
Chapter 30

Random Walks II
By Sariel Har-Peled, March 26, 2024①

“Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said solemnly.
"Begin with the late Romans, including Boethius, of course. Then you should dip rather extensively into early Medieval. You
may skip the Renaissance and the Enlightenment. That is mostly dangerous propaganda. Now, that I think about of it, you had
better skip the Romantics and the Victorians, too. For the contemporary period, you should study some selected comic books.”
“You’re fantastic.”
“I recommend Batman especially, for he tends to transcend the abysmal society in which he’s found himself. His morality is
rather rigid, also. I rather respect Batman.”

John Kennedy Toole, A confederacy of Dunces

30.1. Catalan numbers
For a sequence σ of symbols, let #(σ, X) be the number of times the symbol X appears in σ.

Definition 30.1.1. A sequence/word σ of length 2n elements/characters made out of two symbols X and Y , is
balanced, if

(I) X appears n times (i.e., #(σ, X) = n),
(II) Y appears n times (i.e., #(σ,Y) = n),

(III) In any prefix of the string, the number of Xs is at least as large as the number of Ys.
Such a string is known as a Dyck word. If X and Y are the open and close parenthesis characters, respectively,
then the word is a balanced/valid parenthesis pattern.

Definition 30.1.2. The Catalan number, denoted by Cn, is the number of balanced strings of length 2n.

There are many other equivalent definitions of Catalan number.

Definition 30.1.3. A sequence σ made out of two symbols X and Y is dominating, if for any non-empty prefix
of σ, the number of Xs is strictly larger than the number of Ys.

Lemma 30.1.4. Let σ be a cyclic sequence made out symbols X and Y, where n = #(σ, X) and m = #(σ, y),
with n > m. Then there are exactly n−m locations where cutting the cyclic sequence at these locations, results
in a dominating sequence.

Proof: Consider a location in σ that contains X, and the next location contains Y . Clearly, such a location
can not be a start for a dominating sequence. Of course, the next location can also not be a start position for a
dominating sequence. As such, these two locations must be interior to a dominating sequence, and deleting both
of these symbols from σ, results in a new cyclic sequence, where every dominating start location corresponds
to a dominating start location in the original sequence. Observe, that as long as the number of Xs is larger
than the number of Ys, there must be such a location with XY as the prefix. Repeatedly deleting XY substring,
results in a string of length n −m, where every location is a good start of a dominating sequence. We conclude
that there are exactly n − m such locations. ■

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Observation 30.1.5. The number of distinct cyclic sequences of length m + n, with m appearances of X, and
n appearances of Y is (n+m−1)!

m!n! = 1
n+m

(
n+m

n

)
, since there are (n + m − 1)! different cyclic ways to arrange n + m

distinct values.

Theorem 30.1.6. For n ≥ 1, we have that the Catalan number Cn =
1

n+1

(
2n
n

)
.

Proof: Consider a dominating sequence σ of length 2n + 1 with #(σ, X) = n + 1, and #(σ,Y) = n. Such a
sequence must start with an X, and if we remove the leading X, then what remains is a balanced sequence.
Such a sequence σ can be interpreted as a cyclic sequence. By the above lemma, there is a unique shift that is
dominating. As such, the number of such cyclic sequence is the Catalan number Cn. By the above observation,
the number of such cyclic sequences is

(n + m − 1)!
m!n!

=
(n + n + 1 − 1)!

(n + 1)!n!
=

1
n + 1

2n!
n!n!

=
1

n + 1

(
2n
n

)
. ■

30.2. Walking on the integer line revisited

30.2.1. Estimating the middle binomial coefficient

Lemma 30.2.1. For i ≥ 112, we have
1
4
·

22i

√
i
≤

(
2i
i

)
≤ 2 ·

22i

√
i
. and

(
2i

i+
√

i

)
≥ 1

12 ·
22i
√

i

Proof: Observe that
(

2i
i

)
≥

(
2i
j

)
, for any j. We assume that i ≥ 112, and

√
i is an integer. O bserve that(

2i
i+τ

)
= 2i!

(i+τ)!(i−τ)! =
2i!
i!i!

