or not.

We assume here that we have a fully explicit construction of an expander. That is, given a vertex of an
expander, we can compute all its neighbors in polynomial time (in the length of the index of the vertex). While
the construction of expander shown is only explicit it can be made fully explicit with more effort.

33.3.1. The analysis
Intuition. Skipping every β nodes in the random walk corresponds to performing a random walk on the
graph Gβ; that is, we raise the graph to power β. This new graph is a much better expander (but the degree had
deteriorated). Now, consider a specific input x, and mark the bad vertices for it in the graph G. Clearly, we
mark at most 1/100 fraction of the vertices. Conceptually, think about these vertices as being uniformly spread
in the graph and far apart. From the execution of the algorithm to fail, the random walk needs to visit αk/2
bad vertices in the random walk in Gk. However, the probability for that is extremely small - why would the
random walk keep stumbling into bad vertices, when they are so infrequent?

The real thing. Let Q be the transition matrix of G. We assume, as usual, that the random walk on G is
aperiodic (if not, we can easily fix it using standard tricks), and thus ergodic. Let B = Qβ be the transition
matrix of the random walk of the states we use in the algorithm. Note, that the eigenvalues (except the first
one) of B “shrink”. In particular, by picking β to be a sufficiently large constant, we have that

λ̂1
(
B
)
= 1 and |λ̂i

(
B
)
| ≤

1
10
, for i = 2, . . . ,U.

For the input string x, let W be the matrix that has 1 in the diagonal entry Wii, if and only Alg(x, s(i)) returns
the right answer, for i = 1, . . . ,U. (We remind the reader that s(i) is the string associated with the ith vertex,
and U = |V(G)|.) The matrix W is zero everywhere else. Similarly, let W = I−W be the “complement” matrix
having 1 at Wii iff Alg(x, s(i)) is incorrect. We know that W is a U ×U matrix, that has at least (99/100)U ones
on its diagonal.

Lemma 33.3.1. Let Q be a symmetric transition matrix, then all its eigenvalues of Q are in the range [−1, 1].

Proof: Let p ∈ Rn be an eigenvector with eigenvalue λ. Let pi be the coordinate with the maximum absolute
value in p. We have that

∣∣∣λpi

∣∣∣ = ∣∣∣∣(pQ
)

i

∣∣∣∣ =
∣∣∣∣∣∣∣

U∑
j=1

p jQ ji

∣∣∣∣∣∣∣ ≤
U∑
j=1

∣∣∣p j

∣∣∣ ∣∣∣Q ji

∣∣∣ ≤ |pi|

U∑
j=1

∣∣∣Q ji

∣∣∣ = ∣∣∣pi

∣∣∣ .
This implies that |λ| ≤ 1.

(We used the symmetry of the matrix, in implying that Q eigenvalues are all real numbers.) ■
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Lemma 33.3.2. Let Q be a symmetric transition matrix, then for any p ∈ Rn, we have that ∥pQ∥2 ≤ ∥p∥2.

Proof: Let B(Q) = ⟨v1, . . . , vn⟩ denote the orthonormal eigenvector basis of Q, with eigenvalues 1 = λ1, . . . , λn.
Write p =

∑
i αivi, and observe that

∥∥∥pQ
∥∥∥

2
=

∥∥∥∥∥∥∥∑i

αiviQ

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∑i

αiλivi

∥∥∥∥∥∥∥
2

=

√∑
i

α2
i λ

2
i ≤

√∑
i

α2
i =

∥∥∥p
∥∥∥

2
,

since |λi| ≤ 1, for i = 1, . . . , n, by Lemma 33.3.1. ■

Lemma 33.3.3. Let B = Qβ be the transition matrix of the graph Gβ. For all vectors p ∈ Rn, we have:
(i) ∥pBW∥ ≤ ∥p∥, and

(ii)
∥∥∥pBW

∥∥∥ ≤ ∥p∥ /5.

Proof: (i) Since multiplying a vector by W has the effect of zeroing out some coordinates, its clear that it can
not enlarge the norm of a matrix. As such, ∥pBW∥2 ≤ ∥pB∥2 ≤ ∥p∥2 by Lemma 33.3.2.

(ii) Write p =
∑

i αivi, where v1, . . . , vn is the orthonormal basis of Q (and thus also of B), with eigenvalues
1 = λ̂1, . . . , λ̂n. We remind the reader that v1 = (1, 1, . . . , 1)/

√
n. Since W zeroes out at least 99/100 of the

entries of a vectors it is multiplied by (and copy the rest as they are), we have that

∥v1W∥ ≤
√

(n/100)(1/
√

n)2 ≤ 1/10 = ∥v1∥ /10.

Now, for any x ∈ RU , we have ∥xW∥ ≤ ∥x∥. As such, we have that∥∥∥∥pBW
∥∥∥∥

2
=

∥∥∥∥∥∥∥∑i

αiviBW

∥∥∥∥∥∥∥
2

≤

∥∥∥∥α1v1BW
∥∥∥∥ +

∥∥∥∥∥∥∥
U∑

i=2

αiviBW

∥∥∥∥∥∥∥
≤

∥∥∥∥α1v1W
∥∥∥∥ + ∥∥∥∥( U∑

i=2

αiviλ̂i
β)

