
Chapter 31

Random Walks III
By Sariel Har-Peled, April 2, 2024①

“I gave the girl my protection, offering in my equivocal way to be her father. But I came too late, after she had ceased to
believe in fathers. I wanted to do what was right, I wanted to make reparation: I will not deny this decent impulse, however
mixed with more questionable motives: there must always be a place for penance and reparation. Nevertheless, I should never
have allowed the gates of the town to be opened to people who assert that there are higher considerations that those of decency.
They exposed her father to her naked and made him gibber with pain, they hurt her and he could not stop them (on a day I
spent occupied with the ledgers in my office). Thereafter she was no longer fully human, sister to all of us. Certain sympathies
died, certain movements of the heart became no longer possible to her. I too, if I live longer enough in this cell with its ghost
not only of the father and the daughter but of the man who even by lamplight did not remove the black discs from his eyes
and the subordinate whose work it was to keep the brazier fed, will be touched with the contagion and turned into a create that
believes in nothing.”

J. M. Coetzee, Waiting for the Barbarians

31.1. Random walks on graphs

Let G = (V,E) be a connected, non-bipartite, undirected graph, with n vertices. We define the natural Markov
chain on G, where the transition probability is

Puv =

 1
d(u) if uv ∈ E

0 otherwise,

where d(w) is the degree of vertex w. Clearly, the resulting Markov chain MG is irreducible. Note, that the
graph must have an odd cycle, and it has a cycle of length 2. Thus, the gcd of the lengths of its cycles is 1.
Namely, MG is aperiodic. Now, by the Fundamental theorem of Markov chains, MG has a unique stationary
distribution π.

Lemma 31.1.1. For all v ∈ V, we have πv = d(v)/2m.

Proof: Since π is stationary, and the definition of Puv, we get

πv =
[
πP
]
v =
∑

uv

πuPuv,

and this holds for all v. We only need to verify the claimed solution, since there is a unique stationary distribu-
tion. Indeed,

d(v)
2m
= πv = [πP]v =

∑
uv

d(u)
2m

1
d(u)

=
d(v)
2m
,

as claimed. ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Definition 31.1.2. The hitting time huv is the expected number of steps in a random walk that starts at u and
ends upon first reaching v.

The commute time between u and v is denoted by CTuv = huv + hvu.
Let Cu(G) denote the expected length of a walk that starts at u and ends upon visiting every vertex in G at

least once. The cover time of G denotes by C(G) is defined by C(G) = maxu Cu(G).

Lemma 31.1.3. For all v ∈ V, we have hvv = 1/πv = 2m/d(v).

Example 31.1.4 (Lollipop). Let L2n be the 2n-vertex lollipop graph, this graph consists
of a clique on n vertices, and a path on the remaining n vertices. There is a vertex u in the
clique which is where the path is attached to it. Let v denote the end of the path, see figure
on the right.

Taking a random walk from u to v requires in expectation O(n2) steps, as we already
saw in class. This ignores the probability of escape – that is, with probability (n − 1)/n
when at u we enter the clique Kn (instead of the path). As such, it turns out that huv =

Θ(n3), and hvu = Θ(n2). (Thus, hitting times are not symmetric!)
Note, that the cover time is not monotone decreasing with the number of edges. In-

deed, the path of length n, has cover time O(n2), but the larger graph Ln has cover time
Ω(n3).

u

x1
x2

v = xn

n vertices

Example 31.1.5 (More on walking on the Lollipop). To see why huv = Θ(n3), number the vertices on the stem
x1, . . . , xn. Let Ti be the expected time to arrive to the vertex xi when starting a walk from u. Observe, that
surprisingly, T1 = Θ(n2). Indeed, the walk has to visit the vertex u about n times in expectation, till the walk
would decide to go to x1 instead of falling back into the clique. The time between visits to u is in expectation
O(n) (assuming the walk is inside the clique).

Now, observe that T2i = Ti + Θ(i2) + 1
2T2i. Indeed, starting with xi, it takes in expectation Θ(i2) steps of

the walk to either arrive (with equal probability) at x2i (good), or to get back to u (oopsi). In the later case, the
game begins from scratch. As such, we have that

T2i = 2Ti + Θ
(
i2
)
= 2
(
2Ti/2 + Θ

(
(i/2)2

))
+ Θ
(
i2
)
= · · · = 21+log2 iT1 + Θ

(
i2
)
,

assuming i is a power of two (why not?). As such, Tn = nT1+Θ(n2). Since T1 = Θ(n2), we have that Tn = Θ(n3).