(i−τ+1)···(i−1)i
(i+1)···(i+τ) =

(
2i
i

)∏τ
k=1

i−τ+k
i+k . Now, by Lemma 30.5.1, we have

α =

τ∏
k=1

i − τ + k
i + k

=

τ∏
k=1

(
1 −

τ

i + k

)
≥

(
1 −
τ

i

)τ
≥

(
1 −
τ2

i2 τ

)
exp

(
−
τ2

i

)
≥

1
3
,

for τ ≤
√

i, and i ≥ 112. Namely, for any k, such that −
√

i ≤ k ≤
√

i, we have
(

2i
i+k

)
≥

(
2i
i

)
/3. We thus have that

1 ≥
1

22i

√
i∑

k=−
√

i+1

(
2i

i + k

)
≥

2
√

i
3 · 22i

(
2i
i

)
=⇒

(
2i
i

)
≤

2
3
·

22i

√
i
.

Let ∆ =
√

i − 1 and X ∼ bin(2i, 1/2). We have that E[X] = i, and V[X] = 2i(1/2)(1/2) = i/2. Let
β = 1

22i

∑∆
k=−∆

(
2i

i+k

)
. By Chebychev, we have that 1 − β = P

[
|X − i| ≥

√
2
√

i/2
]
≤ 1/2. which implies β ≥ 1/2.

We have
1
2
≤ β ≤

1
22i

∆∑
k=−∆

(
2i

i + k

)
≤

2∆ + 1
22i

(
2i
i

)
=⇒

(
2i
i

)
≥

22i

2(2∆ + 1)
≥

22i

4
√

i
. ■

Lemma 30.2.2. In a random walk on the line starting at zero, in expectation, after 48n2 steps, the walk had
visited either −n or +n.
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Proof: By Lemma 30.2.1, the probability that after 2i steps, for i = 16n2, the walk is in the range {−
√

i +
1, . . . ,

√
i − 1} is at most

2n
1

22i ·
2
3
·

22i

√
i
= 2n

2
3
·

1
4n
=

1
3
.

Namely, the walk arrived to either −n or +n during the first 32n2 steps (note that n ≤ i/2) with probability
≥ 2/3. If this did not happen, we continue the walk. As i ≥ 2n, the same argumentation essentially implies
that every 32n2 steps, the walk terminates with probability at least 2/3. As such, in expectation, after 3/2 such
epochs, the walk would terminate. ■

30.3. Solving 2SAT using random walk
Let G = G(V, E) be a undirected connected graph. For v ∈ V , let Γ(v) denote the neighbors of v in G. A random
walk on G is the following process: Starting from a vertex v0, we randomly choose one of the neighbors of v0,
and set it to be v1. We continue in this fashion, such that vi ∈ Γ(vi−1). It would be interesting to investigate the
process of the random walk. For example, questions like: (i) how long does it take to arrive from a vertex v to
a vertex u in G? and (ii) how long does it take to visit all the vertices in the graph.

30.3.1. Solving 2SAT
Consider a 2SAT formula F with m clauses defined over n variables. Start from an arbitrary assignment to the
variables, and consider a non-satisfied clause in F. Randomly pick one of the clause variables, and change its
value. Repeat this till you arrive to a satisfying assignment.

Consider the random variable Xi, which is the number of variables assigned the correct value (according to
the satisfying assignment) in the current assignment. Clearly, with probability (at least) half Xi = Xi−1 + 1.

Thus, we can think about this algorithm as performing a random walk on the numbers 0, 1, . . . , n, where at
each step, we go to the right probability at least half. The question is, how long does it take to arrive to n in
such a settings.

Theorem 30.3.1. The expected number of steps to arrive to a satisfying assignment is O(n2).

Proof: For simplicity of exposition assume that n is divisible by 4. Consider the random walk on the integer
line, starting from zero, where we go to the left with probability 1/2, and to the right probability 1/2. Let Yi be
the location of the walk at the i step. Clearly, E[Yi] ≥ E[Xi]. By defining the random walk on the integer line
more carefully, one can ensure that Yi ≤ Xi. Thus, the expected number of steps till Yi is equal to n is an upper
bound on the required quantity.

For an i, Y2i is an even number. Thus, consider the event that Y2i = 2∆ ≥ n, let Y2i = R2i − L2i, where R2i is
the number of steps to the right, and L2i is the number of steps to the left. Observe thatR2i − L2i = 2∆

R2i + L2i = 2i
=⇒

R2i = i + ∆
L2i = i − R2i = i − ∆.

Thus, for i ≥ n/2, we have that the probability that in the 2ith step we have Y2i ≥ n is

ρ =

i∑
∆=n/2

1
22i

( 2i
i + ∆

)
.

