
Chapter 1

Random Walks IV
By Sariel Har-Peled, April 2, 2024①

“Do not imagine, comrades, that leadership is a pleasure! On the contrary, it is a deep and heavy responsibility. No one believes
more firmly than Comrade Napoleon that all animals are equal. He would be only too happy to let you make your decisions
for yourselves. But sometimes you might make the wrong decisions, comrades, and then where should we be? Suppose you
had decided to follow Snowball, with his moonshine of windmills-Snowball, who, as we now know, was no better than a
criminal?”

Animal Farm, George Orwell

1.1. Cover times

We remind the reader that the cover time of a graph is the expected time to visit all the vertices in the graph,
starting from an arbitrary vertex (i.e., worst vertex). The cover time is denoted by C(G).

Theorem 1.1.1. Let G be an undirected connected graph, then C(G) ≤ 2m(n − 1), where n = |V(G)| and
m = |E(G)|.

Proof: (Sketch.) Construct a spanning tree T of G, and consider the time to walk around T . The expected time
to travel on this edge on both directions is CTuv = huv + hvu, which is smaller than 2m, by Lemma 1.3.1. Now,
just connect up those bounds, to get the expected time to travel around the spanning tree. Note, that the bound
is independent of the starting vertex. ■

Definition 1.1.2. The resistance of G is R(G) = maxu,v∈V(G) Ruv; namely, it is the maximum effective resistance
in G.

Theorem 1.1.3. mR(G) ≤ C(G) ≤ 2e3mR(G) ln n + 2n.

Proof: Consider the vertices u and v realizing R(G), and observe that max(huv, hvu) ≥ CTuv/2, and CTuv =

2mRuv by Theorem 1.3.2. Thus, C(G) ≥ CTuv/2 ≥ mR(G).
As for the upper bound. Consider a random walk, and divide it into epochs, where a epoch is a random

walk of length 2e3mR(G). For any vertex v, the expected time to hit u is hvu ≤ 2mR(G), by Theorem 1.3.2.
Thus, the probability that u is not visited in a epoch is 1/e3 by the Markov inequality. Consider a random walk
with t = ln n epochs. We have that the probability of not visiting u is ≤ (1/e3)ln n ≤ 1/n3. Thus, all vertices
are visited after ln n epochs, with probability ≥ 1 −

(
n
2

)
/n3 ≥ 1 − 1/n. Otherwise, after this walk, we perform

a random walk till we visit all vertices. The length of this (fix-up) random walk is ≤ 2n3, by Theorem 1.1.1.
Thus, expected length of the walk is ≤ 2e3mR(G) ln n + 2n3(1/n2). ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

1.1.1. Rayleigh’s Short-cut Principle.
Observe that effective resistance is never raised by lowering the resistance on an edge, and it is never lowered
by raising the resistance on an edge. Similarly, resistance is never lowered by removing a vertex.

Interestingly, effective resistance comply with the triangle inequality.

Observation 1.1.4. For a graph with minimum degree d, we have R(G) ≥ 1/d (collapse all vertices except the
minimum-degree vertex into a single vertex).

Lemma 1.1.5. Suppose that G contains p edge-disjoint paths of length at most ℓ from s to t. Then Rst ≤ ℓ/p.

1.2. Graph Connectivity

Definition 1.2.1. A probabilistic log-space Turing machine for a language L is a Turing machine using space
O(log n) and running in time O(poly(n)), where n is the input size. A problem A is in RLP, if there exists a
probabilistic log-space Turing machine M such that M accepts x ∈ L(A) with probability larger than 1/2, and
if x < L(A) then M(x) always reject.

Theorem 1.2.2. Let USTCON denote the problem of deciding if a vertex s is connected to a vertex t in an
undirected graph. Then USTCON ∈ RLP.

Proof: Perform a random walk of length 2n3 in the input graph G, starting from s. Stop as soon as the random
walk hit t. If u and v are in the same connected component, then hst ≤ n3. Thus, by the Markov inequality, the
algorithm works. It is easy to verify that it can be implemented in O(log n) space. ■

Definition 1.2.3. A graph is d-regular, if all its vertices are of degree d.
A d-regular graph is labeled if at each vertex of the graph, each of the d edges incident on that vertex has a

unique label in {1, . . . , d}.
Any sequence of symbols σ = (σ1, σ2, . . .) from {1, . . . , d} together with a starting vertex s in a labeled

graph describes a walk in the graph. For our purposes, such a walk would almost always be finite.
A sequence σ is said to traverse a labeled graph if the walk visits every vertex of G regardless of the starting

vertex. A sequence σ is said to be a universal traversal sequence of a labeled graph if it traverses all the graphs
in this class.