W
∥∥∥∥ ≤ |α1|

10
+

∥∥∥∥∥∥∥
U∑

i=2

αiviλ̂i
β

∥∥∥∥∥∥∥
≤
|α1|

10
+

√√
U∑

i=2

(
αiλ̂i

β
)2
≤
|α1|

10
+

1
10

√√
U∑

i=2

α2
i ≤
∥p∥
10
+

1
10
∥p∥ ≤

∥p∥
5
,

since
∣∣∣λβi ∣∣∣ ≤ 1/10, for i = 2, . . . , n. ■

Consider the strings r0, . . . , rν. For each one of these strings, we can write down whether its a “good”
string (i.e., Alg return the correct result), or a bad string. This results in a binary pattern b0, . . . , bk. Given a
distribution p ∈ RU on the states of the graph, its natural to ask what is the probability of being in a “good”
state. Clearly, this is the quantity ∥pW∥1. Thus, if we are interested in the probability of a specific pattern,
then we should start with the initial distribution p0, truncate away the coordinates that represent an invalid
state, apply the transition matrix, again truncate away forbidden coordinates, and repeat in this fashion till we
exhaust the pattern. Clearly, the ℓ1-norm of the resulting vector is the probability of this pattern. To this end,
given a pattern b0, . . . , bk, let S = ⟨S 0, . . . , S ν⟩ denote the corresponding sequence of “truncating” matrices (i.e.,
S i is either W or W). Formally, we set S i = W if Alg(x, ri) returns the correct answer, and set S i = W otherwise.

The above argument implies the following lemma.

Lemma 33.3.4. For any fixed pattern b0, . . . , bν the probability of the random walk to generate this pattern of
random strings is ∥p(0)S 0BS 1 . . .BS ν∥1, where S = ⟨S 0, . . . , S ν⟩ is the sequence of W and W encoded by this
pattern.
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Theorem 33.3.5. The probability that the majority of the outputs Alg(x, r0),Alg(x, r1), . . . ,Alg(x, rk) is incor-
rect is at most 1/2k.

Proof: The majority is wrong, only if (at least) half the elements of the sequence S = ⟨S 0, . . . , S ν⟩ belong to
W. Fix such a “bad” sequence S, and observe that the distributions we work with are vectors in RU . As such,
if p0 is the initial distribution, then we have that

P
[
S
]
=

∥∥∥p(0)S 0BS 1 . . .BS ν
∥∥∥

1 ≤
√

U
∥∥∥p(0)S 0BS 1 . . .BS ν

∥∥∥
2 ≤
√

U
1

5ν/2
∥∥∥p(0)

∥∥∥
2
,

by Lemma 33.3.6 below (i.e., Cauchy-Schwarz inequality) and by repeatedly applying Lemma 33.3.3, since
half of the sequence S are W, and the rest are W. The distribution p(0) was uniform, which implies that∥∥∥p(0)

∥∥∥
2
= 1/

√
U. As such, let S be the set of all bad patterns (there are 2ν−1 such “bad” patterns). We have

P
[

majority is bad
]
≤ 2ν
√

U
1

5ν/2
∥∥∥p(0)

∥∥∥
2
= (4/5)ν/2 = (4/5)αk/2 ≤

1
2k ,

for α = 7. ■

33.3.2. Some standard inequalities

Lemma 33.3.6. For any vector v = (v1, . . . , vd) ∈ Rd, we have that ∥v∥1 ≤
√

d ∥v∥2.

Proof: We can safely assume all the coordinates of v are positive. Now,

∥v∥1 =
d∑

i=1

vi =

d∑
i=1

vi · 1 = |v · (1, 1, . . . , 1)| ≤

√√
d∑

i=1

v2
i

√√
d∑

i=1

12 =
√

d
∥∥∥v

∥∥∥ ,
by the Cauchy-Schwarz inequality. ■

33.4. Tools from previous lecture
Theorem 33.4.1 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.

Definition 33.4.2. Given a random walk matrix Q associated with a d-regular graph, let B(Q) = ⟨v1, . . . , vn⟩

denote the orthonormal eigenvector basis defined by Q. That is, v1, . . . , vn is an orthonormal basis for Rn,
where all these vectors are eigenvectors of Q and v1 = 1n/

√
n. Furthermore, let λ̂i denote the ith eigenvalue of

Q, associated with the eigenvector vi, such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n.
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Definition 33.4.3. The class BPP (for Bounded-error Probabilistic Polynomial time) is the class of languages
that have a randomized algorithm Alg with worst case polynomial running time such that for any input x ∈ Σ∗,
we have

(i) If x ∈ L then P
[
Alg(x) accepts

]
≥ 3/4.

(ii) If x < L then P
[
Alg(x) accepts

]
≤ 1/4.

Theorem 33.4.4 (Fundamental theorem of algebraic graph theory). Let G = G(V, E) be an undirected (multi)graph
with maximum degree d and with n vertices. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M(G) and the corre-
sponding orthonormal eigenvectors are e1, . . . , en. The following holds.

(i) If G is connected then λ2 < λ1.
(ii) For i = 1, . . . , n, we have |λi| ≤ d.

(iii) d is an eigenvalue if and only if G is regular.
(iv) If G is d-regular then the eigenvalue λ1 = d has the eigenvector e1 =

1
√

n (1, 1, 1, . . . , 1).
(v) The graph G is bipartite if and only if for every eigenvalue λ there is an eigenvalue −λ of the same

multiplicity.
(vi) Suppose that G is connected. Then G is bipartite if and only if −λ1 is an eigenvalue.

(vii) If G is d-regular and bipartite, then λn = d and en =
1
√

n (1, 1, . . . , 1,−1, . . . ,−1), where there are equal
numbers of 1s and −1s in en.
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