Lemma 30.3.2 below, tells us that for ρ > 1/3, is implied if ∆ ≤
√

i/6. That is, n/2 ≤
√

i/6, which holds for
i = 9n2.
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Next, if X2i fails to arrive to n at the first µ steps, we will reset Yµ = Xµ and continue the random walk,
repeating this process as many phases as necessary. The probability that the number of phases exceeds i is
≤ (2/3)i. As such, the expected number of steps in the walk is at most∑

i

c′n2i(1 − ρ)i = O(n2),

as claimed. ■

Lemma 30.3.2. We have
∑2i

k=i+
√

i/6

1
22i

(
2i
k

)
≥

1
3

.

Proof: It is known② that
(

2i
i

)
≤ 22i/

√
i (better constants are known). As such, since

(
2i
i

)
≥

(
2i
m

)
, for all m, we

have by symmetry that
2i∑

k=i+
√

i/6

1
22i

(
2i
k

)
≥

2i∑
k=i+1

1
22i

(
2i
k

)
−
√

i/6
1

22i

(
2i
i

)
≥

1
2
−
√

i/6
1

22i ·
22i

√
i
=

1
3
. ■

30.4. Markov chains
Let S denote a state space, which is either finite or countable. A Markov chain is at one state at any given
time. There is a transition probability Pi j, which is the probability to move to the state j, if the Markov chain is
currently at state i. As such,

∑
j Pi j = 1 and ∀i, j we have 0 ≤ Pi j ≤ 1. The matrix P =

{
Pi j

}
i j

is the transition
probabilities matrix.

P =



jth column

ith row Pi j


The Markov chain start at an initial state X0, and at each point in time moves according to the transition

probabilities. This form a sequence of states {Xt}. We have a distribution over those sequences. Such a sequence
would be referred to as a history.

Similar to Martingales, the behavior of a Markov chain in the future, depends only on its location Xt at time
t, and does not depends on the earlier stages that the Markov chain went through. This is the memorylessness
property of the Markov chain, and it follows as Pi j is independent of time. Formally, the memorylessness
property is

P
[
Xt+1 = j

∣∣∣ X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = i
]
= P

[
Xt+1 = j | Xt = i

]
= Pi j.

The initial state of the Markov chain might also be chosen randomly in some cases.
For states i, j ∈ S, the t-step transition probability is P(t)

i j = P
[
Xt = j

∣∣∣ X0 = i
]
. The probability that we visit

j for the first time, starting from i after t steps, is denoted by

r
(t)
i j = P

[
Xt = j and X1 , j, X2 , j, . . . , Xt−1 , j

∣∣∣ X0 = i
]
.

②Probably because you got it as a homework problem, if not wikipedia knows, and if you are bored you can try and prove it
yourself.
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Let fi j =
∑

t>0 r
(t)
i j denote the probability that the Markov chain visits state j, at any point in time, starting from

state i. The expected number of steps to arrive to state j starting from i is

hi j =
∑
t>0

t · r(t)
i j .

Of course, if fi j < 1, then there is a positive probability that the Markov chain never arrives to j, and as such
hi j = ∞ in this case.

Definition 30.4.1. A state i ∈ S for which fii < 1 (i.e., the chain has positive probability of never visiting i
again), is a transient state. If fii = 1 then the state is persistent.

A state i that is persistent but hii = ∞ is null persistent. A state i that is persistent and hii , ∞ is non null
persistent.

Example 30.4.2. Consider the state 0 in the random walk on the integers. We already know that in expectation
the random walk visits the origin infinite number of times, so this hints that this is a persistent state. Let figure
out the probability r(2n)

00 . To this end, consider a walk X0, X1, . . . , X2n that starts at 0 and return to 0 only in the
2n step. Let S i = Xi − Xi−1, for all i. Clearly, we have S i ∈ {−1,+1} (i.e., move left or move right). Assume
the walk starts by S 1 = +1 (the case −1 is handled similarly). Clearly, the walk S 2, . . . , S 2n−1 must be prefix
balanced; that is, the number of 1s is always bigger (or equal) for any prefix of this sequence.