Definition 31.1.6. A n × n matrix M is stochastic if all its entries are non-negative and for each row i, it holds∑
k Mik = 1. It is doubly stochastic if in addition, for any i, it holds

∑
k Mki = 1.

Lemma 31.1.7. Let MC be a Markov chain, such that transition probability matrix P is doubly stochastic.
Then, the distribution u = (1/n, 1/n, . . . , 1/n) is stationary for MC.

Proof: [uP]i =

n∑
k=1

Pki

n
=

1
n

. ■

We can interpret every edge in G as corresponding to two directed edges. In particular, imagine performing
a random walk in G, but remembering not only the current vertex in the walk, but also the (directed) edge used
the walk to arrive to this vertex. One can interpret this as a random walk on the (directed) edges. Observe, that
there are 2m directed edges. Furthermore, a vertex u of degree d(u), has stationary distribution πu = d(u)/2m.
As such, the probability that the random walk would use any of the d(u) outgoing edges from u is exactly
α = πu/d(u) = 1/2m. Namely, if we interpret the walk on the graph as walk on the directed edges, the stationary
distribution is uniform. This readily implies that if (u→ v) is in the graph, then h(u→v)(u→v) is 1/α = 2m. This
readily implies that the expected time to go from u to v and back to u is at most 2m. Next, we provide a more
formal (and somewhat different) proof of this.
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Lemma 31.1.8. For any edge (u→ v) ∈ E, we have huv + hvu ≤ 2m.

(Note, that (u→ v) being an edge in the graph is crucial. Indeed, without it a significantly worst case bound
holds, see Theorem 31.2.1.)

Proof: Consider a new Markov chain defined by the edges of the graph (where every edge is taken twice as
two directed edges), where the current state is the last (directed) edge visited. There are 2m edges in the new
Markov chain, and the new transition matrix, has Q(u→v),(v→w) = Pvw =

1
d(v) . This matrix is doubly stochastic,

meaning that not only do the rows sum to one, but the columns sum to one as well. Indeed, for an edge (v→ w)
we have ∑

x∈V,y∈Γ(x)

Q(x→y),(v→w) =
∑

u∈Γ(v)

Q(u→v),(v→w) =
∑

u∈Γ(v)

Pvw = d(v) ×
1

d(v)
= 1.

Thus, the stationary distribution for this Markov chain is uniform, by Lemma 31.1.7. Namely, the stationary
distribution of e = (u→ v) is hee = πe = 1/(2m). Thus, the expected time between successive traversals of e is
1/πe = 2m, by Theorem 31.3.1 (iii).

Consider huv + hvu and interpret this as the time to go from u to v and then return to u. Conditioned on the
event that the initial entry into u was via the edge (v→ u), we conclude that the expected time to go from there
to v and then finally use (v→ u) is 2m. The memorylessness property of a Markov chains now allows us to
remove the conditioning: since how we arrived to u is not relevant. Thus, the expected time to travel from u to
v and back is at most 2m. ■

31.2. Electrical networks and random walks

A resistive electrical network is an undirected graph. Each edge has branch resistance associated with it. The
electrical flow is determined by two laws: Kirchhoff’s law (preservation of flow - all the flow coming into
a node, leaves it) and Ohm’s law (the voltage across a resistor equals the product of the resistance times the
current through it). Explicitly, Ohm’s law states

voltage = resistance ∗ current.

The effective resistance between nodes u and v is the voltage difference between u and v when one ampere
is injected into u and removed from v (or injected into v and removed from u). The effective resistance is always
bounded by the branch resistance, but it can be much lower.

Given an undirected graph G, let N(G) be the electrical network defined over G, associating one ohm
resistance on the edges of N(G).

You might now see the connection between a random walk on a graph and electrical network. Intuitively
(used in the most unscientific way possible), the electricity, is made out of electrons each one of them is doing
a random walk on the electric network. The resistance of an edge, corresponds to the probability of taking the
edge. The higher the resistance, the lower the probability that we will travel on this edge. Thus, if the effective
resistance Ruv between u and v is low, then there is a good probability that travel from u to v in a random walk,
and huv would be small.

31.2.1. A tangent on parallel and series resistors
Consider having n resistors in parallel with resistance R1, . . . ,Rn, connecting two nodes u and v. As follows:
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R2R1 Rn
u

v

The effective resistance between u and v is

Ruv =
1

1
R1
+ 1

R2
· · · + 1

Rn

.