Given such a universal traversal sequence, we can construct (a non-uniform) Turing machine that can solve
USTCON for such d-regular graphs, by encoding the sequence in the machine.

Let F denote a family of graphs, and let U(F) denote the length of the shortest universal traversal sequence
for all the labeled graphs in F . Let R(F) denote the maximum resistance of graphs in this family.

Theorem 1.2.4. Let F be a family of d-regular graphs with n vertices, then U(F) ≤ 5mR(F) lg(n |F |).

Proof: Same old, same old. Break the string into epochs, each of length L = 2mR(G). Now, start random
walks from all the possible vertices, for all graphs in F . Continue the walks till all vertices are being visited.
Initially, there are n2 |F | vertices that need to visited. In expectation, in each epoch half the vertices get visited.
There are n |F | walks, each of them needs to visit n vertices. As such, the number of vertices waiting to be
visited is bounded by |F | n2. As such, after 1 + lg2

(
n2 |F |

)
epochs, the expected number of vertices still need

visiting is ≤ 1/2. Namely, with constant probability we are done. ■

2

Let U(d, n) denote the length of the shortest universal traversal sequence of connected, labeled n-vertex,
d-regular graphs.

Lemma 1.2.5. The number of labeled n-vertex graphs that are d-regular is (nd)O(nd).

Proof: Such a graph has dn/2 edges overall. Specifically, we encode this by listing for every vertex its d
neighbors – there are N =

(
n−1

d

)
≤ nd possibilities. As such, there are at most Nn ≤ nnd choices for edges in

the graph②. Every vertex has d! possible labeling of the edges adjacent to it, thus there are (d!)n ≤ dnd possible
labelings. ■

Lemma 1.2.6. U(d, n) = O
(
n3d log n

)
.

Proof: The diameter of every connected n-vertex, d-regular graph is O(n/d). Indeed, consider the path realizing
the diameter of the graph, and assume it has t vertices. Number the vertices along the path consecutively, and
consider all the vertices that their number is a multiple of three. There are α ≥ ⌊t/3⌋ such vertices. No pair
of these vertices can share a neighbor, and as such, the graph has at least (d + 1)α vertices. We conclude that
n ≥ (d + 1)α = (d + 1)(t/3 − 1). We conclude that t ≤ 3

d+1 (n + 1) ≤ 3n/d.
And so, this also bounds the resistance of such a graph. The number of edges is m = nd/2. Now, combine

Lemma 1.2.5 and Theorem 1.2.4. ■

This is, as mentioned before, not a uniform algorithm. There is by now a known log-space deterministic
algorithm for this problem, which is uniform.

1.2.1. Directed graphs

Theorem 1.2.7. One can solve the
−−−−−−→
STCON problem, for a given directed graph with n vertices, using a log-

space randomized algorithm, that always output NO if there is no path from s to t, and output YES with
probability at least 1/2 if there is a path from s to t.

Proof: (Sketch.) The basic idea is simple – start a random walk from s, if it fails to arrive to t after a certain
number of steps, then restart. The only challenging thing is that the number of times we need to repeat this
is exponentially large. Indeed, the probability of a random walk from s to arrive to t in n steps, is at least
p = 1/nn−1 ≥ nn if s is connected to t.

As such, we need to repeat this walk N = O((1/p) log δ) = O(nn+1) times, for δ ≥ 1/2n. If have all of these
walks fail, then with probability ≥ 1 − δ, there is no path from s to t.

We can do the walk using logarithmic space. However, how do we count to N (reliably) using only loga-
rithmic space? We leave this as an exercise to the reader, see Exercise 1.2.8, ■

Exercise 1.2.8. Let N be a large integer number. Show a randomized algorithm, that with, high probability,
counts from 1 to M, where M ≥ N, and always stops. The algorithm should use only O(log log N) bits.

1.3. Tools from previous lecture
Lemma 1.3.1. For any edge (u→ v) ∈ E, huv + hvu ≤ 2m.

Theorem 1.3.2. For any two vertices u and v in G, the commute time CTuv = 2mRuv.

②This is a callous upper bound – better analysis is possible. But never analyze things better than you have to - it usually a waste
of time.

3

	Random Walks IV
	Cover times
	Rayleigh's Short-cut Principle.

	Graph Connectivity
	Directed graphs

	Tools from previous lecture