Strings with this property are known as Dyck words, and the number of such words of length 2m is the
Catalan number Cm =

1
m+1

(
2m
m

)
. As such, the probability of the random walk to visit 0 for the first time (starting

from 0) after 2n steps, is

r
(2n)
00 = 2

1
n

(
2n − 2
n − 1

)
1

22n = Θ

(
1
n
·

1
√

n

)
= Θ

(
1

n3/2

)
.

(the 2 here is because the other option is that the sequence starts with −1), using that
(

2n
n

)
= Θ

(
22n/
√

n
)
.

Observe that f00 =
∑∞

n=0 r
(2n)
00 = O(1). However, one can be more precise – that is, f00 = 1 (this requires a

trick)! On the other hand, we have that

h00 =
∑
t>0

t · r(t)
00 ≥

∞∑
n=1

2nr(2n)
00 =

∞∑
n=1

Θ
(
1/
√

n
)
= ∞.

Namely, 0 (and indeed all integers) are null persistent.

In finite Markov chains there are no null persistent states (this requires a proof, which is left as an exercise).
There is a natural directed graph associated with a Markov chain. The states are the vertices, and the transition
probability Pi j is the weight assigned to the edge (i→ j). Note that we include only edges with Pi j > 0.

Definition 30.4.3. A strong component (or a strong connected component) of a directed graph G is a maximal
subgraph C of G such that for any pair of vertices i and j in the vertex set of C, there is a directed path from i
to j, as well as a directed path from j to i.

Definition 30.4.4. A strong component C is a final strong component if there is no edge going from a vertex
in C to a vertex that is not in C.

In a finite Markov chain, there is positive probability to arrive from any vertex on C to any other vertex of C
in a finite number of steps. If C is a final strong component, then this probability is 1, since the Markov chain
can never leave C once it enters it③. It follows that a state is persistent if and only if it lies in a final strong
component.

③Think about it as hotel California.
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Definition 30.4.5. A Markov chain is irreducible if its underlying graph consists of a single strong component.

Clearly, if a Markov chain is irreducible, then all states are persistent.

Definition 30.4.6. Let q(t) =
(
q(t)

1 , q
(t)
2 , . . . , q

(t)
n

)
be the state probability vector (also known as the distribution

of the chain at time t), to be the row vector whose ith component is the probability that the chain is in state i at
time t.

The key observation is that
q(t) = q(t−1)P = q(0)Pt.

Namely, a Markov chain is fully defined by q(0) and P.

Definition 30.4.7. A stationary distribution for a Markov chain with the transition matrix P is a probability
distribution π such that π = πP.

In general, stationary distribution does not necessarily exist. We will mostly be interested in Markov chains
that have stationary distribution. Intuitively it is clear that if a stationary distribution exists, then the Markov
chain, given enough time, will converge to the stationary distribution.

Definition 30.4.8. The periodicity of a state i is the maximum integer T for which there exists an initial distri-
bution q(0) and positive integer a such that, for all t, if at time t we have q(t)

i > 0 then t belongs to the arithmetic
progression {a + Ti | i ≥ 0}. A state is said to be periodic if it has periodicity greater than 1, and is aperiodic
otherwise. A Markov chain in which every state is aperiodic is aperiodic.

Example 30.4.9. The easiest example maybe of a periodic Markov chain is a directed cycle.

v1

v2

v3

For example, the Markov chain on the right, has periodicity of three. In particular, the initial
state probability vector q(0) = (1, 0, 0) leads to the following sequence of state probability vectors

q(0) = (1, 0, 0) =⇒ q(1) = (0, 1, 0) =⇒ q(2) = (0, 0, 1) =⇒ q(3) = (1, 0, 0) =⇒ . . . .

Note, that this chain still has a stationary distribution, that is (1/3, 1/3, 1/3), but unless you start from this
distribution, you are going to converge to it.

A neat trick that forces a Markov chain to be aperiodic, is to shrink all the probabilities by a factor of 2, and
make every state to have a transition probability to itself equal to 1/2. Clearly, the resulting Markov chain is
aperiodic.

Definition 30.4.10. An ergodic state is aperiodic and (non-null) persistent.
An ergodic Markov chain is one in which all states are ergodic.

The following theorem is the fundamental property of Markov chains that we will need. The interested
reader, should check the proof in [Nor98] (the proof is not hard).

Theorem 30.4.11 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.
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30.5. From previous lectures

Lemma 30.5.1. For any y ≥ 1, and |x| ≤ 1, we have
(
1 − x2y

)
exy ≤ (1 + x)y

≤ exy.
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