In particular, if R1 = · · · = Rn = R, then we have that Ruv = 1/(1/R + · · · 1/R) = 1/(n/R) = R/n.
Similarly, if we have n resistors in series, with resistance R1,R2, . . . ,Rn, between u and v:

R2R1 Rn

u v

Then, the effective resistance between u and v is

Ruv = R1 + · · · + Rn.

In particular, if R1 = · · · = Rn, then Ruv = nR.

31.2.2. Back to random walks
Theorem 31.2.1. For any two vertices u and v in G, the commute time CTuv = 2mRuv, where Ruv is the effective
resistance between u and v.

Proof: Let ϕuv denote the voltage at u in N(G) with respect to v, where d(x) amperes of current are injected
into each node x ∈ V, and 2m amperes are removed from v. We claim that

huv = ϕuv.

Note, that the voltage on an edge xy is ϕxy = ϕxv −ϕyv. Thus, using Kirchhoff’s Law and Ohm’s Law, we obtain
that

x ∈ V \ {v} d(x) =
∑

w∈Γ(x)

current(xw) =
∑

w∈Γ(x)

ϕxw

resistance(xw)
=
∑

w∈Γ(x)

(ϕxv − ϕwv), (31.1)

since the resistance of every edge is 1 ohm. (We also have the “trivial” equality that ϕvv = 0.) Furthermore, we
have only n variables in this system; that is, for every x ∈ V, we have the variable ϕxv.

Now, for the random walk interpretation – by the definition of expectation, we have

x ∈ V \ {v} hxv =
1

d(x)

∑
w∈Γ(x)

(1 + hwv) ⇐⇒ d(x) hxv =
∑

w∈Γ(x)

1 +
∑

w∈Γ(x)

hwv

⇐⇒
∑

w∈Γ(x)

1 = d(x) hxv −
∑

w∈Γ(x)

hwv =
∑

w∈Γ(x)

(hxv − hwv).
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Since d(x) =
∑

w∈Γ(x) 1, this is equivalent to

x ∈ V \ {v} d(x) =
∑

w∈Γ(x)

(hxv − hwv). (31.2)

Again, we also have the trivial equality hvv = 0.② Note, that this system also has n equalities and n variables.
Eq. (31.1) and Eq. (31.2) show two systems of linear equalities. Furthermore, if we identify huv with ϕxv

then they are exactly the same system of equalities. Furthermore, since Eq. (31.1) represents a physical system,
we know that it has a unique solution. This implies that ϕxv = hxv, for all x ∈ V.

Imagine the network where u is injected with 2m amperes, and for all nodes w remove d(w) units from w.
In this new network, hvu = −ϕ

′
vu = ϕ

′
uv. Now, since flows behaves linearly, we can superimpose them (i.e., add

them up). We have that in this new network 2m unites are being injected at u, and 2m units are being extracted
at v, all other nodes the charge cancel itself out. The voltage difference between u and v in the new network is
ϕ̂ = ϕuv + ϕ

′
uv = huv + hvu = CTuv. Now, in the new network there are 2m amperes going from u to v, and by

Ohm’s law, we have

ϕ̂ = voltage = resistance ∗ current = 2mRuv,

as claimed. ■

u

x1
x2

v = xn

n vertices

Figure 31.1: Lollipop again.

Example 31.2.2. Recall the lollipop Ln from Exercise 31.1.4, see Figure 31.1. Let u be the connecting vertex
between the clique and the stem (i.e., the path). The effective resistance between u and v is n since there are n
resistors in series along the stem. That is Ruv = n.

The number of edges in the lollipop is
(

n
2

)
+ n = n(n − 1)/2 + n = n(n + 1)/2. As such, the commute time

hvu + huv = CTuv = 2mRuv = 2
(
n(n + 1)/2

)
n = n2(n + 1).

We already know that hvu = Θ(n2). This implies that huv = CTuv − hvu = Θ(n3).

Lemma 31.2.3. For any n vertex connected graph G, and for all u, v ∈ V(G), we have CTuv < n3.

Proof: The effective resistance between any two nodes in the network is bounded by the length of the shortest
path between the two nodes, which is at most n − 1. As such, plugging this into Theorem 31.2.1, yields the
bound, since m < n2. ■

②In previous lectures, we interpreted hvv as the expected length of a walk starting at v and coming back to v.
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31.3. Tools from previous lecture
Theorem 31.3.1 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.

31.4. Bibliographical Notes
A nice survey of the material covered here, is available online at http://arxiv.org/abs/math.PR/0001057
[DS00].
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